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Abstract. After a brief introduction on ongoing experimental and theoretical activities
on (g − 2)µ, we report on recent progress in approaching the calculation of the hadronic
light-by-light contribution with dispersive methods. General properties of the four-point
function of the electromagnetic current in QCD, its Lorentz decomposition and disper-
sive representation are discussed. On this basis a numerical estimate for the pion box
contribution and its rescattering corrections is obtained. We conclude with an outlook for
this approach to the calculation of hadronic light-by-light.

1 Introduction

The measured value of the anomalous magnetic moment of the muon aµ, obtained by the BNL E821
experiment [1], represents a puzzle for the standard model (SM): it differs by about three standard
deviations from the calculated value (see e.g. [2, 3]). Taken at face value this is a serious discrepancy,
but before claiming a real crisis for the SM or plain discovery of new physics, it is important to
make sure that systematic effects, either on the theory or on the experimental side, have not been
underestimated. Experimentally this requires redoing the measurement, ideally in a completely new
setting. This is the aim of the Muon g − 2 experiment [4] which has started to run at Fermilab
and aims to reduce the final uncertainty reached by the BNL E821 experiment by about a factor
four. This experiment is reusing the same ring and conceptual design of the Brookhaven experiment.
A completely different setting has instead been adopted by the J-PARC E34 experiment [5], which
however still needs to be approved and will start running only in a few years from now.

On the theory side there has been impressive progress in recent years in the calculation of pure
QED contributions [6–9]. Also electroweak contributions, which are known to two loops, are under
good control and have survived further more recent tests and double checks [10, 11]. None of these
improvements or checks has had any significant impact neither on the central value nor on the error,
essentially because their contributions to the theoretical uncertainty is negligible with respect to that
coming from hadronic contributions. The latter are indeed the most crucial (for the error estimate)
and critical (for the central value) contributions to the SM value and a lot of theoretical activity has
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been and still is devoted to improving their estimate. Quite a substantial part of it concerns lattice
calculations.

Hadronic contributions can be classified based on the order in α and the topology. At order α2 there
is the hadronic vacuum polarization contribution to the vertex-correction diagram, usually called tout
court hadronic vacuum polarization (HVP). At order α3, there are next-to-leading (NLO) order HVP
diagrams as well as hadronic light-by-light (HLbL) contributions. At order α4 there are NNLO HVP
diagrams and NLO HLbL diagrams. Going beyond LO for each topology is important for the central
value estimate and for checking that there are no surprises, but for the uncertainty estimate it is the LO
contributions which matter. As it turns out, the two topologies contribute about the same to the total
uncertainty, even though HLbL is suppressed by one order of α. The reason is simple: the calculation
of the HVP is based on an exact relation, derived from analyticity and unitarity, which allows one to
express this contribution as an integral over the measurable cross section σ(e+e− → hadrons). The
latter cross section has actually been measured with high accuracy, especially at low energy, which
is the region contributing with the highest weight, so that the calculation of the relevant integral can
be performed with subpercent accuracy. For HLbL such a relation did not exist until recently and
has been derived in a series of recent papers [12–16]. This is not as simple and effective as the one
for HVP, where all intermediate states contribute in the same form: for HLbL different intermediate
states appear in different integrals and the explicit form of these integrals has been derived only for up
to two-particle intermediate states. Moreover, the measurable quantities that enter these integrals (e.g.
the γ∗γ∗ → ππ helicity amplitudes) have not yet been measured other than in corners of the phase
space (for two or one real photons). Complete estimates of the HLbL which have appeared so far are
therefore based on models [17–22] (an alternative dispersive approach, where the whole muon form
factor is treated dispersively has been proposed in Ref. [23]).

In this contribution I will briefly report on recent progress in the calculation of the HLbL contri-
bution on the lattice and discuss in some more detail the dispersive approach we have developed, in
particular illustrating our first numerical estimate of the pion box and the corresponding rescattering
contribution. The status of the calculations of the HVP contribution is covered by the talk given by
Christoph Lehner [24].

2 Hadronic light-by-light on the lattice

Two lattice collaborations have started different approaches to calculate the HLbL contribution. Until
recent years it was not known how this contribution could be calculated on the lattice and at the present
stage it is not clear which of the approaches tried so far will be the most effective and will reach the
highest precision in the long run.

2.1 The RBC/UKQCD approach

The first attempt to perform a lattice calculation of the HLbL contribution to (g − 2)µ is due to Blum
et al. [25]. The method proposed relied on putting on the lattice not only quarks and gluons, but also
photons and muons and integrating over the two loops involving the muon and photon propagators
with Monte Carlo methods on the lattice. The calculation is nontrivial, not only because the hadronic
object to be considered is complicated, but also because, by choosing to include also the photons in the
calculation, all the difficulties related to having massless photons on the lattice affect this calculation
too. In particular one expects quite significant finite-volume effects due to the photons (see [26]).
The first calculation only considered connected diagrams and was performed with unphysical quark
masses, whereas a more recent one [27, 28], performed along the same lines, included the leading
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disconnected diagram and was done at the physical point. No attempt at taking the continuum limit
was made yet, since the calculation was performed at a single lattice spacing.

The result obtained reads:
aHLbL
µ = (5.35 ± 1.35) · 10−10 , (1)

which is about half of the most recent estimates based on models [29, 30]. Given the exploratory
nature of the calculation and the fact that it has been performed at a single lattice spacing, it is pre-
mature to discuss about numerical differences. The main message to be taken from the impressive
RBC/UKQCD effort is that the calculation is possible with current computers and that the chosen
approach seems to work well. Further efforts in this direction promise to provide a number with a
controlled uncertainty estimate, however the problems related to the finite-volume effects can be more
efficiently solved with a different approach, proposed by the Mainz group (see below), which has
recently been adopted also by the RBC/UKQCD collaboration [31].

2.2 The Mainz approach

The approach followed by the Mainz group is based on the following formula which expresses the
contribution as an integral in position (rather than in momentum) space [32]:

aHLbL
µ =

me6

3

∫
d4y
[ ∫

d4x L̄[ρ,σ];µνλ(x, y)︸�����������︷︷�����������︸
QED

iΠ̂ρ;µνλσ(x, y)︸����������︷︷����������︸
QCD

]
. (2)

The advantage of such an approach is that the photon propagators are handled analytically and taken
care of by the kernel L̄[ρ,σ];µνλ(x, y), which has been calculated exactly. In this way all the problems
related to the formulation of QED on the lattice, and in particular in finite volume, are completely
overcome. Effectively one is using QED in infinite volume. Moreover it is much closer to what is
actually calculated on the lattice, where it is position space which is discretized. The approach has
been successfully tested numerically by inserting in iΠ̂ρ;µνλσ(x, y) the explicit expression for a muon
loop and performing the calculation on the lattice. The outcome reproduced to percent accuracy the
known result for the muonic light-by-light contribution [33]. A similar test has also been successfully
performed by the RBC/UKQCD collaboration [31].

The Mainz group has also followed a different path, namely to calculate explictly the pion transi-
tion form factor on the lattice. This is only one of the contributions to the HLbL tensor (see below for
a precise definition thereof), but arguably the most important one. Moreover, experimental data on
this form factor are available only for the singly-virtual case, and efforts to measure the doubly-virtual
configurations are plagued by serious difficulties. On the other hand this is not a particularly difficult
calculation on the lattice, and the one done by the Mainz group shows that it can be performed with a
very good accuracy:

aHLbL,π0

µ,LMD+V = (6.50 ± 0.83) · 10−10 (3)

of about 13% [34, 35]: investing more efforts and more computer time in such a calculation, has
the potential to bring the accuracy of this contribution to well below 10%, which is sufficient for
the present purpose. Note that although the calculation is done from first principles and aims to be
model independent, in order to perform the full integral over the photon and muon loops one needs to
model the q2

i dependence of the pion transition form factor even beyond the region where the lattice
calculation has been made. Technically this means that one chooses a parametrization to describe the
q2 dependence and fixes the values of the parameters to fit the lattice data. In this way the result of the
integration depends on the chosen parametrization — this explains the label “LMD+V” attached to the
result, which indicates the kind of parametrization used. The final aim is to cover on the lattice a large
enough region in q2 such that the model-dependence due to the parametrization becomes negligible.
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Figure 1. Kinematics of the light-by-light scattering amplitude.

3 Dispersive approach: preliminaries
In order to attack the calculation of the HLbL dispersively a few preliminary steps are necessary. For
simpler objects, like the two-point function of the electromagnetic current, which is relevant for the
HVP contribution, these steps are usually performed without even mentioning them, because they are
almost trivial. For the two-point function of the electromagnetic current Lorentz invariance allows
one to decompose the tensor into two independent structures. Gauge invariance reduces the two
independent structures to a single one. Going from the two- to the four-point function the increase
in complexity is baffling: the number of independent Lorentz structures jumps from 2 to 138 (136
in 4 dimensions, see [36]). Also the implementation of gauge invariance becomes significantly more
complex – especially if one wants to obtain a basis which is free from kinematic singularities and
zeros – but luckily a general procedure has been devised long ago by Bardeen and Tung [37], with an
important addendum pointed out by Tarrach [38]. This can be applied also in this case without special
difficulties other than those due to the inherent complexity of the problem.

3.1 Lorentz and gauge invariant decomposition

The HLbL tensor is the Green’s function of four electromagnetic currents, evaluated in pure QCD:

Πµνλσ(q1, q2, q3) = −i
∫

d4x d4y d4z e−i(q1·x+q2·y+q3·z)〈0|T { jµem(x) jνem(y) jλem(z) jσem(0)}|0〉. (4)

The electromagnetic current above is built out of the three lightest quarks only:

jµem := q̄Qγµq, (5)

where q = (u, d, s)T and Q = diag( 2
3 ,−

1
3 ,−

1
3 ). We define

q4 := k = q1 + q2 + q3, (6)

and illustrate the kinematics in Fig. 1.
As invariant variable we adopt the usual Mandelstam variables:

s := (q1 + q2)2, t := (q1 + q3)2, u := (q2 + q3)2, s + t + u =
4∑

i=1

q2
i =: Σ (7)

(the limit k2 = 0 will be considered later). The Ward–Takahashi identities implied by gauge invariance
have the form

{qµ1, q
ν
2, q
λ
3, q
σ
4 }Πµνλσ(q1, q2, q3) = 0. (8)
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3.2 Tensor decomposition

As mentioned above the HLbL tensor can be decomposed into 138 Lorentz structures [39–41]:

Πµνλσ = gµνgλσ Π1 + gµλgνσΠ2 + gµσgνλ Π3 +
∑

i=2,3,4
j=1,3,4

∑
k=1,2,4
l=1,2,3

qµi qνjq
λ
k qσl Π

4
i jkl

+
∑

i=2,3,4
j=1,3,4

gλσqµi qνj Π
5
i j +

∑
i=2,3,4
k=1,2,4

gνσqµi qλk Π
6
ik +

∑
i=2,3,4
l=1,2,3

gνλqµi qσl Π
7
il

+
∑

j=1,3,4
k=1,2,4

gµσqνjq
λ
k Π

8
jk +

∑
j=1,3,4
l=1,2,3

gµλqνjq
σ
l Π

9
jl +
∑

k=1,2,4
l=1,2,3

gµνqλk qσl Π
10
kl . (9)

The 138 scalar functions {Π1,Π2,Π3,Π4
i jkl,Π

5
i j,Π

6
ik,Π

7
il,Π

8
jk,Π

9
jl,Π

10
kl } depend on six independent kine-

matic variables: the two Mandelstam variables s and t and the virtualities q2
1, q2

2, q2
3, and q2

4. They are
free of kinematic singularities but since they have to fulfill kinematic constraints required by gauge
invariance, they must have kinematic zeros. The Ward identities (8) impose 95 linearly independent
relations on the scalar functions, reducing the set to 43 functions. To obtain these we apply the recipe
devised by Bardeen and Tung [37], but this does not lead to a minimal basis free of kinematic sin-
gularities, as shown by Tarrach [38]. Following the latter we have constructed a redundant set of 54
structures, which is free of kinematic singularities and zeros.

The resulting representation of the HLbL tensor which we have obtained in this way reads

Πµνλσ =

54∑
i=1

T µνλσi Πi, (10)

where

T µνλσ1 = εµναβελσγδq1αq2βq3γq4δ,

T µνλσ4 =
(
qµ2qν1 − q1 · q2g

µν
)(

qλ4qσ3 − q3 · q4g
λσ
)
,

T µνλσ7 =
(
qµ2qν1 − q1 · q2g

µν
)(

q1 · q4

(
qλ1qσ3 − q1 · q3g

λσ
)
+ qλ4qσ1 q1 · q3 − qλ1qσ1 q3 · q4

)
,

T µνλσ19 =
(
qµ2qν1 − q1 · q2g

µν
)(

q2 · q4

(
qλ1qσ3 − q1 · q3g

λσ
)
+ qλ4qσ2 q1 · q3 − qλ1qσ2 q3 · q4

)
,

T µνλσ31 =
(
qµ2qν1 − q1 · q2g

µν
)(

qλ2q1 · q3 − qλ1q2 · q3

)(
qσ2 q1 · q4 − qσ1 q2 · q4

)
,

T µνλσ37 =
(
qµ3q1 · q4 − qµ4q1 · q3

) (
qν3qλ4qσ2 − qν4qλ2qσ3 + g

λσ
(
qν4q2 · q3 − qν3q2 · q4

)

+ gνσ
(
qλ2q3 · q4 − qλ4q2 · q3

)
+ gλν

(
qσ3 q2 · q4 − qσ2 q3 · q4

) )
,

T µνλσ49 = qσ3
(
q1 · q3q2 · q4qµ4g

λν − q2 · q3q1 · q4qν4g
λµ + qµ4qν4

(
qλ1q2 · q3 − qλ2q1 · q3

)

+ q1 · q4qµ3qν4qλ2 − q2 · q4qµ4qν3qλ1 + q1 · q4q2 · q4

(
qν3g

λµ − qµ3g
λν
) )

− qλ4
(
q1 · q4q2 · q3qµ3g

νσ − q2 · q4q1 · q3qν3g
µσ + qµ3qν3

(
qσ1 q2 · q4 − qσ2 q1 · q4

)

+ q1 · q3qµ4qν3qσ2 − q2 · q3qµ3qν4qσ1 + q1 · q3q2 · q3

(
qν4g

µσ − qµ4g
νσ
) )

(11)

+ q3 · q4

( (
qλ1qµ4 − q1 · q4g

λµ
) (

qν3qσ2 − q2 · q3g
νσ
)
−
(
qλ2qν4 − q2 · q4g

λν
) (

qµ3qσ1 − q1 · q3g
µσ
) )
.

All the remaining structures are just crossed versions of the above seven structures, as shown in
Ref. [14]. Since the HLbL tensor Πµνλσ is totally crossing symmetric, the scalar functions Πi have
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to fulfill exactly the same crossing properties of the corresponding Lorentz structures, which we have
not given here, but which can again be found in [14]. Therefore, only seven different scalar functions
Πi appear, together with their crossed versions. These 54 scalar functions are free of kinematic sin-
gularities and zeros and hence fulfill a Mandelstam representation. They are suitable quantities for a
dispersive description.

3.3 Master formula

As is well known, using projector techniques and angular averaging (see [42, 43]), the anomalous
magnetic moment of the muon can be expressed as

aµ = Tr

 1

12
γµ − 1

3

 pµ/p
m2
µ

 − 1
4

pµ

mµ

Vµ(p)
 − 1

48mµ
Tr
(
(/p + mµ)[γµ, γρ](/p + mµ)Γµρ(p)

)
, (12)

where now p2 = m2
µ.

1

The contribution of the HLbL tensor to aµ, represented diagrammatically as

= (−ie)ū(p2)ΓµHLbL(p1, p2)u(p1), (13)

can be written as

ΓσHLbL(p1, p2) = −e6
∫

d4q1

(2π)4

d4q2

(2π)4 γµ
(/p2 + /q1 + mµ)
(p2 + q1)2 − m2

µ

γλ
(/p1 − /q2 + mµ)
(p1 − q2)2 − m2

µ

γν

× 1
q2

1q2
2(p1 − p2 − q1 − q2)2

Πµνλσ(q1, q2, p1 − p2 − q1 − q2). (14)

The HLbL tensor has been defined in (4). Differentiating the fourth Ward identity in (8) with respect
to kρ = (q1 + q2 + q3)ρ yields

Πµνλρ(q1, q2, k − q1 − q2) = −kσ
∂

∂kρ
Πµνλσ(q1, q2, k − q1 − q2). (15)

It was already argued in [44] that Πµνλσ vanishes linearly with k (i.e. the derivative contains no singu-
larity), and so must ΓHLbL

σ . This is easily verified with our tensor decomposition (10). Therefore, the
HLbL contribution to the anomalous magnetic moment is given by

aHLbL
µ = − 1

48mµ
Tr
(
(/p + mµ)[γρ, γσ](/p + mµ)ΓHLbL

ρσ (p)
)
, (16)

where

ΓHLbL
ρσ (p) =

∂

∂kσ
ΓHLbL
ρ (p1, p2)

∣∣∣∣∣
k=0
. (17)

1Note that k is defined as outgoing, resulting in the different sign of the second term with respect to [43].
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It was already argued in [44] that Πµνλσ vanishes linearly with k (i.e. the derivative contains no singu-
larity), and so must ΓHLbL

σ . This is easily verified with our tensor decomposition (10). Therefore, the
HLbL contribution to the anomalous magnetic moment is given by

aHLbL
µ = − 1

48mµ
Tr
(
(/p + mµ)[γρ, γσ](/p + mµ)ΓHLbL

ρσ (p)
)
, (16)

where

ΓHLbL
ρσ (p) =

∂

∂kσ
ΓHLbL
ρ (p1, p2)

∣∣∣∣∣
k=0
. (17)

1Note that k is defined as outgoing, resulting in the different sign of the second term with respect to [43].

We use the Ward identity (15) to write

ΓHLbL
ρσ (p) = e6

∫
d4q1

(2π)4

d4q2

(2π)4 γ
µ

(/p + /q1 + mµ)
(p + q1)2 − m2

µ

γλ
(/p − /q2 + mµ)
(p − q2)2 − m2

µ

γν

× 1
q2

1q2
2(q1 + q2)2

∂

∂kρ
Πµνλσ(q1, q2, k − q1 − q2)

∣∣∣∣∣
k=0
, (18)

after taking the derivative and the limit kµ → 0.
After a number of intermediate steps, which include performing five of the eight loop integrals by

changing to spherical coordinates in four dimensions and applying Gegenbauer polynomial techniques
we have obtained a master formula for the HLbL contribution to the anomalous magnetic moment of
the muon:

aHLbL
µ =

2α3

3π2

∫ ∞
0

dQ1

∫ ∞
0

dQ2

∫ 1

−1
dτ
√

1 − τ2Q3
1Q3

2

12∑
i=1

Ti(Q1,Q2, τ)Π̄i(Q1,Q2, τ), (19)

where Q1 := |Q1|, Q2 := |Q2|. The hadronic scalar functions Π̄i are linear combinations of the Πi.
They have to be evaluated for the reduced kinematics

s = −Q2
3 = −Q2

1 − 2Q1Q2τ − Q2
2, t = −Q2

2, u = −Q2
1,

q2
1 = −Q2

1, q2
2 = −Q2

2, q2
3 = −Q2

3 = −Q2
1 − 2Q1Q2τ − Q2

2, k2 = q2
4 = 0. (20)

The integral kernels Ti, provided in [16] are fully general for any light-by-light process, while the
scalar functions Πi parametrize the hadronic content of the master formula. In particular, (19) can
be considered a generalization of the three-dimensional integral formula for the pion-pole contribu-
tion [30]. It is valid for the whole HLbL contribution and completely generic, i.e. it can be used to
compute the HLbL contribution to (g−2)µ for any representation of the HLbL tensor, i.e. of the scalar
functions.

Like in the case of the pion-pole contribution [42], the master formula (19) offers the great ad-
vantage of providing a representation of the HLbL contribution to the (g − 2)µ in terms of a three-
dimensional integral, which is well-suited for a direct numerical implementation. In particular, the
energy regions generating the bulk of the contribution can be identified by numerically integrating
over τ and plotting the integrand as a function of Q1 and Q2 [18, 42, 45, 46].

3.4 An ordering principle

An important difference between the two-point function which is relevant for HVP and the four-point
function of HLbL is that the dispersion relation for the former is in only one variable and that the
discontinuity is given by the imaginary part which, thanks to unitarity, is related to an observable: the
cross section e+e− → hadrons. Many intermediate states contribute to the discontinuity, but they all
do with the same weight function inside the integral:

aHVP
µ =

(αmµ
3π

)2 ∫ ∞
sthr

ds
s2 K̂(s)Rhad(s) where Rhad(s) =

σ(e+e− → hadrons)
4πα(s)2/3s

(21)

and K̂(s) is the integration kernel which grows monotonically from about 0.63 at the two-pion thresh-
old up to 1 at s = ∞. The lower limit of integration sthr is equal to 4M2

π at O(α0), but if one includes
photons in the hadronic final state then it becomes M2

π0 .
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Figure 2. Intermediate states in the direct channel: pion pole and two-pion cut.

In the case of HLbL there is no such a simple formula, first of all because the independent kine-
matic variables are two instead of only one (we consider a dispersion relation at fixed q2

i , so it is only
two of the three Mandelstam variables which are independent). The situation is analogous to that of
a scattering amplitude, which has been studied in depth and treated with different kinds of dispersion
relations. The most general thing one can do in this case is to write down a Mandelstam representation
(assuming that it holds). This has indeed be done in [14], but then the practical usefulness of such a
representation is limited by the fact that the double spectral functions, which completely determine
the scalar BTT functions, are not observables and cannot be directly measured in an inclusive man-
ner, such that all intermediate states contributing are taken into account at the same time. The only
possible way to make use of such a representation is to consider individual intermediate states and for
each of these construct a relation between the double-spectral function and the relevant observable.
By doing this one obtains a dispersive representation of the HLbL tensor as a sum of contributions of
different, fully specified intermediate states, and for each term in the sum there is an explicit relation
to the relevant observable.

Since it is impossible to include all possible intermediate states, the question arises whether one
can find an ordering principle for these, such that one could concentrate on the most important ones,
treat these explicitly and neglect the rest. This is the approach which has been adopted from the very
start in this series of papers and has been described first in [12]. The basis of this approach is not an
algebraically defined counting scheme, which so far has not been possible to derive, but simply the
observation that in all model calculations, the importance of the contribution of an intermediate state
decreases as the corresponding threshold increases. As it is well known, the pion-pole contribution is
the dominating one overall and is more important than that of other single-particle intermediate states,
like the η or the η′ (with the former more important than the latter). The one-pion contribution is more
important than the two-pion contribution, which in turn is more important than the two-kaon one,
and so on. In order to set up the dispersive calculation and obtain the bulk of the total contribution
it was argued in [12] that one could take into account only one- and two-pion intermediate states, as
illustrated in Fig. 2. This allows one to break down the HLbL contribution as follows

Πµνλσ(s, t, u) = Ππ
0-pole
µνλσ (s, t, u) + Ππ-box

µνλσ (s, t, u) + Πππµνλσ(s, t, u) + · · · (22)

where the first term Ππ
0-pole
µνλσ is the one generated by the exchange of a π0 in one of the channels (s

or t or u), the second one Ππ-box
µνλσ has two-pion discontinuities simultaneously in two channels (s and

t or t and u or s and u), (see first diagram after the equal sign in Fig. 3) whereas the third one Πππµνλσ
has a two-pion cut only in one of the three channels (second to fourth diagram after the equal sign
in Fig. 3). The ellipsis stands for singularities with higher masses or thresholds. Note that even
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Figure 3. Two-pion contributions to HLbL. Further crossed diagrams are not shown explicitly.

though we restrict ourselves to pions, what really matters for the formalism is the number of particles:
applying the formalism to η or η′ exchange, or two-kaon intermediate states is a trivial extension.

3.5 Pion pole

In a dispersive calculation the key step is to identify the singularities: what defines the pion pole
contribution is that the imaginary part is given by a δ-function, with a tensorial structure and strength
fully determined by the π0 −γγ vertex. This translates into the following expression for the imaginary
part in the s channel:

Imπs
(
e4(2π)4δ(4)(q1 + q2 + q3 − q4)Hλ1λ2,λ3λ4

)

=
1
2

∫
d̃p 〈γ∗(−q3, λ3)γ∗(q4, λ4)|π0(p)〉∗〈γ∗(q1, λ1)γ∗(q2, λ2)|π0(p)〉 (23)

which, after reducing the matrix elements and using the definition of the pion transition form factor

i
∫

d4x eiqx〈0|T { jµem(x) jνem(0)}|π0(p)〉 = εµναβqαpβFπ0γ∗γ∗
(
q2, (q − p)2), (24)

leads to

ImπsΠ
µνλσ = −1

2

∫
d̃p (2π)4δ(4)(q1 + q2 − p)εµναβελσγδq1αq2βq3γq4δFπ0γ∗γ∗

(
q2

1, q
2
2
)Fπ0γ∗γ∗

(
q2

3, q
2
4
)

= −πδ(s − M2
π)ε
µναβελσγδq1αq2βq3γq4δFπ0γ∗γ∗

(
q2

1, q
2
2
)Fπ0γ∗γ∗

(
q2

3, q
2
4
)
. (25)

Finally we only need to project this expression onto the scalar functions Πi, which leads to

ρt
i;s =

{
Fπ0γ∗γ∗

(
q2

1, q
2
2
)Fπ0γ∗γ∗

(
q2

3, q
2
4
)

i = 1,
0 i � 1, (26)

and, analogously,

ρt
i;u =

{
Fπ0γ∗γ∗

(
q2

1, q
2
4
)Fπ0γ∗γ∗

(
q2

2, q
2
3
)

i = 3,
0 i � 3 (27)

for the two contributions proportional to a δ-function in the fixed-t dispersion relation (as indicated
by the superscript). By considering also fixed-s and fixed-u dispersion relations and symmetrizing the
result, we obtain the following expression for the total pion-pole contribution:

Π
π0-pole
i (s, t, u) =

ρi,s

s − M2
π

+
ρi,t

t − M2
π

+
ρi,u

u − M2
π

(28)
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where

ρi,s = δi1 Fπ0γ∗γ∗
(
q2

1, q
2
2
)Fπ0γ∗γ∗

(
q2

3, q
2
4
)
,

ρi,t = δi2 Fπ0γ∗γ∗
(
q2

1, q
2
3
)Fπ0γ∗γ∗

(
q2

2, q
2
4
)
,

ρi,u = δi3 Fπ0γ∗γ∗
(
q2

1, q
2
4
)Fπ0γ∗γ∗

(
q2

2, q
2
3
)
.

Only the first three of the 54 scalar functions receive a contribution from the pion pole.
This result can now be inserted into our master formula Eq. (19) which provides a fully explicit

representation of the HLbL pion-pole contribution to (g − 2)µ as a three-dimensional integral with as
hadronic matrix element in the integrand the pion transition form factor. Such a representation is not
new and was first derived in Ref. [42], but the fact that our result agrees with it represents a welcome
check on our master formula which is much more general than that.

We will not dwell on the numerics here, because we have nothing new to contribute or to report:
the main difficulty in improving the numerical evaluation of this contribution is related to obtaining
a reliable representation of the pion transition form factor for both photons off-shell. Efforts in this
direction are being made both with a dispersive approach [47] (for related work providing essential
input see [48, 49]) as well as on the lattice [34, 35], as already mentioned in Sect. 2.2.

4 Pion Box

The second contribution to the HLbL tensor and to (g− 2)µ which we consider is the one given by the
so-called “pion box”. By this we mean a contribution generated by a simultaneous cut due to two-
pion intermediate states in two of the three Mandelstam channels. Since the singularity is completely
determined by the configuration in which the intermediate states are on-shell, and since in this case,
as illustrated in Fig. 3, all four pions in the diagram contribute to the singularity and have to be put
on-shell, the only unknown hadronic matrix element in this contribution is the matrix element of an
electromagnetic current between two on-shell pions, which is (if we neglect isospin breaking) nothing
but the vector form factor of the pion:

〈πi(p2)|q̄λ3γµq|π j(p1)〉 = iεi3 j(p1 + p2)µFV
π ((p1 − p2)2) . (29)

Since the q2
i variables are completely independent of the (two independent) Mandelstam variables,

and the singularities depend only on the latter, the q2
i dependence does not play a role when one

reconstructs the full pion-box contribution in terms of its singularity. Since the latter singularity is
completely identical to the one appearing in the scalar-QED (sQED) one-loop contribution to HLbL,
we can express the contribution of the pion box as follows:

Ππ-box
µνλσ (s, t, u) = FV

π (q2
1)FV
π (q2

2)FV
π (q2

3)FV
π (q2

4)ΠsQED
µνλσ (s, t, u) . (30)

The statement that the singularities of the pion box are identical to those of the one-loop sQED calcu-
lation may appear puzzling at first, especially if one considers the Feynman diagrams in sQED, which
are shown in Fig. 4, but has been proven explicitly in [14]. There the sQED one-loop contribution
was calculated explicitly and then projected onto the BTT basis functions: the corresponding Man-
delstam representation obtained for the scalar functions showed only singularities of the box type.
This means that the seagull vertex is only there to restore gauge invariance, and that if one works with
a gauge-invariant set of structures (like the BTT one), there is no remnant of the seagull vertex in
the singularity structure of the corresponding scalar function. An even simpler case where a similar
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q2

1, q
2
2
)Fπ0γ∗γ∗

(
q2

3, q
2
4
)
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(
q2

1, q
2
3
)Fπ0γ∗γ∗

(
q2

2, q
2
4
)
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q2

1, q
2
4
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q2

2, q
2
3
)
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Ππ-box
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1)FV
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2)FV
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3)FV
π (q2

4)ΠsQED
µνλσ (s, t, u) . (30)
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Figure 4. Scalar QED diagrams contributing to light-by-light scattering to one loop.

phenomenon is also visible, and probably in a clearer way, is the γ∗γ∗ → ππ process. As discussed
in Sect. 2.6. of Ref. [14], when one projects the sQED tree-level contributions to this process, the
corresponding scalar functions only have pole singularities and no nonsingular term, despite what one
would be led to think by looking at the seagull vertex. Here also the latter only serves the purpose of
restoring gauge invariance at the Feynman-diagram level, and when one works with a gauge-invariant
basis there is no trace of it anymore.

Projecting representation (30) onto the BTT basis and taking the limit of (g − 2)µ kinematics we
obtain a very practical representation of the pion box in terms of two-dimensional Feynman-parameter
integrals

Π̄π-box
i (q2

1, q
2
2, q

2
3) = FV

π (q2
1)FV
π (q2

2)FV
π (q2

3)
1

16π2

∫ 1

0
dx
∫ 1−x

0
dyIi(x, y), (31)

where the integrands Ii(x, y) have very compact expressions which are given explicitly in appendix C
of Ref. [16]. Inserting these expressions in the master formula, Eq. (19), we obtain

aπ-box
µ =

2α3

3π2

∫ ∞
0

dQ1

∫ ∞
0

dQ2

∫ 1

−1
dτ
√

1 − τ2Q3
1Q3

2 FV
π (−Q2

1)FV
π (−Q2

2)FV
π (−Q2

3)

×
12∑
i=1

Ti(Q1,Q2, τ)Π̄
sQED
i (Q1,Q2, τ).

(32)

For a numerical evaluation one needs an explicit representation of the vector form factor of the
pion for spacelike momenta, and since about 95% of the final pion-box (g − 2)µ integral originate
from virtualities below 1 GeV, it is essential that the low-energy properties be correctly reproduced.
Experimentally, the available constraints derive from e+e− → π+π− data, which determine the time-
like form factor [50–55], and space-like measurements by scattering pions off an electron target [56,
57]. We have also checked that our representation is consistent with extractions of the space-like
form factor from e−p → e−π+n data [58–61], although due to the remaining model dependence of
extrapolating to the pion pole we do not use these data in our fits. To obtain a representation that allows
us to simultaneously fit space- and time-like data, and thereby profit from the high-statistics form
factor measurements motivated mainly by the two-pion contribution to HVP, we adopt the formalism
suggested in [62, 63] (similar representations have been used in [64–69]). A brief description of the
formalism can be found in Ref. [16]. Here we limit ourselves to a discussion of the results, which are
best illustrated by the two plots in Fig. 5.

The dispersive representation of the pion form factor is fixed by fitting simultaneously the space-
like data from [57] as well as one of the time-like data sets [50–55] (restricted to data points below 1
GeV). All input parameters are varied within reasonable bounds to check the dependence of the results
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Figure 5. Left: space-like pion form factor from our dispersive fit in comparison to data from NA7 [57] and
JLab [59–61] (the latter are not included in the fit). The error band represents the variation observed between
different time-like data sets. Right: pion form factor in the time-like region from the combined fit to NA7
and [53], chosen here for illustrative purposes only. Fits to the other time-like data sets look very similar and lead
to the same numerical results within the accuracy quoted in (33).

on these. We find that the results for the space-like form factor are extremely stable against all these
variations, the largest effect being produced by the differences between the time-like data sets. For
the accuracy required in HLbL scattering we can therefore simply take the largest variation among
them as an uncertainty estimate, without having to perform a careful investigation of the statistical
and systematic errors that are crucial when combining the different data sets for HVP. The result for
the space-like form factor is shown in Fig. 5, leading to a numerical evaluation for the pion box of

aπ-box
µ = −15.9(2) × 10−11. (33)

While the central value is in the ballpark of what had been obtained in Ref. [17], and much larger (in
absolute value) than the estimate provided in Ref. [19] which was based on the hidden gauge model,
the greatest progress in our evaluation is in the error reduction. Indeed all previous estimates assigned
an uncertainty estimate close to 100% to this contribution, essentially because the description of the
photon off-shell dependence was considered to be pure model work. Within our dispersive approach
we were able to prove that the photon off-shell dependence is rigorously described by the vector
form factor of the pion, which is very well known experimentally. The uncertainty in Eq. (33) is
similar to the one obtained in the HVP calculation, because it is essentially the same very precise data
which constrain both contributions. Which means that at the level of precision needed for the HLbL
contribution to (g − 2)µ, the pion box is known essentially exactly.

5 Partial waves, pion rescattering contribution

The last contribution which we need to consider is the one coming from diagrams two, three and four
after the equal sign in Fig. 3. These have two-pion discontinuities in one channel but discontinuities
of higher mass in the other: the latter will not be treated explicitly, according to our approximation
scheme, but will be projected onto partial waves. In order to treat these contributions we therefore
need a formalism for dealing with two-pion discontinuities in partial waves for HLbL. The case of S
waves has been dealt with in Ref. [12] and is relatively simple, but going beyond that has turned out
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on these. We find that the results for the space-like form factor are extremely stable against all these
variations, the largest effect being produced by the differences between the time-like data sets. For
the accuracy required in HLbL scattering we can therefore simply take the largest variation among
them as an uncertainty estimate, without having to perform a careful investigation of the statistical
and systematic errors that are crucial when combining the different data sets for HVP. The result for
the space-like form factor is shown in Fig. 5, leading to a numerical evaluation for the pion box of

aπ-box
µ = −15.9(2) × 10−11. (33)

While the central value is in the ballpark of what had been obtained in Ref. [17], and much larger (in
absolute value) than the estimate provided in Ref. [19] which was based on the hidden gauge model,
the greatest progress in our evaluation is in the error reduction. Indeed all previous estimates assigned
an uncertainty estimate close to 100% to this contribution, essentially because the description of the
photon off-shell dependence was considered to be pure model work. Within our dispersive approach
we were able to prove that the photon off-shell dependence is rigorously described by the vector
form factor of the pion, which is very well known experimentally. The uncertainty in Eq. (33) is
similar to the one obtained in the HVP calculation, because it is essentially the same very precise data
which constrain both contributions. Which means that at the level of precision needed for the HLbL
contribution to (g − 2)µ, the pion box is known essentially exactly.

5 Partial waves, pion rescattering contribution

The last contribution which we need to consider is the one coming from diagrams two, three and four
after the equal sign in Fig. 3. These have two-pion discontinuities in one channel but discontinuities
of higher mass in the other: the latter will not be treated explicitly, according to our approximation
scheme, but will be projected onto partial waves. In order to treat these contributions we therefore
need a formalism for dealing with two-pion discontinuities in partial waves for HLbL. The case of S
waves has been dealt with in Ref. [12] and is relatively simple, but going beyond that has turned out

to be a formidable task, which has been solved and discussed in detail in Ref. [16]. We list below here
in the form of bullet points some of the key reasons why this is so complicated:

• unitarity relations are diagonal in a helicity amplitude basis and the relation between the BTT (re-
dundant, 54 elements) set and the helicity basis is neither unique nor invertible;

• the helicity basis relevant for (g − 2)µ is the one with one on-shell photon, which has only 27
elements (half of the BTT set);

• in the limit q2
4, q
σ
4 → 0 of the HLbL tensor the number of independent elements of the BTT set

drops from 41 to 27;

• there is freedom in the choice of this subset (which we call a singly-on-shell basis);

• the transformation from helicity amplitudes to the singly-on-shell basis is easy to derive, but what
one needs is the inverse of that;

• inverting this relation (a 27 × 27 matrix) is a lot more complicated but was done (analytically)
in [16];

• the arbitrariness in the choice of the 27 elements of the singly-on-shell basis would seem to affect
the final result at first sight, but in fact it does not, because of sum rules;

• these sum rules follow from the assumption that the HLbL tensor has a uniform behavior at short
distances.

Understanding all this has not been easy, and it has been very important— even mandatory— to put
the formalism under test, and the case of the pion box has been invaluable for that. We have projected
the pion box onto partial waves and checked numerically whether the resummation of the partial
waves (carried out only up to a finite number of course) approached the total, which can be calculated
in one go, as discussed above. The test was passed and the formalism is now ready to be used.

As a first numerical application we considered only S waves. Their contribution to the scalar
functions can be expressed as follows:
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)
(34)

where Imh0
00,++ and Imh0

++,++ are the imaginary parts of the S -wave helicity amplitudes (the subscripts
indicate the helicities of the four photons) of the HLbL scattering amplitude, which unitarity relates
to (products of) the S -wave helicity amplitudes of γ∗γ∗ → ππ. Unfortunately, the latter amplitudes,
though measurable in principle, have not been measured yet. There are very good data for on-shell
photons and some for singly-on-shell, but none for both photons off-shell.
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cutoff 1 GeV 1.5 GeV 2 GeV ∞
I = 0 −9.2 −9.5 −9.3 −8.8

I = 2 2.0 1.3 1.1 0.9

sum −7.3 −8.3 −8.3 −7.9

Table 1. S -wave rescattering corrections to aπ-box
µ , in units of 10−11, for both isospin components and in total.

To obtain our first numerical estimate we therefore proceeded as follows: we considered the Roy-
Steiner equations for γ∗γ∗ → ππ [12], which needs as input an explicit representation of the left-
hand cut (as well as the ππ phase shifts, which are known, however [70–72]), for arbitrary photon
virtualities. If one only considers the contribution to the left-hand cut coming from the pion pole, the
photon q2 dependence is again completely given by the pion vector form factor. Extensions to other
contributions to the left-hand cut will require additional input and will be considered later.

For the concrete numerical implementation we have used the simplified representation of the ππ
phase shifts based on the modified inverse-amplitude method [73], for the main reason that it has a
simple analytic expression which is convenient to use in combination with Muskhelishvili–Omnès
methods. This reproduces at the same time the low-energy properties of the phase shifts as well as
pole position and couplings of the f0(500) resonance to a good accuracy. This phase shift departs
from the correct one just below the KK̄ threshold because it does not feature the sharp rise due to the
f0(980) resonance but continues flat with a smooth high-energy behavior. A full-fledged evaluation of
the f0(980) resonance would require a proper treatment of the KK̄ channel, which is beyond the scope
of this first estimate. To control the dependence on the high-energy input we have introduced a cutoff
in the integral and have varied it from 1 GeV up to infinity.

The results for the rescattering contribution, summarized in Table 1, are stable over a wide range
of cutoffs, indicating that our input for the γ∗γ∗ → ππ partial waves reliably unitarizes the Born-term
left-hand cut (LHC), which should indeed dominate at low energies. In addition, we checked that the
only sum rule that receives S -wave contributions is already saturated at better than 90%, completely
in line with the expectation that the sum rules will be fulfilled only after partial-wave resummation.
The isospin-0 part of the result can be interpreted as a model-independent implementation of the
contribution from the f0(500) of about −9 × 10−11 to HLbL scattering in (g − 2)µ. In total, we obtain
for the ππ-rescattering effects related to the pion-pole LHC

aππ,π-pole LHC
µ,J=0 = −8(1) × 10−11, (35)

where the error is dominated by the uncertainties related to the asymptotic parts of the integral.

6 Conclusions and outlook

After a quick overlook at ongoing lattice calculations of the HLbL contribution to the (g − 2)µ we
have concentrated on the dispersive approach and briefly summarized its basic steps. We have then
described the ingredients of the first numerical evaluation of the pion box and related rescattering
corrections in the S wave. Adding the two contributions together we have obtained

aπ-box
µ + aππ,π-pole LHC

µ,J=0 = −24(1) × 10−11, (36)

which represents the first precise and model-independent evaluation of these two contributions. Com-
pared to other sources of uncertainty in HLbL the error in the estimate provided here is negligible.
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Table 1. S -wave rescattering corrections to aπ-box
µ , in units of 10−11, for both isospin components and in total.

To obtain our first numerical estimate we therefore proceeded as follows: we considered the Roy-
Steiner equations for γ∗γ∗ → ππ [12], which needs as input an explicit representation of the left-
hand cut (as well as the ππ phase shifts, which are known, however [70–72]), for arbitrary photon
virtualities. If one only considers the contribution to the left-hand cut coming from the pion pole, the
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The results for the rescattering contribution, summarized in Table 1, are stable over a wide range
of cutoffs, indicating that our input for the γ∗γ∗ → ππ partial waves reliably unitarizes the Born-term
left-hand cut (LHC), which should indeed dominate at low energies. In addition, we checked that the
only sum rule that receives S -wave contributions is already saturated at better than 90%, completely
in line with the expectation that the sum rules will be fulfilled only after partial-wave resummation.
The isospin-0 part of the result can be interpreted as a model-independent implementation of the
contribution from the f0(500) of about −9 × 10−11 to HLbL scattering in (g − 2)µ. In total, we obtain
for the ππ-rescattering effects related to the pion-pole LHC

aππ,π-pole LHC
µ,J=0 = −8(1) × 10−11, (35)

where the error is dominated by the uncertainties related to the asymptotic parts of the integral.

6 Conclusions and outlook

After a quick overlook at ongoing lattice calculations of the HLbL contribution to the (g − 2)µ we
have concentrated on the dispersive approach and briefly summarized its basic steps. We have then
described the ingredients of the first numerical evaluation of the pion box and related rescattering
corrections in the S wave. Adding the two contributions together we have obtained

aπ-box
µ + aππ,π-pole LHC

µ,J=0 = −24(1) × 10−11, (36)

which represents the first precise and model-independent evaluation of these two contributions. Com-
pared to other sources of uncertainty in HLbL the error in the estimate provided here is negligible.

This is of course only a first step and in order to complete the calculation based on the dispersive
approach, there are other contributions which will need to be considered. The most important one
is the one due to the pion-pole and for that it is the pion transition form factor which represents the
crucial input quantity. Efforts to evaluate the latter on the basis of a dispersion relation are ongo-
ing [47]. But also for what concerns the two-pion contribution there is still more work to be done,
in particular (i) by adopting a more realistic representation of the left-hand cut, which in turn will
require modeling the off-shell behavior of the photons; (ii) including higher partial waves, in partic-
ular to D wave, which contains the very prominent f2(1270) resonance; (iii) even for the S wave, it
is important to include a realistic description of the region above 1 GeV, even if this will probably be
subdominant; (iv) as mentioned above doing this will only be possible if simultaneously considering
the contribution of two-kaon intermediate states; (v) finally, an estimate of contributions which go
beyond two-pion intermediate states will be very important in order to assess the robustness of the
final numerical evaluation. For example, three-pion intermediate states can be modeled by means of
axial resonance contributions.

These comments show that there is still a lot of work ahead of us before being able to provide a
complete estimate of the HLbL contribution to the (g − 2)µ based on a dispersive approach. We are
confident, however, that this ambitious goal is now in sight, and that the availability of two model-
independent approaches (the lattice and the dispersive one) to the calculation of this contribution is a
very significant step ahead towards a deeper understanding of the (g − 2)µ puzzle.
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