Swarm Precise Orbit Determination and ionospheric signatures

Lucas Schreiter

AIUB

Astronomical Institute University of Bern

CHAMP

DynamicEarth

CHAllenging Minisatellite Payload

GRACE

Gravity Recovery And Climate Experiment

GOCE

Gravity and steady-state Ocean Circulation Explorer

But there are many more missions equipped with GPS receivers ...

GFZ

Helmholtz-Zentrum Potsdam

 u^{\flat}

AIUB

Icesat

COSMIC

LEO Constellations

TanDEM-X

DynamicEarth SPP¹⁷⁸⁸

Sentinel

and of course, in the future

Global Navigation Satellite Systems (GNSS)

GPS

Galileo

Other GNSS are already existing (GLONASS) or being built up (Galileo, Beidou), but there are no multi-GNSS spaceborne receivers (with open data policy) in LEO orbit yet.

GPS Signals

Signals driven by an **atomic clock** Two **carrier signals** (sine waves):

- **L**₁: f = 1575.43 MHz, λ = 19 cm
- L_2 : f = 1227.60 MHz, λ = 24 cm

Helmholtz-Zentrum

 $u^{\scriptscriptstyle b}$

AIUB

Bits encoded on carrier by phase modulation:

- **C/A-code** (Clear Access / Coarse Acquisition)
- **P-code** (Protected / Precise)
- Broadcast/Navigation Message

G(F.g. Blewitt, 1997)

Improved Observation Equation

$$L_i^k = \rho_i^k - c \cdot \Delta t^k + c \cdot \Delta t_i + \mathbf{X}_i^k + \mathbf{X}_i^k + \lambda \cdot N_i^k + \Delta_{rel} - c \cdot b^k + c \cdot b_i + m_i^k + \epsilon_i^k$$

 ρ_i^k Δt^k Δt_i $\frac{T^k_i}{T^k_i}$ $\underline{I_{i}^{\check{k}}}$ N_i^k $\frac{\Delta_{rel}}{b^k}$ b_i m_i^k ϵ_i^k

vnamicEarth

Distance between satellite and receiver Satellite clock offset wrt GPS time Receiver clock offset wrt GPS time Tropospheric delay Ionospheric delay Phase ambiguity Relativistic corrections Delays in satellite (cables, electronics) Delays in receiver and antenna Multipath, scattering, bending effects Measurement error

GFZ

elmholtz-Zentrur

Satellite positions and clocks

are known from ACs or IGS

Not existent for LEOs Cancels out (first order only) when forming the ionospherefree linear combination:

$$L_c = \frac{f_1^2}{f_1^2 - f_2^2} L_1 - \frac{f_2^2}{f_1^2 - f_2^2} L_2$$

Geometric Distance

Geometric distance ρ_{leo}^k is given by:

$$ho_{leo}^k = |oldsymbol{r}_{leo}(t_{leo}) - oldsymbol{r}^k(t_{leo} - au_{leo}^k)|$$

 $m{r}_{leo}$ Inertial position of LEO antenna phase center at reception time

 r^k Inertial position of GPS antenna phase center of satellite k at emission time

 au_{leo}^k Signal traveling time between the two phase center positions

Different ways to represent r_{leo} :

- Kinematic orbit representation
- Dynamic or reduced-dynamic orbit representation

Kinematic Orbit Representation (1)

Satellite position $r_{leo}(t_{leo})$ (in inertial frame) is given by:

$$\boldsymbol{r}_{leo}(t_{leo}) = \boldsymbol{R}(t_{leo}) \cdot (\boldsymbol{r}_{leo,e,0}(t_{leo}) + \delta \boldsymbol{r}_{leo,e,ant}(t_{leo}))$$

RTransformation matrix from Earth-fixed to inertial frame $r_{leo,e,0}$ LEO center of mass position in Earth-fixed frame $\delta r_{leo,e,ant}$ LEO antenna phase center offset in Earth-fixed frame

Kinematic positions

elmholtz-Zentrum

 $r_{leo,e,0}$ are estimated for each measurement epoch:

- Measurement epochs need not to be identical with nominal epochs
- Positions are independent of models describing the LEO dynamics.
 Velocities cannot be provided

Kinematic Orbit Representation (2)

A kinematic orbit is an ephemeris at **discrete** measurement epochs

AIUB

GFZ

Helmholtz-Zentrum

Kinematic positions are fully independent on the force models used for LEO orbit determination

(Švehla and Rothacher, 2004)

Kinematic Orbit Representation (3)

Measurement epochs (in GPS time)

Positions (km) (Earth-fixed)

DynamicEarth

Excerpt of kinematic Swarm-C positions at begin of 1 June, 2016 The kinematic orbits may be downloaded at ftp://ftp.unibe.ch/aiub/LEO_ORBITS/

UB u^b **GFZ**

Dynamic Orbit Representation (1)

Satellite position $r_{leo}(t_{leo})$ (in inertial frame) is given by:

 $\boldsymbol{r}_{leo}(t_{leo}) = \boldsymbol{r}_{leo,0}(t_{leo}; a, e, i, \Omega, \omega, u_0; Q_1, ..., Q_d) + \delta \boldsymbol{r}_{leo,ant}(t_{leo})$

$m{r}_{leo,0}$	LEO center of mass position	
$\delta oldsymbol{r}_{leo,ant}$	LEO antenna phase center offset	
a,e,i,Ω,ω,u_0	LEO initial osculating orbital elements	
$Q_1,,Q_d$	LEO dynamical parameters	

Satellite trajectory

 $u^{\scriptscriptstyle b}$

GFZ

 $m{r}_{leo,0}$ is a particular solution of an equation of motion

One set of initial conditions (orbital elements) is estimated per arc.
 Dynamical parameters of the force model on request

Dynamic Orbit Representation (3)

Dynamic orbit positions may be computed at **any epoch** within the arc

Kühlungsborn, 29.01. - 31.01.2018

Dynamic positions are **fully dependent** on the force models used, e.g., on the gravity field model

Reduced-Dynamic Orbit Representation (1)

Equation of motion (in inertial frame) is given by:

$$\ddot{r} = -GMrac{r}{r^3} + f_1(t, r, \dot{r}, Q_1, ..., Q_d, P_1, ..., P_s)$$

 $P_1, ..., P_s$ Pseudo-stochastic parameters

Pseudo-stochastic parameters are:

- additional empirical parameters characterized by a priori known **statistical properties**, e.g., by expectation values and a priori variances
- useful to **compensate** for deficiencies in dynamic models, e.g., deficiencies in models describing non-gravitational accelerations
- often set up as **piecewise constant accelerations** to ensure that satellite trajectories are continuous and differentiable at any epoch

Reduced-Dynamic Orbit Representation (2)

Reduced-dynamic orbits are well suited to compute LEO orbits of **highest quality**

Kühlungsborn, 29.01. - 31.01.2018

Reduced-dynamic orbits heavily depend on the force models used, e.g., on the gravity field model

DynamicEarth SPP¹⁷⁸⁸

Reduced-dynamic Orbit Representation (3)

Position epochs

(in GPS time)

Positions (km) & Velocities (dm/s) (Earth-fixed)

* 2016 6 1 0 0 0.0000000		
PL49 -1965.328762 -2960.079621 5815.366063	999999.999999	Clock corrections
VL49 -32476.530949 -56518.428574 -39633.949261	999999.999999	are not provided
* 2016 6 1 0 0 10.0000000		are not provided
PL49 -1997.722965 -3016.388318 5775.367094	999999.999999	
VL49 -32311.097194 -56097.834133 -40363.154274	999999.999999	
* 2016 6 1 0 0 20.0000000		
PL49 -2029.949403 -3072.273033 5734.641439	999999.999999	
VL49 -32141.000143 -55670.464832 -41087.301898	999999.999999	
* 2016 6 1 0 0 30.0000000		
PL49 -2062.003415 -3127.727011 5693.194205	999999.999999	
VL49 -31966.250891 -55236.380456 -41806.300697	999999.999999	
* 20 <u>16 6 1 0 0 40.0000000</u>		
PL49 -2093.880357 -3182.743574 5651.030585	999999.999999	
VL49 -31786.861194 -54795.641569 -42520.059993	999999.999999	
* 20 <u>16 6 1 0 0 50.0000000</u>		
PL49 -2125.575594 -3237.316095 5608.155863	999999.999999	
VL49 -31602.843520 -54348.309592 -43228.489711	999999.999999	
* 20 <u>16 6 1 0 1 0.0000000</u>		
PL49 -2157.084506 -3291.438018 5564.575411	999999.999999	
VL49 -31414.211010 -53894.446726 -43931.500489	999999.999999	

Excerpt of reduced-dynamic Swarm-C positions at begin of 1 June, 2016

Orbit Differences KIN-RD (Swarm-C)

Swarm A Gravity Field

Swarm-A, Nov 2014, 400km Gauss, unweighted

Geoid hight differences, static GRACE gravity field AIUB-GRACE03S - Swarm A gravity field, November 2014

Orbit Differences KIN-RD and Plasmadensity

Orbit Differences KIN-RD and Plasmadensity

DynamicEarth SPP1788

AIUB

Previous Studies: AIUB-Cutoff

Swarm-A, Nov 2014, 400km Gauss, unweighted -0.04 -0.02 0.00 0.02 0.04 Difference in [m] **Original Datapoints** un in the Warn being the term Number of Points 100 20 80 120 140

Swarm A, Nov 2014, AIUB RINEX screening

DynamicEarth SPP¹⁷⁸⁸

Previous Studies: Graz-ROTI

$$ROTI = \sqrt{\frac{\langle \Delta TEC^2 \rangle - \langle \Delta TEC \rangle^2}{dt^2}}$$

- Applied to ΔTEC , moving window, 31s
- $\sigma = 10 \cdot ROTI \cdot \sigma_o$ if ROTI > 0.1
- Developed for GOCE

DynamicEarth SDD¹⁷

Helmholtz-Zentrum

Elevations and azimut of affected GPS satellites

DynamicEarth

Elevations and azimut of affected GPS satellites

Swarm-A, Nov 2014, 400km Gauss, d2L4/dt^2

Swarm A, Nov 2014, AIUB RINEX screening

Elevations and azimut of affected GPS satellites

Swarm-A, Nov 2014, 400km Gauss, d2L4/dt^2

Swarm-A, Nov 2014, 400km Gauss, dL4/dt

Evaluation of mehtods

SLR-validation of reduced dynamic orbits:

Method	Mean[<i>mm</i>]	Std[mm]	RMS[mm]
Original	2.6	16.6	16.8
ROTI	2.7	17.3	17.5
AIUB Cutoff	7.4	32.1	32.9
Model	3.4	14.0	14.4
D1L4	0.3	22.1	22.1
D2L4	2.8	16.0	16.1
D3L4	4.1	13.4	14.4

Thank you for your attention