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Abstract 12 

Thanks to modelling advances and the increase of computational resources in recent years, it is now 13 

feasible to perform 2-D urban flood simulations at very high spatial resolutions and to conduct flood 14 

risk assessments at the scale of single buildings. In this study, we explore the sensitivity of flood loss 15 

estimates obtained in such micro-scale analyses to the spatial representation of the buildings in the 2D 16 

flood inundation model and to the hazard attribution methods in the flood loss model. The results show 17 

that building representation has a limited effect on the exposure values (i.e., the number of elements 18 

at risk), but can have a significant impact on the hazard values attributed to the buildings. On the other 19 

hand, the two methods for hazard attribution tested in this work result in remarkably different flood 20 

loss estimates. The sensitivity of the predicted flood losses to the attribution method is comparable to 21 

the one associated with the vulnerability curve. The findings highlight the need for incorporating these 22 

sources of uncertainty into micro-scale flood risk prediction methodologies. 23 
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1. Introduction 29 

Flood inundation numerical models are a well-established approach for conducting flood risk analysis. 30 

Although one-dimensional hydrodynamic models are still in widespread use for many applications, 31 

the use of two-dimensional models is required in built-up areas to reproduce the complex, 32 

multidirectional flow paths generated by urban features (Apel et al. 2009). Thanks to modelling 33 

advances and the increase of computational resources in recent years, it is now feasible to perform 2-34 

D urban flood simulations at resolutions as low as 10 cm (Ozdemir et al. 2013; de Almeida et al. 2016). 35 

Together with the increase of data availability, this has opened up the possibility of conducting flood 36 

risk analysis and assessing damages at the scale of the single building (micro-scale), without the need 37 

for spatial aggregation of elements at risk (Staffler et al. 2008; Merz et al. 2010; Zischg et al. 2013, 38 

2018, Fuchs et al. 2015, 2017; Röthlisberger et al. 2017). In micro-scale risk analyses, flood hazard is 39 

estimated by means of spatially detailed models solving the 2D shallow water equations. In addition, 40 

fine-resolution geospatial datasets are exploited to characterize the reconstruction value and the 41 

vulnerability of each building. Such a detailed analysis is relevant to reliably assess the effectiveness 42 

of flood protection measures for reducing flood risk in individual areas (Ernst et al. 2010). It can be 43 

used to objectively evaluate the economic cost-effectiveness of individual precautionary measures on 44 

buildings (i.e., retrofitting methods) (Arrighi et al. 2013), or be part of decision support systems to 45 

evaluate flood risk (Qi and Altinakar 2011). 46 

The adoption of a micro-scale flood modelling approach allows the representation of small-scale 47 

structural elements and small topographic variations explicitly in the hydrodynamic model, instead of 48 

parameterizing their effects via subgrid scale models or artificial roughness (Abdullah et al. 2012; 49 

Abily et al. 2016). The value of roughness coefficient in such a 2D hydrodynamic model is thus set to 50 

represent only small scale roughness, its calibration being less important than for low spatial resolution 51 

models  (Horritt and Bates 2002). This is relevant because of the lack of sufficient data for model 52 

calibration and validation in many locations. However, sensitivity to other model features, such as the 53 

mesh setup in relation to the building pattern and the building representation, may have a significant 54 

impact on the hydrodynamic results and, in turn, on the flood-loss results. A few studies deal with 55 

these effects in urban areas (Fewtrell et al. 2008, 2011; Sampson et al. 2012; Schubert and Sanders 56 

2012). However, these aspects have received far less attention for rural and peri-urban situations and 57 

have been generally explored in isolation from evaluation of uncertainties in loss estimation 58 

approaches.  59 

Several methods have been proposed in recent years to represent buildings in shallow water models. 60 

A first group of methods parameterizes the effects of buildings on flooding by means of porosity 61 
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parameters (Cea and Vázquez-Cendón 2009; Schubert and Sanders 2012; Guinot 2012) or by building 62 

coverage and conveyance reduction factors (Chen et al. 2012a, b). This allows the simulation of urban 63 

flood flows with a relatively coarse mesh and hence a fast execution time. However, these methods 64 

are not suitable for micro-scale flood modelling, which aims at capturing the localized variability of 65 

flood depth and velocity around buildings. In this case, a so-called “resolved approach”, which 66 

explicitly considers the exact building geometries is needed (Schubert and Sanders 2012). The 67 

building-block method (BB) and the building-hole (BH) method are among the most used methods of 68 

this type. In the BB method, a digital surface model that incorporates the heights of the rooftops is 69 

used to produce a local elevation rise of the grid cells within building footprints. In the BH method, 70 

the area within the building footprints is excluded from the model domain, and closed boundary 71 

conditions are enforced at building walls. As noted by Bellos and Tsakiris (2015), reservations have 72 

been expressed for the BB and BH methods, related to the fact that they do not simulate flood flow 73 

inside the building and therefore any possible storage effects of the buildings are not taken into 74 

account. However, alternative methods such as the representation of the exterior walls of each building 75 

with an inlet on the front wall (Bellos and Tsakiris 2015), so that water can slip into the house, are 76 

seldom used in practical applications.  77 

A key component of any flood risk analysis is the vulnerability assessment (Fuchs et al. 2012; 78 

Papathoma-Köhle et al. 2017) which is frequently focused only on direct flood loss. Depth-damage 79 

functions, which denote the flood damage that would occur at specific water depths per asset or per 80 

land-use class, are typically applied for this purpose. Other factors such as flow velocity are presumed 81 

to influence flood damage, but their general consideration in monetary loss modelling is not 82 

recommended (Kreibich et al. 2009). From a practitioner’s perspective, the application of depth-83 

damage functions is therefore the standard approach to assessing urban flood loss. The development 84 

of site-specific depth-damage functions is not feasible at many locations, and the use of models 85 

developed elsewhere is common practice in literature (Apel et al. 2006; Notaro et al. 2014). In fact, 86 

libraries of depth-damage curves are available for different regions (Davis and Skaggs 1992; Green 87 

2003). In addition to the inherent uncertainty in the depth-damage curves, their extrapolation to regions 88 

where building characteristics are not necessarily the same raises concerns regarding their local 89 

representativeness (Cammerer et al. 2013; McGrath et al. 2015). Various studies have already 90 

acknowledged the uncertainty and limitations associated with the use of depth-damage curves in flood 91 

damage estimation (de Moel and Aerts 2011; Sampson et al. 2014). Freni et al. (2010) suggest that the 92 

use of highly detailed 2D hydraulic models in flood risk assessments might not be justified if depth-93 

damage curves are used to assess damages, given the significant uncertainties of the later. 94 
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In addition to the selection of a suitable depth damage curve, other modelling choices need to be made 95 

in flood risk assessments. It is necessary to define how the number of exposed buildings will be counted 96 

and how the inundation characteristics will be assigned to each exposed building. Exposure 97 

information is essentially provided through the overlapping of the building footprint and the hazard 98 

maps. The high spatial resolution of the hazard results in micro-scale flood assessments allows 99 

however for different exposure evaluation, i.e. building counting, methods. A building can be assumed 100 

to be affected by the inundation if water depths computed within its footprint are above a certain wet-101 

dry threshold. More sophisticated methods consider a buffer distance between the building edges and 102 

the flooded areas or calculate the proportion of the external perimeter of a property that is wet in the 103 

case of partially flooded buildings (Environment Agency 2014). On the other hand, the assignment of 104 

flow characteristics (water depths in the general case) to each building may be performed in different 105 

ways. This is referred to as flow depth attribution method in this paper. In the micro-scale flood risk 106 

analysis performed by Ernst et al. (2010), the water depth in the building is obtained either by 107 

averaging the water depth in the neighboring cells or by linearly interpolating the ground level and the 108 

free surface elevation inside the asset. The aforementioned differences in attribution methods can 109 

potentially result in very different flood damage estimates. Yet, to the best of our knowledge, there are 110 

no studies available that have quantified its impact on the flood loss predictions.  111 

Hence, the main research question for this paper is how flood loss estimates are influenced by the 112 

building representation and the flow depth attribution methods. To answer this question, we conduct a 113 

micro-scale flood loss assessment in a low density residential case study that is typical for rural and 114 

peri-urban hilly landscapes in Europe. The modelling framework comprises a flood inundation model 115 

and a flood loss model, which provide hazard and impact estimates for a given flood event at a high 116 

spatial resolution. We analyze the sensitivity of the predicted flood loss to the building representation 117 

in the flood inundation model and to the vulnerability function and attribution method in the flood loss 118 

model. The benefits and limitations of the different methods are evaluated, and the applicability for 119 

real-world case studies is discussed. The main aim of this work is to contribute to the development of 120 

consistent frameworks for micro-scale flood risk assessments, with a balanced accuracy and spatial 121 

detail of the different steps of the modelling process. 122 

 123 

2. Methods 124 

The model experiment was set up on the basis of a flood inundation model and a flood loss model 125 

(Figure 1). Both sub-modules were altered in the experiment. While we kept the upstream boundary 126 
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condition of the flood inundation model constant, i.e. the inflow hydrograph, we varied the 127 

computational mesh with different representations of the buildings. In the flood loss module, the 128 

building dataset was kept constant while we varied the flow depth attribution methods and the 129 

vulnerability functions. The methodology is described in more detail below. 130 

2.1. Study area 131 

We set up the model experiment in the case study of Steffisburg, a community in the Canton of Bern 132 

in Switzerland. The study area covers an area of 4.8 km2 and is located on the alluvial fan of the Zulg 133 

river (Figure 2).  The fan has an average slope of 1.3 %. The Zulg river has a catchment area of 90 134 

km2. The main village of Steffisburg is located along the Zulg river sprawling towards south and the 135 

city of Thun. It has 15’700 inhabitants and 1682 buildings. The density of buildings is low in 136 

comparison to urban areas (~350 buildings per km2) but not as low as in rural areas. The average 137 

distance between three neighboring buildings is 14.4 m with a standard deviation of 12.6 m. In 138 

comparison, Schubert and Sanders (2012) computed an average gap between buildings in an urban 139 

environment of 3.8 m. Hence, the village can be classified as a typical peri-urban settlement. The 140 

majority of the buildings are of residential and combined residential/commercial use. In the south and 141 

the north of the study area, two clusters of industrial/commercial buildings are located. 142 

2.2. Flood inundation model 143 

A flood inundation model of the area was set up using the software Iber (Bladé et al. 2014). The model 144 

solves the 2D depth-averaged shallow water equations by means of a finite volume method. It 145 

computes the water depth and the two horizontal components of the depth-averaged velocity, the 146 

former constituting the basis for the flood hazard assessment in this work. The model Iber has been 147 

successfully applied in a wide range of flood modelling studies (Bodoque et al. 2016; González-148 

Aguirre et al. 2016; Álvarez et al. 2017; Bonasia et al. 2017), including detailed flood assessments in 149 

urban areas, in which the flow depth field was evaluated at the scale of the streets and buildings 150 

(Garrote et al. 2016; Bermúdez et al. 2017). For a detailed description of the model and additional 151 

validation examples we refer to Bladé et al. (2014) and Cea et al. (2016), and the references therein. 152 

The model is run in an uncalibrated mode using typical physical values for the Manning roughness 153 

coefficient, as proposed by Zischg et al. (2018). This is justified due to the low sensitivity of the model 154 

to the friction parameter and the absence of documented flood events that could be used for validation. 155 

We set up the flood inundation model at the micro-scale, which implies that exposure and hazard must 156 

be assessed at the scale of individual elements at risk such as buildings or infrastructures. The flood 157 

model must therefore represent flows at this targeted spatial scale. The domain was discretized 158 
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accordingly by an unstructured computational mesh at a very high spatial resolution, with mesh sizes 159 

of 2.5 m in the built up areas and the river channel, and between 5 and 10 m in the non-urbanized areas. 160 

Element size is thus smaller than the critical length scales determined by building dimensions and 161 

building separation distances (Fewtrell et al. 2008). The total number of elements in the mesh is 162 

approximately 1’000’000, the exact number is depending on the mesh setup explained below. We used 163 

a 0.5 m-resolution digital elevation model (DEM) derived from LiDAR and a building footprint map 164 

to define the model geometry. Two different DEMs were used in this study: a “bare-earth” digital 165 

terrain model (DTM) and a digital surface model (DSM) which incorporates the elevation of the 166 

buildings (i.e., the heights of the rooftops). Four different mesh configurations were considered (Figure 167 

3 and 4), which differ on the building representation, as follows:   168 

- Mesh A: The building hole method BH is used to represent the buildings. Buildings are thus 169 

void areas in the mesh and buildings’ walls fit exactly with numerical mesh edges. 170 

- Mesh B: Buildings are not represented in the model. For this purpose, the area covered by the 171 

buildings is not excluded from the calculation domain and the topography is defined from the 172 

DTM. The building footprint is still used to generate the mesh, so the mesh nodes located in 173 

the building walls stay at the same location as in mesh A.  174 

- Mesh C: The building block method BB is used to represent the buildings. This means that the 175 

buildings are not excluded from the calculation domain, and they appear as blocks with the 176 

height of the roofs in the mesh. The building footprint is used to generate the mesh, so building 177 

walls are aligned with internal element edges in the mesh (Figure 4b). This allows a precise 178 

representation of the contours of the buildings in the mesh, as shown in Figure 3c. 179 

- Mesh D: The building block method BB is used to represent the buildings, as in mesh C. 180 

However, the building footprint is not used to create the mesh, so mesh nodes are not forced to 181 

lie along the building footprint (Figure 4c). As a consequence, the mesh cannot fit exactly the 182 

walls of the buildings, no matter how fine the resolution of the mesh is. Building walls are thus 183 

subject to an effect similar to the ‘staircase effect’ that appears at curved and slanted interface 184 

boundaries on regular Cartesian grids (Kumar et al. 2009), as can be seen in Figure 3d. 185 

 186 

2.3. Values at risk 187 

In this study, we focus on losses to buildings. Damages on house content, infrastructure or indirect 188 

losses are not considered. Hence, the dataset of the values at risk consists of a spatial dataset 189 

representing the buildings and their characteristics. The building is spatially represented by its footprint 190 

polygon. This basic dataset was extracted from the terrain model of the Federal Office for Topography 191 
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(swisstopo). Adjacent polygons were merged to one polygon. We attributed the data of the residential 192 

register to the building footprints. These data were provided by the Federal Office for Statistics. This 193 

results in the number of residents per building. With this dataset, it was possible to classify all buildings 194 

with residential purpose. In a further step, we attributed the land use categories of the communal land 195 

use plans to each building. This leads to a distinction between buildings with residential, commercial, 196 

industrial and public purpose. Moreover, we attributed the volume of the building by computing the 197 

average difference between DSM and DTM and multiplying it with the footprint area. The 198 

reconstruction value of each building was successively computed on the basis of the volume and a 199 

typical price per volume differentiated by building category. The approach followed the methods 200 

presented in Fuchs et al. (2015), Fuchs et al. (2017), and Röthlisberger et al. (2017).  201 

2.4. Flood-loss model 202 

The flood loss model combines the outcomes of the inundation model with the dataset of the values at 203 

risk. To allow the assessment of the uncertainties in the methods for representing the buildings in the 204 

mesh and in the methods for attributing flow depths to the buildings, the flood loss model has to be 205 

designed in a flexible way. The spatial representation of the buildings by their footprints is held 206 

constant in all methods for pre-processing the mesh. However, depending on the representation of the 207 

buildings in the mesh, the flow depth attribution method changes. Thus, the flood loss model allows 208 

to consider different setups. In all setups, a building is counted as affected by the flood process if (a) 209 

a mesh node within the building footprint or (b) a mesh node at the border of the building footprint has 210 

a flow depth > 0. In addition, the model allows the consideration of a building as affected if (c) a mesh 211 

node within a user-defined buffer distance is modelled as wet. 212 

To account for the different building representation methods in one flood loss model, we set up the 213 

procedure described in the following steps. In a first step, the computational mesh of the IBER flood 214 

model is read in and a point dataset of nodes is created. Second, the nodes point dataset is intersected 215 

with the building footprint dataset and a topology table is created. Herein, two situations can be 216 

handled. The intersection between both datasets results in a new point dataset. This dataset contains 217 

all buildings that have nodes of the computational mesh located within its footprint polygon. All other 218 

buildings not having any nodes located within their footprints are considered in a further step. For 219 

these buildings, a near table is computed by considering a maximum buffer distance and a maximal 220 

number of nodes to consider in the neighborhood analysis. This results in a table listing the mesh nodes 221 

that are relevant for attributing the flow depths to the building. The buffer distance and the maximum 222 

number of points to be considered in the analysis can be defined by the user. In our study, we defined 223 

a search radius of 0.5 m and a maximum number of 100 nodes to consider in the neighborhood analysis. 224 
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Third, the simulation outputs of the IBER model, i.e. the flow depths per mesh node and time step are 225 

read into an array.  226 

For each building it is iteratively searched in the topology tables if the building intersects directly or 227 

indirectly (neighborhood) with the mesh nodes. If the intersection between building and mesh nodes 228 

is a direct overlay, the flow depth is directly attributed to the building from the flow depths located 229 

within the building footprint. This can be done either by computing the average (MEAN) or the 230 

maximum flow depth of all nodes (MAX). If the building has no mesh nodes within its footprint, the 231 

flow depth is attributed from the neighboring mesh nodes. Herein, also the average or the maximum 232 

could be defined depending on the research question. However, in the case of the “MEAN” attribution 233 

method, the average is computed by inversely weighting the distance between the building and the 234 

mesh nodes. The flow depth attribution is done for each time step of the flood inundation simulation. 235 

Consequently, a flow depth hydrograph is extracted for each building. In a subsequent step, the 236 

maximum flow depth over all time steps for each building is used to compute the degree of loss by 237 

means of the vulnerability function.  238 

In this study, we used the vulnerability functions of Totschnig et al. (2011), Papathoma-Köhle et al. 239 

(2015), Hydrotec (2001), as cited in Merz and Thieken (2009), Jonkman et al. (2008) and Dutta et al. 240 

(2003). We used different vulnerability functions because, on the one hand, we aim at assessing the 241 

uncertainties in this part of the flood loss model and, on the other hand, we do not have loss data to 242 

validate the loss function or to choose the function with the highest fit. However, each of the selected 243 

vulnerability functions allows us to delineate a degree of loss for each building depending on the 244 

magnitude of the flood, i.e. the flow depth at the building scale in our case. The degree of loss dol 245 

resulting from the vulnerability function and the flow depth is used to compute the loss of the building. 246 

This is done by multiplying the dol with the reconstruction value of each building. Finally, all losses 247 

computed at single building level are summed up at the level of the study area.  248 

With these specifications, the flood loss module is able to consider all four approaches for representing 249 

the buildings in the loss modelling. In mesh A, only the mesh nodes within a distance of 0.5 m from 250 

the outline of the building footprint are considered in the flow depth attribution. In meshes B, C, and 251 

D, the mesh nodes within the building footprint or within a distance of 0.5 m from the outline are 252 

considered.  253 

 254 

  255 
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3. Results and discussion 256 

The application of the flood loss model on the outcomes of four different flood inundation models, 257 

combined with two flow depth attribution methods and five vulnerability functions resulted in forty 258 

simulation results. The number of affected buildings ranges from 572 to 618, and the number of 259 

exposed residents ranges from 3’373 to 3’502. The results of the exposure analyses are shown in table 260 

1. Mesh setup D shows the lowest numbers of exposed buildings and residents, while mesh A shows 261 

the highest. Although the variability in the exposure is below 8 %, this demonstrates that the procedure 262 

is sensitive to the mesh setup and the approach of representing the buildings in the mesh.  263 

Differences in flood extent between mesh A, C and D, which include different representations of the 264 

buildings, are below 0.3%. On the other hand, mesh B shows an increase of the flooded area of around 265 

10% with respect to the other mesh configurations. However, given that buildings are not represented 266 

in mesh B, the internal area of affected buildings is counted as flooded area. 267 

 268 

Table 1. Flood extent, number of exposed residents and number of affected buildings with the different 269 

mesh configurations.  270 

Mesh Flood extent (m2) # affected buildings # exposed residents 

A 1’107’339 618 3’502 

B 1’242’711 592 3’447 

C 1’107’045 589 3’391 

D 1’110’062 572 3’373 

 271 

In contrast to the flood exposure, the flow depths at single building vary markedly with the mesh set 272 

up and the flow depth attribution method. Figure 5 shows a comparison between the mesh setups and 273 

the flow depth attribution method. Obviously, the “MAX” flow depth attribution method results in 274 

higher flow depths at building scale than the “MEAN” method. The differences are particularly high 275 

for mesh C and mesh D, given that the dry nodes within the building footprint (nodes with the height 276 

of the rooftops) are used in the calculation of the mean depth of the building. In these cases, the 277 

“MEAN” method underestimates flow depths. In an additional calculation, we removed the nodes 278 

within the buildings and counted only the nodes at the outline of the building footprint in mesh B and 279 

C, or the neighboring mesh nodes in mesh D. If the nodes within the building are excluded from the 280 

flood loss calculation, the flow depths are higher and more similar to the ones computed with mesh A 281 

(see table 2).In the case of mesh B, the difference with the original mean depth value is very small, 282 

given that the nodes within the footprint are assigned the height of the ground and can thus be flooded. 283 
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This leads to the conclusion that in averaging the flow depths (“MEAN” attribution method), the nodes 284 

within the building footprints should be excluded if their z-coordinates represent the building heights 285 

(BB method) and consequently do not exhibit relevant flow depths.  286 

On average over all buildings, the flow depths attributed to the buildings by the “MAX” attribution 287 

method are systematically and markedly higher than the ones computed with the “MEAN” method. It 288 

should be noted that differences are also very relevant for mesh A, which has no nodes within the 289 

building footprints, and for mesh B, in which the nodes of the building footprint are assigned the height 290 

of the ground and can thus be flooded. In this relatively steep study area, the range of z-coordinates at 291 

the outlines of the building footprints (i.e., the difference between the minimum and maximum altitude 292 

of the building footprint) is 0.78 m on average. Large buildings have a length of up to 80 m, which 293 

results in an altitude difference of up to 8.8 m. This significant variation in z-coordinates across the 294 

footprints results in variable flow depths within a single building. A significant portion of all buildings 295 

is only partially wet. It is concluded from the above that, as the flow depth is relevant for the 296 

computation of the degree of loss, the flood loss computation is highly sensitive to the flow attribution 297 

method.  298 

Table 2. Average depth (m) attributed to buildings. 299 

Mesh Flow depth [m] 

“MAX” attribution method 

Flow depth [m] 

“MEAN” attribution method 

Flow depth [m] 

“MEAN” attribution 

method 

(nodes within buildings 

excluded) 

Mesh A 0.623 0.248 not applicable 

Mesh B 0.624 0.190 0.192 

Mesh C 0.667 0.088 0.242 

Mesh D 0.655 0.046 0.263 

 300 

When comparing the flow depths at building scale of the different mesh setups, the relevance of the 301 

flow depth attribution method becomes obvious again (see Figure 6). However, the “MAX” attribution 302 

method has a relatively low sensitivity to the mesh setup. The flow depths assigned to buildings are 303 

very similar for all four mesh setups. In contrast, the “MEAN” attribution method implies a higher 304 

sensitivity as mesh C and D result in significantly lower depths in buildings than mesh A and B. The 305 

averaged flow depths (“MEAN”) differ markedly between the mesh setup, whereas the maximum flow 306 

depths (“MAX”) do not vary significantly. Hence, the latter flow depth assignment method produces 307 

robust estimations. It should be noted, however, that this robustness does not imply that the accuracy 308 
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of the method is necessarily superior. If flow depths vary significantly across a single building, the 309 

depths obtained with the “MAX” attribution method might not be representative for damage 310 

assessment, and produce an overestimation of losses. 311 

The generally higher flow depths computed with the “MAX” assignment method result consequently 312 

in higher losses. Table 3 shows the computed flood losses on buildings summed up for the study area. 313 

The overall losses range from 800’000 CHF to 284 million CHF. This is a remarkable uncertainty 314 

range and thus it underlines the importance of this sensitivity analysis. The flood loss computation is 315 

markedly sensitive to both the vulnerability function and the flow depth attribution method. While the 316 

first observation is in line with other studies (Apel et al. 2008, 2009; de Moel and Aerts 2011), the 317 

second observation adds new insights in the discussion of uncertainties in flood loss modelling. 318 

Depending on the flow depth attribution method, the total loss differs by two orders of magnitude. 319 

This can be explained by the differences in the flow depths at the single buildings. Especially, the 320 

consideration of mesh nodes within building footprint has to be avoided in averaging flow depths if 321 

these mesh nodes do not represent the z-coordinates of the ground floor but those of the roof top. 322 

However, if only one vulnerability function and one flow depth attribution method is considered 323 

distinctly, but the mesh set up is varied, the losses result as relatively robust. While mesh A is the most 324 

conservative in terms of number of exposed buildings and residents, it is not the most conservative in 325 

total losses. Mesh C with the “MAX” attribution method results in the highest losses. 326 

Table 3. Total flood losses in million Swiss Francs (CHF). 327 

Mesh  
Hazard 

attribution 

Vulnerability function 
Mean ± 

standard 

deviation 
Totschnig et 

al. (2011) 

Papathoma-

Köhle et al. 

(2015) 

Hydrotec 

(2001) 

Jonkman et 

al. (2008) 

Dutta et 

al. (2003) 

A 
MAX 264.9 248.3 241.0 73.0 237.8 213.0±78.9 

MEAN 33.2 41.9 123.5 14.0 100.1 62.5±46.8 

B 
MAX 265.5 247.2 235.4 70.5 233.6 210.4±79.3 

MEAN 21.9 28.6 103.5 10.6 81.5 49.2±40.8 

 

C 

MAX 284.0 263.8 243.9 76.8 243.7 222.4±83.1 

MEAN 2.9 5.0 60.5 4.9 42.3 23.1±26.6 

 

D 

MAX 248.0 238.0 236.5 80.3 228.1 206.2±70.7 

MEAN 0.8 1.6 38.5 2.9 26.9 14.2±17.4 

 328 

From the viewpoint of the vulnerability functions, the one described by Jonkman et al. (2008) results 329 

in the lowest losses. This function was elaborated on data in the Netherlands. Still, the presented case 330 

study in an Alpine environment might differ markedly from a lowland situation in terms of process 331 
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characteristics. The functions of Totschnig et al. (2011) and Papathoma-Köhle (2015) consider 332 

torrential processes and sediment transport and might be more adequate for this case study. 333 

Nevertheless, as Cammerer et al. (2013) and Amadio et al. (2016) discussed, the transferability of 334 

vulnerability functions may be questioned in any case. However, the choice of the vulnerability 335 

function and a validation was out of scope of this study and the focus was laid on the comparison of 336 

different uncertainty sources. 337 

From the view point of the real-world applicability, the four building representation methods applied 338 

in this work have distinct advantages and disadvantages, and the choice of method will depend on the 339 

available data and the particular application. All four methods result in computationally demanding 340 

simulations, given the grid size required to capture the complex flow between buildings. For 341 

applications that require multiple simulations or fast results, the development of computationally more 342 

efficient surrogates of these models might become necessary (Bermúdez et al. 2018). Model setup 343 

complexity does vary significantly between the methods, and is thus likely to be a more relevant 344 

criterion for choosing an approach. If a suitable DSM is available, the approach corresponding to mesh 345 

D (i.e., the BB method without building geometry data) is the easiest to implement, given that building 346 

footprints are not used to constrain the mesh. However, in order to capture precisely the contours of 347 

the buildings, a very fine grid is needed. On the other hand, methods which make use of building 348 

footprints to produce sharp elevation changes at building interfaces (mesh A and C in this work) are 349 

more demanding from a pre-processing perspective. However, they could potentially allow for a 350 

certain mesh size optimization, up to the critical grid sizes defined by building dimensions and 351 

separation distances, as noted by Fewtrell et al. (2008). This aspect is beyond the scope of this work, 352 

and no coarsening was applied in this study to ensure consistency between the four mesh 353 

configurations. The number of mesh elements can be further reduced if the buildings are represented 354 

as holes in the mesh (as in mesh A). However, this may be a disadvantage for certain applications, 355 

such as the computation of rainfall-runoff transformation from direct precipitation over the model 356 

domain. If the mesh excludes the areas covered by the buildings, the rainfall fields need to be modified 357 

to account for the artificial loss of area.  358 

 359 

4. Conclusions 360 

The presented model experiment allowed to assess and compare two uncertainty sources in flood loss 361 

modelling at the micro-scale. We analyzed the sensitivity of a typical flood loss modelling setup to the 362 
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method for representing the buildings in the computational mesh of 2D flood models and to the method 363 

for assigning flow depths from the simulation outcomes to the single buildings.  364 

The model experiment leads to the following main conclusions.  365 

1) At the micro-scale, the topology between a building footprint and the computational mesh in a high 366 

spatial resolution is characterized by a high number of mesh nodes per building. Thus, the flow depths 367 

of the mesh nodes have to be interpolated in some way to assign the flow depth to the building since 368 

this parameter is needed for computing the degree of loss and consequently the loss at single building 369 

scale. As the flow depth attribution method can significantly influence the outcomes of flood loss 370 

analyses, we recommend that the chosen method is explicitly described in future studies. 371 

2) The attribution of the maximum flow depth of all nodes within the building footprint and a specified 372 

buffer distance to the building is robust. With this attribution method, the mesh set up (i.e., the method 373 

of representing the buildings in the computational mesh) does not significantly influence the loss 374 

estimation. In contrast, it becomes relevant when the flow depths are averaged over all nodes within 375 

the building. Herein, the nodes within the building footprint but representing the heights of the roof 376 

tops rather than the ground floor level result in flow depths of 0 m. Hence, these nodes should not be 377 

considered in averaging the flow depths. The mesh set up should thus be designed in line that it fits 378 

with the flow depth attribution method.  379 

3) The exposure assessment is not highly sensitive to the building representation method. From this 380 

perspective, the benefits of using the more complex building representation methods in the flood 381 

inundation model are not clear. Results however showed that this low sensitivity to the mesh setup is 382 

valid for the maximum flow depth attribution method only. Hence, in low-density peri-urban 383 

environments, the way how to consider the buildings in the mesh is dependent on the flow depth 384 

attribution method and thus it plays a role for exposure and flood loss estimations. Hence, further 385 

analyses should be aimed at finding a threshold for building density that acts as a proxy for areas in 386 

which the building representation method is relevant or not.  387 

 388 

Software availability 389 

The flood loss model and the procedure for processing the IBER simulation outcomes are incorporated 390 

in a Python script. The code with the functions used in this study is available at GitHub 391 

https://github.com/zischg/IBERfloodlossmodel. The functions follow mainly the procedure described 392 

in the method section. 393 

https://github.com/zischg/IBERfloodlossmodel
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FIGURES 549 

 550 
Fig. 1 Flow diagram of the methodology: flood inundation model, flood loss model and dataset of 551 

values at risk. 552 

 553 

Fig. 2 Extent of the study area.  The Zulg river flows from NE to E through the village of Steffisburg. 554 

 555 
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 556 

Fig. 3 Mesh geometries with different representation of the buildings (3D view). In (a), buildings are 557 

represented as holes, while in (b), (c) and (d) the area covered by the buildings is part of the mesh. The 558 

z-coordinates of the nodes within the building footprints equal the values of the DTM in (b) and the 559 

values of the DSM in (c) and (d). 560 

 561 

Fig. 4 Detail of the mesh around a building, overlaid on an aerial image. Mesh B and C are identical 562 

in this plan view, although elevations assigned to the nodes within the building footprint differ. 563 

Building footprints serve as constraints for mesh generation in mesh A, B and C. 564 
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 565 

Fig. 5 Scatter plot of depth values assigned to each building with the different hazard attribution 566 

methods. 567 

 568 

Fig. 6 Scatter plot of depth values assigned to each building with the different mesh configurations. 569 
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