
Estimating orthant probabilities of high
dimensional Gaussian vectors with an

application to set estimation

Dario Azzimonti∗

UQOD group, Idiap Research Institute and
IMSV, Department of Mathematics and Statistics, University of Bern

and
David Ginsbourger

UQOD group, Idiap Research Institute and
IMSV, Department of Mathematics and Statistics, University of Bern.

September 7, 2017

Abstract

The computation of Gaussian orthant probabilities has been extensively studied
for low dimensional vectors. Here we focus on the high dimensional case and we
present a two step procedure relying on both deterministic and stochastic techniques.
The proposed estimator relies indeed on splitting the probability into a low dimen-
sional term and a remainder. While the low dimensional probability can be estimated
by fast and accurate quadrature, the remainder requires Monte Carlo sampling. We
further refine the estimation by using a novel asymmetric nested Monte Carlo (anMC)
algorithm for the remainder and we highlight cases where this approximation brings
substantial efficiency gains. The proposed methods are compared against state-of-
the-art techniques in a numerical study, which also calls attention to the advantages
and drawbacks of the procedure. Finally the proposed method is applied to derive
conservative estimates of excursion sets of expensive to evaluate deterministic func-
tions under a Gaussian random field prior, without requiring a Markov assumption.
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1 Introduction

Assume that X = (X1, . . . , Xd) is a random vector with Gaussian distribution Nd(µ,Σ).

We are interested in estimating, for any fixed t ∈ R, the following probability

π(t) = P (X ≤ (t, . . . , t)). (1)

The general problem of evaluating π(t), which, for a full rank matrix Σ, is the integral of the

multivariate normal density φ(·;µ,Σ) over the one-sided d-dimensional rectangle (−∞, t]d,

has been extensively studied in moderate dimensions with many different methods. In low

dimensions tables are available (see, e.g., Owen (1956) for d = 2). Furthermore, when the

dimension is smaller than 20, there exist methods (see, e.g., Abrahamson (1964), Moran

(1984), Miwa et al. (2003) and Craig (2008)) exploiting the specific orthant structure of

the probability in (1). Currently, however, most of the literature uses numerical integration

techniques to approximate the quantity. In moderate dimensions fast reliable methods are

established to approximate π(t) (see, e.g. Cox and Wermuth (1991)) and more recently

the methods introduced in Schervish (1984); Genz (1992) and Hajivassiliou et al. (1996)

(see also Genz and Bretz (2002), Ridgway (2016) and the book Genz and Bretz (2009)

for a broader overview) provide state-of-the-art algorithms when d < 100. The method

introduced by Genz (1992) has been recently revised in Botev (2017) where a more efficient

tilted estimator is proposed. Those techniques rely on fast quasi Monte Carlo (qMC)

methods and are very accurate for moderate dimensions. Here we focus on problems where

d is larger than 1000 and π(t) is not a rare event probability. Such estimation problems

occur, for example, if π(t) comes from a discretization of a Gaussian random field and t is a

fixed finite threshold. In such cases, existing techniques are not computationally efficient or

become intractable. Commonly used alternative methods are standard Monte Carlo (MC)

techniques (see Tong (2012), Chapter 8 for an extensive review), for which getting accurate

estimates can be computationally prohibitive.

We propose here a two step method that exploits the power of qMC quadratures and

the flexibility of stochastic simulation for the specific problem of estimating π(t). We rely

on the following equivalent formulation.

π(t) = 1− P (maxX > t),
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where maxX denotes maxi=1,...,dXi. In the following we fix t and denote p = P (maxX > t).

The central idea is using a moderate dimensional subvector of X to approximate p

and then correcting bias by MC. Let us fix q � d and define the active dimensions as

Eq = {i1, . . . , iq} ⊂ {1, . . . , d}. Let us further denote with Xq the q dimensional vector

Xq = (Xi1 , . . . , Xiq) and with X−q the (d−q) dimensional vector X−q = (Xj)j∈E\Eq . Then,

p = P (maxX > t) = pq + (1− pq)Rq, (2)

pq = P (maxXq > t),

Rq = P (maxX−q > t | maxXq ≤ t).

The quantity pq is always smaller or equal to p as Eq ⊂ {1, . . . , d}. Selecting a non-

degenerate vector Xq, we propose to estimate pq with the QRSVN algorithm (Genz et al.,

2012) which is efficient as we choose a number of active dimensions q much smaller than d.

In Chevalier (2013), Chapter 6, the similar problem of approximating the non-exceedance

probability of the maximum of a Gaussian random field (GRF) ξ based on a few well-

selected points is presented. Each component of X stands for the value of ξ at one point of

a given discretization of the field’s domain. Active dimensions (i.e. the well-selected points)

were chosen by numerically maximizing pq, and the remainder was not accounted for. Our

proposed method, instead, does not require a full optimization of the active dimensions as

we exploit the decomposition in (2) to correct the error introduced by pq. For this task, we

propose two techniques to estimate the reminder Rq: a standard MC technique and a novel

asymmetric nested Monte Carlo (anMC) algorithm. The anMC technique draws samples

by taking into account the computational cost, resulting in a more efficient estimator.

The anMC method presented is quite general, however its overall performance is de-

pends on the techniques chosen to estimate pq and Rq. The choices described in this paper

are implemented as default in the R programming language (R Core Team, 2017) in the

package anMC, however numerical experiments presented in Appendix C and in supplemen-

tary material show that, for some specific problems, alternative choices might be better

suited.

In the remainder of the paper, we propose an unbiased estimator for p and we compute

its variance in Section 2. In Section 3 we introduce the anMC algorithm in the more general

setting of estimating expectations depending on two vectors with different simulation costs.
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It is then explicitly applied to efficiently estimate Rq. In Section 4 the results of two

numerical studies are reported. The first one studies the efficiency of the anMC algorithm

compared to standard MC. The second one is a benchmark study where the efficiency of the

proposed methods is compared with a selection of state-of-the-art techniques. This study

is extended to the case of small and very high probabilities in Appendix C. In Section 5, we

present an implementation of this method to compute conservative estimates of excursion

sets for expensive to evaluate functions under non-necessarily Markovian Gaussian random

field priors. More details on the choice of active dimensions are presented in Appendix A.

All proofs are in Appendix B. Computer code for partially replicating the experiments

presented here is attached in supplementary material, where we also report the results

of an additional numerical experiment and a study on the computational times for the

application of Section 5. The figures summarizing the benchmark results were produced

with the package ggplot2 (Wickham, 2009).

2 The estimator properties

2.1 An unbiased estimator for p

Equation (2) gives us a decomposition that can be exploited to obtain an unbiased estimator

for p. In the following proposition we define the estimator and we compute its variance.

Proposition 1. Consider p̂q and R̂q, independent unbiased estimators of pq and Rq re-

spectively, then p̂ = p̂q + (1− p̂q)R̂q is an unbiased estimator for p. Moreover its variance

is

var(p̂) = (1−Rq)
2 var(p̂q) + (1− pq)2 var(R̂q) + var(p̂q) var(R̂q). (3)

This property is independent from the choice of estimators p̂q and R̂q. In what follows

we consider different efficient computational strategies for p̂q and R̂q.
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2.2 Quasi Monte Carlo estimator for pq

The quantity pq can also be computed as

pq = 1− P (Xq ≤ tq) ,

where tq denotes the q dimensional vector (t, . . . , t). The approximation of pq thus requires

only an evaluation of the c.d.f. of Xq. We denote with p̂q a generic estimator for pq

and, since we assume that q � d, we propose to estimate pq with the estimator p̂q
G that

uses the randomized quasi Monte Carlo integration method QRSVN introduced in Genz

(1992), Hajivassiliou et al. (1996) and refined in Genz and Bretz (2009). In particular we

consider here the implementation of QRSVN with the variable reordering described in Genz

and Bretz (2009, Section 4.1.3). The estimate’s error is approximated with the variance of

the randomized integration. The quantity p̂q
G obtained with this procedure is an unbiased

estimator of pq, see Genz and Bretz (2009). While this choice is implemented by default in

the R package anMC, it is not the only possible choice. The package allows for user-defined

functions to estimate pq. In supplementary material, Section C we present an numerical

study where the MET method introduced in Botev (2017) is used in place of QRSVN.

In general, the estimator p̂q requires two choices: q, the number of active dimensions, and

the dimensions themselves. The decomposition of p in Equation (2) leads to computational

savings if we can approximate most of p with pq for a small q. On the other hand a large

number of active dimensions allows to intercept most of the probability mass in p. Here we

adopt a heuristic approach to select both q and Eq sequentially by increasing the number

of active dimensions until we meet an appropriate stopping condition. This approach,

detailed in Algorithm 3, Appendix A, was chosen in the current implementation because

it represents a good trade-off between speed and accuracy.

For a fixed q, the choice of Eq plays an important role in the approximation of p

because it determines the error p̂q − p, which is always negative. Selecting Eq such that

P (maxXq > t) is numerically maximized, as in Chevalier (2013), optimally reduces the bias

of p̂q as an estimator for p. Here we are not interested in a fully fledged optimization of this

quantity as the residual bias is removed with the subsequent estimation of Rq, therefore,

we exploit fast heuristics methods. The main tool used here is the excursion probability
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Figure 1: Distribution of p̂q
G estimates obtained with different choices of active dimensions.

function:

pt(i) = P (Xi > t) = Φ

(
µi − t√

Σi,i

)
,

where Φ is the standard normal c.d.f. The function pt is widely used in spatial statistics

(see, e.g. Bolin and Lindgren, 2015) and Bayesian optimization (see, e.g. Kushner, 1964;

Bect et al., 2012). In our setting it can be used to quickly identify the active dimensions.

In fact this function takes high values at dimensions with high probability of exceeding the

threshold and thus contribute the most to p. We propose the following methods.

Method A: sample q indices with probability given by pt.

Method B: sample q indices with probability given by pt(1− pt).

These methods require only one evaluation of the normal c.d.f. at each element of the

vector

(
µi−t√

Σi,i

)
i=1,...,d

, and are thus very fast. Both methods were already introduced for

sequential evaluations of expensive to evaluate functions, see, e.g., Chevalier et al. (2014b).

Figure 1 shows a comparison of the estimates pq obtained with different methods to

select Eq. We consider 30 replications of an experiment where p̂q
G is used to approximate

p. The dimension of the vector X is d = 1000, the threshold is fixed at t = 11. The vector

X is obtained from a discretization of a six dimensional GRF, defined on [0, 1]6, over the
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first 1000 points of the Sobol’ sequence (Bratley and Fox, 1988). The GRF has a tensor

product Matérn (ν = 5/2) covariance kernel. We generate a non constant mean function

m by imposing the interpolation of a deterministic function at 70 points. The covariance

kernel’s hyperparameters are fixed as θ = [0.5, 0.5, 1, 1, 0.5, 0.5]T and σ2 = 8, see Rasmussen

and Williams (2006), Chapter 4, for details on the parametrization. In this example, the

two methods clearly outperform a random choice of active dimensions.

Methods A and B work well for selecting active dimensions when the mean vector µ

and the covariance matrix diagonal are anisotropic. In such cases both methods select

dimensions that are a good trade-off between high variance and mean close to t.

The choices of q and of the active dimensions influence the behaviour of the estimator

for Rq. This aspect is discussed in more details in the next section.

2.3 Monte Carlo estimator for Rq

Debiasing p̂q as an estimator of p can be done at the price of estimating

Rq = P
(
maxX−q > t | maxXq ≤ t

)
.

There is no closed formula for Rq, so it is approximated here via MC. Since X is

Gaussian then so are Xq, X−q and X−q | Xq = xq, for any deterministic vector xq ∈ Rq.

In order to estimate Rq = P
(
maxX−q > t | Xi1 ≤ t, . . . , Xiq ≤ t

)
, we first generate

n realizations xq1, . . . , x
q
n of Xq such that Xq ≤ tq. Second, we compute the mean and

covariance matrix of X−q conditional on each realization xql , l = 1, . . . , n with the following

formulas

µ−q|x
q
l = µ−q + Σ−q,q(Σq)−1(xql − µ

q), Σ−q|q = Σ−q − Σ−q,q(Σq)−1Σq,−q, (4)

where µq,Σq and µ−q,Σ−q are the mean vector and covariance matrix of Xq and X−q

respectively, Σ−q,q is the cross-covariance between the dimensions E \ Eq and Eq, Σq,−q

is the transpose of Σ−q,q. Note that the conditional covariance Σ−q|q does not depend on

the realization xql , therefore it can be computed before the sampling procedure. Given the

mean and covariance matrix conditional on each sample xql , we can easily draw a realization

y
−q|q
l from X−q | Xq = xql . Once n couples (xql , y

−q|q
l ), l = 1, . . . , n are drawn from the
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respective distributions, an estimator for Rq is finally obtained as follows

R̂q

MC
=

1

n

n∑
l=1

1
max y

−q|q
l >t

.

There exists many technique to draw realizations from Xq conditional on Xq ≤ tq. Here

we use a crude multivariate rejection sampling algorithm (Robert, 1995; Horrace, 2005),

however this is not the only method possible. In numerical examples in Appendix C and

in supplementary material we show that replacing crude rejection sampling with another

sampler might be beneficial in some situations. In any case the cost of this step can be very

high, in particular if we use rejection sampling then that cost is driven by the acceptance

probability. The accepted samples satisfy the condition Xq ≤ tq thus we have that the

acceptance probability is P (Xq ≤ tq) = 1− pq. This shows that the choice of q and of the

active dimensions play an important role. If pq is much smaller than p, then the rejection

sampler will have a high acceptance probability, however the overall method will be less

efficient as most of the probability is in the remainder. On the other hand, if q and the

active dimensions are well chosen, the value of pq could be very close to p. This will also

lead to a slower rejection sampler as the acceptance probability would be small.

The second part of the procedure for R̂q

MC
, drawing samples from the distribution of

X−q | Xq = xql , is instead less dependent on q and generally less expensive than the first

step. The mean vector and covariance matrix computations requires only linear algebra

operations as described in Equation (4) and realizations of X−q | Xq = xql can be generated

by sampling from a multivariate normal distribution.

The difference in computational cost between the first step and the second step of the

MC procedure can be exploited to reduce the variance at a fixed computational cost. This

idea is exploited by the asymmetric nested MC procedure presented in Section 3.

We denote with p̂GMC the unbiased estimator of p defined as

p̂GMC = p̂q
G + (1− p̂qG)R̂q

MC
,

where GMC denotes the use of Genz’s method for pq and MC for R̂q.

Figure 2 shows the box plots of 30 replications of an experiment where p is approx-

imated with p̂GMC. The set-up is the same as in Fig. 1. The core of the probability is

approximated with p̂q
G and the active dimensions are chosen with Method 1. The residual
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Figure 2: Estimate of p with p̂GMC for different values of q. A full MC estimation of the

same quantity is shown for comparison

Rq is estimated with R̂q

MC
. The remainder allows to correct the bias of p̂q

G even with

a small number of active dimensions. As comparison the results of the same experiment

with a full MC estimator for p are also shown. For all experiments and for each method

the number of samples was chosen in order to have approximately the same computational

cost. The estimator p̂GMC exploits an almost exact method to estimate the largest part

of the probability p, therefore the MC estimator R̂q

MC
has less variance than a full MC

procedure for a fixed computational cost.

3 Estimation of the residual with asymmetric nested

Monte Carlo

In section 2, Rq was estimated by R̂q

MC
. There exists many methods to reduce the vari-

ance of such estimators, including antithetic variables (Hammersley and Morton, 1956),

importance sampling (Kahn, 1950; Kahn and Marshall, 1953) or conditional Monte Carlo

(Hammersley, 1956) among many others; see, e.g. Robert and Casella (2013, Chapter 4), for
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a broader overview. Here we focus on reducing the variance at a fixed computational cost,

i.e. we are interested in increasing the estimator efficiency (Lemieux, 2009, Section 4.2).

We propose a so-called asymmetric nested Monte Carlo (anMC) estimator for Rq that in-

creases the efficiency with a parsimonious multiple use of conditioning data. In this section

we develop some useful theoretical properties of anMC estimators.

The idea is to use an asymmetric sampling scheme that assigns computational resources

by taking into account the actual cost of simulating each component. A similar asymmetric

sampling scheme was introduced in the particular case of comparing the performance of

stopping times for a real-valued stochastic process in discrete times in Dickmann and

Schweizer (2016). Here we introduce this procedure in a general fashion and, in the next

section, we detail it to R̂q

MC
. For two measurable spaces W ,Z, consider two random

elements W ∈ W and Z ∈ Z, defined on the same probability space and not independent.

We are interested in estimating the quantity

G = E [g(W,Z)] , (5)

where g :W×Z → R is a measurable function, assumed integrable with respect to (W,Z)’s

probability measure. Let us also assume that it is possible to draw realizations from the

marginal distribution of W , Z and from the conditional distribution of Z | W = wi, for

each wi sample of W . In the spirit of a Gibbs sampler, we can then obtain realizations

(wi, zi), i = 1, . . . , n of (W,Z) by simulating wi from the distribution of W and then zi

from the conditional distribution Z | W = wi, leading to:

Ĝ =
1

n

n∑
i=1

g(wi, zi). (6)

This MC estimator can actually be seen as the result of a two step nested MC procedure

where, for each realization wi, one inner sample zi is drawn from Z | W = wi. Note that

the estimator R̂q

MC
used in Section 2 is a particular case of Equation (6) with W = Xq |

Xq ≤ tq, Z = X−q and g(x, y) = 1max y>t. As noted in Section 2, drawing realizations

of Xq | Xq ≤ tq has a higher computational cost than simulating X−q because rejection

sampling is required in the first case. More generally, let us denote with CW (n) the cost of n

realizations of W and with CZ|W (m;wi) the cost of drawing m conditional simulations from
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Z | W = wi. If CW (1) is much higher than CZ|W (1;wi) then sampling several conditional

realizations for a given wi might bring computational savings.

In the proposed asymmetric sampling scheme for each realization wi we sample m

realizations zi,1, . . . , zi,m from Z | W = wi. Assume that we use this sampling scheme for

the couples (wi, zi,j), i = 1, . . . , n, j = 1, . . . ,m, then an estimator for G is

G̃ =
1

nm

n∑
i=1

m∑
j=1

g(wi, zi,j). (7)

For a fixed number of samples, the estimator G̃ may have a higher variance than Ĝ

due to the dependency between pairs sharing the same replicate of W . However, in many

cases, the estimator G̃ may be relevant to reduce the variance at a fixed computational

time. In fact, let us fix the computational budget instead of the number of samples. If

CZ|W (1;wi) < CW (1), then anMC may lead to an overall variance reduction thanks to an

increased number of simulated pairs. In the remainder of the section, we show that, in the

case of an affine cost functions, there exists an optimal number of inner simulations m such

that var(G̃) < var(Ĝ). Assume

CW (n) = c0 + cn and, for each sample wi

CZ|W (m;wi) = CZ|W (m) = α + βm,

with c0, c, α, β ∈ R+ dependent on the simulators of W and Z | W . The second equation

entails that the cost of conditional simulations does not depend on the conditioning value.

If W = Xq | Xq ≤ tq, Z = X−q as in Section 2, then Z | W is Gaussian with mean and

covariance matrix described in (4). In this case, the cost for sampling Z | W is affine, with

α describing preliminary computations and β random number generation and algebraic

operations. Denote with W1, . . . ,Wn replications of W . For each Wi we consider the

conditional distribution Z | Wi and m replications Z1,i, . . . , Zm,i. Under these assumption

the total simulation budget is

Ctot(n,m) = c0 + n(c+ α + βm).

If the total budget is fixed, Ctot(n,m) = Cfix ∈ R+, then the number of replications of W

as a function of m is

NCfix
(m) =

Cfix − c0

c+ α + βm
.
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The following proposition shows a decomposition of var(G̃) that is useful to find the

optimal number of simulations m∗ under a fixed simulation budget Ctot(n,m) = Cfix.

Proposition 2. Consider n independent copies W1, . . . ,Wn of W and, for each Wi, m

copies Zi,j = Zj | Wi j = 1, . . . ,m, independent conditionally on Wi. Then,

var(G̃) =
1

n
var(g(W1, Z1,1))− m− 1

nm
E
[

var(g(W1, Z1,1) | W1)
]
. (8)

Corollary 1. Under the same assumptions, G̃ has minimal variance when

m = m̃ =

√
(α + c)B

β(A−B)
,

where A = var(g(W1, Z1,1)) and B = E
[

var(g(W1, Z1,1) | W1)
]
. Moreover denote with

ε = m̃− bm̃c, then the optimal integer is m∗ = bm̃c if

ε <
(2m̃+ 1)−

√
4(m̃)2 + 1

2
(9)

or m∗ = dm̃e otherwise.

Proposition 3. Under the same assumptions, if m∗ > 2(α+c)B
(c+α)B+β(A−B)

then var(G̃) =

var(Ĝ) [1− η], where η ∈ (0, 1).

3.1 Algorithmic considerations

In order to computem∗, we need the quantitiesA = var(g(W1, Z1,1)) andB = E
[

var(g(W1, Z1,1) |

W1)
]

and the constants c0, c, α and β. A and B depend on the specific problem at hand

and are usually not known in advance. Part of the total computational budget is then

needed to estimate A and B. This preliminary phase is also used to estimate the system

dependent constants c and β. Algorithm 1 reports the pseudo-code for anMC.

3.2 Estimate p with p̂GanMC

The anMC algorithm can be used to reduce the variance compared to Rq’s MC estimate

proposed in Section 2.3. In fact, let us consider W = Xq | Xq ≤ tq and Z = X−q. We

have that W is expensive to simulate as it requires sampling from a truncated normal
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Algorithm 1: Asymmetric nested Monte Carlo.

Input : µW , µZ ,ΣW ,ΣZ ,ΣWZ , g, Ctot

Output: G̃

Part 0: estimate c0, c, β, α ;

initialize compute the conditional covariance ΣZ|W and initialize n0,m0;

Part 1: for i← 1 to n0 do

estimate A,B simulate wi from the distribution of W and compute µZ|W=wi
;

draw m0 simulations zi,1, . . . , zi,m0 from the conditional distribution Z | W = wi;

estimate E [g(W,Z) | W = wi] with Ẽi = 1
m0

∑m0

j=1 g(wi, zi,j);

estimate var (g(W,Z) | W = wi) with Ṽi = 1
m0−1

∑m0

j=1(g(wi, zi,j)− Ẽi)2;

end

compute m̃ =

√
(α+c) 1

n0

∑n0
i=1 Ṽi

β 1
n0−1

∑n0
i=1(Ẽi− 1

n0

∑n0
i=1 Ẽi)2 , m∗ as in Corollary 1 and n∗ = NCfix

(m∗);

Part 2: for i← 1 to n∗ do

compute G̃ if i ≤ n0 then

for j ← 1 to m∗ do

if j ≤ m0 then

use previously calculated Ẽi and Ṽi;

else

simulate zi,j from the distribution Z | W = wi;

compute Ẽi = 1
m∗

∑m∗

j=1 g(wi, zi,j);

end

end

else

simulate wi from the distribution of W and compute µZ|W=wi
;

for j ← 1 to m∗ do

simulate zi,j from the conditional distribution Z | W = wi;

end

compute Ẽi = 1
m∗

∑m∗

j=1 g(wi, zi,j);

end

end

estimate E [g(W,Z)] with G̃ = 1
n∗

∑n∗

i=1 Ẽi;
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Figure 3: Comparison of results with p̂q
G, p̂GMC, p̂GanMC and standard MC on 30 replications

of the example introduced in Fig. 1.

while, for a given sample wi, Z | W = wi is Gaussian with mean and covariance matrix

described in Equation (4). It is generally much cheaper to obtain samples from Z | W = wi

than from W . Moreover, as noted earlier, Rq can be written in the form of Equation (5)

with g(x, y) = 1max y>t. By following Algorithm 1 we calculate m∗, sample n∗ realizations

w1, . . . , wn∗ of W and for each realization wi obtain m∗ samples zi,1, . . . , zi,m∗ of Z | W = wi.

We estimate Rq via

R̂q

anMC
=

1

n∗m∗

n∗∑
i=1

m∗∑
j=1

1max zi,j>t.

Finally plugging in R̂q

anMC
and p̂q

G in Equation (2), we obtain

p̂GanMC = p̂q
G + (1− p̂qG)R̂q

anMC
.

Figure 3a shows a comparison of results using 30 replications of the experiment presented

in Section 2.3. Results obtained with a MC estimator are shown for comparison.

While the simulations of all experiments were obtained under the constraint of a fixed

computational cost, the actual time to obtain the simulations was not exactly the same. In

order to be able compare the methods in more general settings we further rely on the notion
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of efficiency. For an estimator p̂, we define the efficiency (Lemieux, 2009, Section 4.2) as

Eff[p̂] =
1

var(p̂) time[p̂]
, (10)

where time[p̂] denotes the computational time of the estimator p̂.

Figure 3b shows a comparison of the efficiency of p̂GMC and p̂GanMC with a full Monte

Carlo estimator. With as few as q = 50 active dimensions we obtain an increase in efficiency

of around 10 times on average over the 30 replications of the experiment with the estimator

p̂GMC. The estimator p̂GanMC shows a higher median efficiency than the others for all q ≥ 20.

4 Numerical studies

4.1 Choice of the number of inner samples

In this section we study the efficiency of the anMC method compared with a standard

MC method for different choices of m. Here we do not select the optimal m∗ defined in

Corollary 1, but we study the efficiency as a function of m. In many practical situations

even if part 1 of Algorithm 1 does not render the optimal m∗ the anMC algorithm is still

more efficient than a standard MC if the chosen m is close to m∗.

We consider a similar setup to the experiment presented in Section 2.2. Here we start

from a GRF with tensor product Matérn (ν = 5/2) and a non constant mean function

m different from the example in Section 2.2, initialized as conditional mean on 60 ran-

domly generated values at a fixed design on [0, 1]6. The hyperparameters are fixed as

θ = [0.5, 0.5, 1, 1, 0.5, 0.5]T and σ2 = 8. The GRF is then discretized over the first d = 1000

points of the Sobol sequence to obtain the vector X. We are interested in 1−p = P (X < t),

with t = 5. We proceed by estimating p with p̂GMC and p̂GanMC for different choices of m

to compare their efficiency. The initial part pq is computed once with estimator p̂q
G with

q and the active dimensions chosen with Algorithm 3, Method B. The number of outer

simulations in the anMC algorithm is kept fixed to n = 10, 000 and we only vary m. For

each m, the anMC estimation is replicated 20 times.

The median estimated value for p is p̂ = 0.9644. Most of the probability is estimated

with pq, in fact p̂q
G = 0.9636. Figure 4a shows Eff[p̂] computed with the overall variance of
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(a) High probability state, t = 5, p̂GanMC =

0.9644.
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(b) Low probability state, t = 7.5, p̂GanMC =

0.1178.

Figure 4: Efficiency of p̂GanMC estimator versus the number of inner simulations m. For

each m the experiment is reproduced 30 times.

p̂. A choice of m = 10 leads to a median increase in efficiency of 73% compared to the MC

case. In this example, both the probability to be estimated and pq are close to 1, thus the

acceptance probability for R̂q is low. In this situation the anMC method is able to exploit

the difference in computational costs to provide a more efficient estimator for R̂q.

In order to study the effect of the acceptance probability on the method’s efficiency

we change the threshold in the previous example to t = 7.5 by keeping the remaining

parameters fixed. The value of p is smaller, p̂ = 0.1178. The number of active dimensions

q, chosen with Algorithm 3, is smaller (q = 90) as the probability mass is smaller. The value

of pq (p̂q
G = 0.1172) is much smaller than in the previous case and this leads to a higher

acceptance probability for R̂q. Figure 4b shows efficiency of the method as a function of

m. Here the anMC method does not bring significant gains over the MC method as the the

ratio between the cost of rejection sampling and the conditional simulations in R̂q is close

to one. The estimated m∗ is equal to 1.91, thus it is smaller than the minimum threshold

of Proposition 3 that guarantees a more efficient anMC algorithm.
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4.2 Comparison with state of the art

In this section we compare the GMC and GanMC methods, with the default options as

implemented in the R package anMC, with available state-of-the-art algorithms to estimate

π(t). In particular, we compare this implementation with:

QRSVN an implementation of Genz method (Genz and Bretz, 2009) in the R package

mvtnorm (Genz et al., 2017), function pmvnorm;

GHK an implementation of GHK method (Geweke, 1991; Hajivassiliou and McFadden,

1998) in the R package bayesm (Rossi, 2015), function ghkvec;

MET R implementation of the minimax-exponentially-tilted (MET) method (Botev, 2017)

in the package TruncatedNormal (Botev, 2015), function mvNcdf;.

We consider the example introduced in Section 4.1 and we increase the dimension of

the problem d by considering finer discretizations of the underlying GRF. For example,

the vector X of dimension d = 100 is obtained from the GRF discretized on the first 100

points of the 6-dimensional Sobol’ sequence. As the dimension d increases the probability

π(t) changes, thus providing different setups. Each experiment is replicated 15 times.

Figure 5 presents a comparison of the estimator’s efficiency for the problem of computing

π(t), with t = 5. In this setup the value of π(t) varies between 0.66155 for d = 100

and 0.00124 for d = 7000. The most efficient algorithm is the QRSVN Genz method,

however this implementation does not scale to dimensions higher than 1000. The GMC

algorithm is the second most efficient in all dimensions except d = 2000 where it is the

most efficient. The GanMC algorithm is instead the most efficient when d is greater than

2000. This effect is explained by the efficiency gains brought by R̂q

anMC
when the rejection

sampler is expensive. If d > 2000, the probability P (Xq ≤ tq) is always smaller than 0.01,

thus the rejection sampler becomes much more expensive than the conditional sampler in

the estimation of the remainder R̂q. Algorithms GHK and MET allowed estimates until

dimension d = 5000 and d = 4000 respectively before running in memory overflows. The

GanMC algorithm is 45 times more efficient than the GHK algorithm for d = 5000 and 3.8

times more efficient than MET for d = 4000. It is also 5 times more efficient than GMC for
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Figure 5: Efficiency of the probability estimator for π(t), with t = 5, versus the dimension

d. For each d the experiment is reproduced 15 times. Values in logarithmic scale. The

median estimated value for p = 1− π(t) ranges from 0.33845 to 0.99876.

d = 7000. Computations were carried on the cluster of the University of Bern on machines

with Intel Xeon CPU 2.40GHz and 16 GB RAM.

Appendix C shows a comparison of the efficiency for t = 7.5 and for t = 3. By

changing the level t we obtain radically different situations: in the first case the acceptance

probability of the rejection sampler becomes quite high, thus limiting the benefit of the

anMC procedure. In the second case π(t) becomes very small as the dimension increases,

thus making the problem of estimating Rq out of reach with rejection sampling. In this

example we present an alternative to the default choice implemented in anMC.

5 Application: efficient computation of conservative

estimates

A problem where the anMC method leads to substantial increases in efficiency is conserva-

tive excursion set estimation relying on Gaussian field models. We consider an expensive

to evaluate system described by a continuous function f : D ⊂ R` → R, ` ≥ 1, where D is
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a compact domain, and we focus on estimating, for some fixed threshold t ∈ R, the set

Γ∗ = {x ∈ D : f(x) ≤ t}.

Such problems arise in many applications such as reliability engineering (see, e.g., Picheny

et al. (2013), Chevalier et al. (2014a)) climatological studies (Bolin and Lindgren, 2015;

French and Sain, 2013) or in natural sciences (Bayarri et al., 2009). Often f is seen as ex-

pensive to evaluate black-box (Sacks et al., 1989) and can only be evaluated with computer

simulations. We assume here that f was only evaluated at points χk = {x1, . . . , xk} ⊂ D

and the associated responses are denoted with f(χk) = (f(x1), . . . , f(xk)) ∈ Rk and we are

interested in giving an estimate of Γ∗ starting from these k evaluations.

In a Bayesian framework we consider f as a realization of a GRF (ξx)x∈D with prior

mean function m and covariance kernel K. A prior distribution of the excursion set is hence

obtained by thresholding ξ, thus obtaining the following random closed set

Γ = {x ∈ D : ξx ≤ t}.

Denoting with ξχk
the random vector (ξx1 , . . . , ξxk), we can then condition ξ on the obser-

vations f(χk) and obtain a posterior distribution for the field ξx | ξχk
= f(χk). This gives

rise to a posterior distribution for Γ. Different definitions of random closed set expectation

(Molchanov (2005), Chapter 2) can be used to summarize this posterior distribution and

to provide estimates for Γ∗. In Chevalier et al. (2013), for example, the Vorob’ev expec-

tation was introduced in this setting. Let us briefly recall this definition. We denote with

pΓ,k : D → [0, 1] the coverage function of the posterior set Γ | ξχk
= f(χk), defined as

pΓ,k(x) = Pk(x ∈ Γ), x ∈ D,

where Pk(·) = P (· | ξχk
= f(χk)). This function associates to each point in D its probability

of being inside the posterior excursion set. The function pΓ,k gives rise to a family of

excursion set estimates: for each ρ ∈ [0, 1] we can define the posterior ρ-level Vorob’ev

quantile of Γ

Qρ = {x ∈ D : pΓ,k(x) ≥ ρ}.

The Vorob’ev expectation of Γ (Molchanov, 2005) is the quantile QρV that satisfies |Qρ| ≤

Ek[|Γ|] ≤ |QρV | for all ρ ≥ ρV , where |A| denotes the volume of a set A ⊂ Rl. The
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set QρV consists of the points that have high enough marginal probability of being inside

the excursion set. In some applications, however, it is important to provide confidence

statements on the whole set estimate. Conservative estimates introduced in Bolin and

Lindgren (2015) for Gaussian Markov random fields address this issue. A conservative

estimate of Γ∗ is

CΓ,k = arg max
C⊂D

{|C| : Pk(C ⊂ {ξx ≤ t}) ≥ α}, (11)

where |C| denotes the volume of C.

The estimation of the object in Equation (11), however, leads to major computational

issues. First of all we need to select a family of sets to use for the optimization procedure in

Equation (11). Here we follow Bolin and Lindgren (2015) and select the Vorob’ev quantiles

as family of sets. This family has the advantage that it is parametrized by one real number ρ

and thus it renders the optimization straightforward. Algorithm 2 details the optimization

procedure.

Second, for each candidate Q we need to evaluate Pnext = Pk(Q ⊂ {ξx ≤ t}), the

probability that Q is inside the excursion. In fact, this quantity is a high dimensional

orthant probability. For a Vorob’ev quantile Qρ′ , discretized over the points c1, . . . , cr,

Pk(Qρ′ ⊂ {ξx ≤ t}) = Pk(ξc1 ≤ t, . . . , ξcr ≤ t) = 1− Pk( max
i=1,...,r

ξci > t).

Thus we use the estimator p̂GanMC to approximate 1−Pk(Qρ′ ⊂ {ξx ≤ t}). The use of anMC

allows resolutions for the discretized Vorob’ev quantiles that seem out of reach otherwise.

We apply Algorithm 2 to a two dimensional artificial test case. We consider as function

f a realization of a GRF (ξx)x∈D, where D ⊂ R2 is the unit square. We consider two

parametrizations for the prior covariance kernel: a tensor product Matérn covariance kernel

with ν = 5/2, variance σ2 = 0.5 and range parameters θ = [0.4, 0.2] and a Gaussian

covariance kernel with variance σ2 = 0.5 and range parameters θ = [0.2, 0.4]. In both

cases we assume a prior constant mean function. We are interested in the set Γ∗ with

t = 1. For both cases we consider k = 15 evaluations of f at the same points chosen by

Latin hypercube sampling. Figures 6a and 6b show the conservative estimate at level 95%

compared with the true excursion, the Vorob’ev expectation and the 0.95-quantile for the

Matérn and the Gaussian kernel. The 0.95-quantile does not guarantee that the estimate

is included in the true excursion with probability 0.95 in both examples. The conservative
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Algorithm 2: Conservative estimates algorithm.

Input : mk,Kk, conditional mean and covariance of ξ | ξχk
= f(χk), and

G, fine discretization design;

Output: Conservative estimate for Γ∗ at level α.

Part 0: sort the points in G in decreasing order of pΓ,k, with indices Gs = {i1, . . . im};

compute iB, iT find the highest index iT such that
∏T

j=1 pΓ,k(Gs)[ij] ≥ α;

find the highest index iB such that pΓ,k(Gs)[iB] ≥ α;

evaluate mean and covariance matrix mk(iB) and ΣiB ,iB ;

Part 1: initialize iL = iT , iR = iB ;

Initialize dichotomy estimate PL = Pk(QρiL
⊂ {ξx ≤ t}), PR = Pk(QρiR

⊂ {ξx ≤ t}) with GanMC ;

Part 2: while PR < α and (iR − iL) ≥ 2 do

optimization next evaluation inext = iL+iR
2

;

estimate Pnext = Pk(Qρinext
⊂ {ξx ≤ t}) with GanMC;

if Pnext ≥ α then

iL = inext, iR = iR;

else

iL = iL, iR = inext;

end

end

estimates instead are guaranteed to be inside the true excursion with probability α = 0.95.

They correspond to Vorob’ev quantiles at levels 0.998 (Matérn) and 0.993 (Gaussian). The

conservative estimates were obtained with a 100×100 discretization of the unit square. Such

high resolution grids lead to very high dimensional probability calculations. In fact, the

dichotomy algorithm required 11 computations of the probability 1 − Pk(Qρ′ ⊂ {ξx ≤ t})

for each case. The discretization’s size for Qρ varied between 1213 and 3201 points in

the Matérn kernel case and between 1692 and 2462 points in the Gaussian case. Such

high dimensional probabilities cannot be computed with the current implementation of the

algorithm by Genz, however they could be computed with other Monte Carlo methods at

higher computational costs. Instead, with the proposed method, the total computational

time on a laptop with Intel Core i7 1.7GHz CPU and 8GB of RAM was equal to 365 and

21



Conservative estimate at 95% (Matern kernel)

Conservative estimate (95%)
0.95-level set
Vorob'ev expectation
True excursion

(a) Realization obtained with a Matérn kernel.

Conservative estimate at 95% (Gauss kernel)

Conservative estimate (95%)
0.95-level set
Vorob'ev expectation
True excursion

(b) Realization obtained with Gaussian kernel.

Figure 6: Conservative estimates at 95% (white region) for the excursion below t = 1. Both

models are based on 15 evaluations of the function (black triangles). The true excursion

level is plotted in blue, the Vorob’ev expectation in green and the 0.95-level set in red.

390 seconds respectively for Matérn and Gaussian kernel. In Supplementary Materials,

Section D, we compare the time required for conservative estimates when the core orthant

probability estimate is computed with the GanMC, MET, GHK or QRSVN algorithms.

6 Discussion

In this paper we introduced a new method to approximate high dimensional orthant Gaus-

sian probabilities based on a decomposion of the probability in a low dimensional part pq

and a remainder Rq. The number of active dimensions q and the dimensions themselves are

chosen with two heuristic algorithms which provide good results in case of dense covariance

matrix with anisotropic diagonal and anisotropic mean vector. An alternative proposal is

choosing the first q dimensions ordered according to the inverse Genz variable reordering

proposed in Genz and Bretz (2009, Section 4.1.3). While similar to the heuristics proposed

here, this method is not efficient in high dimensions as it requires a full Cholesky decompo-
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sition of the covariance matrix. The remainder Rq is instead estimated with two methods:

standard Monte Carlo and asymmetric nested Monte Carlo (anMC). Both methods showed

higher efficiency than other state-of-the-art methods for dimensions higher than 1000 when

the orthant probability π(t) is not a rare event in high dimensions.

The version of the anMC method proposed here relies on the QRSVN algorithm to

estimate pq and a rejection sampling to the estimate of Rq. These choices, implemented

as default in the package anMC, can be easily changed to improve the method. In fact

those particular choices do not prove to be the most efficient when π(t) is very small in

high dimensions, as shown in Appendix C. For example, in supplementary material, we

show that it is possible to implement the anMC method using the MET algorithm for the

estimation of pq and a Hamiltonian Monte Carlo technique as truncated normal sampler.

Such choices provide efficiencies close to the best state-of-the-art method in all cases and

allow for efficient estimates in higher dimensions.

Within its computational limits, the efficiency of p̂GanMC with default choices is mainly

driven by the acceptance probability of the rejection sampler in R̂q

anMC
, which in turn

depends on p̂q. This highlights the existence of a trade-off between p̂q
G and R̂q. If the

choice of q and active dimensions is not optimal, then the acceptance probability of the

rejection sampler becomes larger, making the estimation of Rq easier. An estimator p̂q closer

to p makes the quantity Rq harder to estimate, however, in this case, R̂q

anMC
becomes more

efficient than R̂q

MC
as the ratio between computational costs becomes more favourable.

In general, anMC relies on an initial step where several constants and probabilistic

quantities are empirically estimated to choose the optimal m∗, the number of inner samples.

In particular the cost parameters c, β, the slopes of the linear costs, might be hard to

estimate if the constants c0, α are comparatively large. In this case Algorithm 1 might not

choose the optimal m∗. However, a numerical study of the algorithm behaviour for different

choices of m showed that, on the considered examples, even if the chosen m is not optimal

but it is close to optimal, the efficiency gain is very close to the optimal efficiency gain.

The estimator p̂GanMC made the computation of conservative estimates possible for

excursion sets of expensive to evaluate functions under general GRF priors. The R imple-

mentation of the algorithm is included in the package anMC currently available on CRAN
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and on GitHub.

SUPPLEMENTARY MATERIAL

SupplementaryMaterial: short description of the supplementary material provided,

additional numerical results and computational times for Section 5. (PDF file)

R-package anMC: R-package implementing the GanMC, GMC procedures and the con-

servative estimates algorithm. (GNU zipped tar file)

R files (main): The R files Section4_1.R, Section4_2.R and SuppMaterial_C.R con-

tain a blueprint of the code used for the numerical studies run in Section 4, Ap-

pendix C and in Sections C of the supplementary material. The code to generate

the example in Section 5 is reproduced in Section5.R and in SuppMaterial_D.R. (R

source code file)

R files (auxiliary): The R file create6dimGP.R contains an auxiliary function to gen-

erate the examples used in Section 4. The R file generateExamples.R contains

an auxiliary function to generate the realizations used in Section 5 and in Sec-

tion D, supplementary material. The R file consEstGeneric.R contains the func-

tion conservativeEstimate_generic used for the computational comparison in Sec-

tion D, supplementary material. The R file UserDefinedFunctions.R defines the

functions pmvnorm_usr and trmvrnorm_usr used in Section C, supplementary mate-

rial. (R source code file)

RData files: The files DataForGaussianFigure.RData and DataForMaternFigure.RData

contain the data to generate exactly Figure 6. (RData files)

A Choice of active dimensions

The estimator p̂q
G, introduced in Section 2.2, requires the choice of q, the number of active

dimensions and the choice of the dimensions themselves. Algorithm 3 describes the heuristic

procedure implemented in anMC to select q and obtain the active dimensions. Here we select
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q by sequentially increasing the number of active dimensions until the relative change of

p̂q
G is less than the estimate’s error.

Algorithm 3: Select q, active dimensions and compute p̂q
G.

Input : q0, small initial q, e.g. q0 = d1/3, and qstep the increment of q, γ > 0

Output: q, p̂G
q

Compute p̂G
q0

and save err(p̂G
q0

) := 3
√

var(p̂G
q0

) ;

initialize k = 0;

repeat

increment k = k + 1 ;

qk := q0 + kqstep ;

choose qk active dimensions, compute p̂Gqk and err(p̂G
qk

) ;

compute ∆(p̂G
qk

) =

∣∣∣p̂G
qk
−p̂G

qk−1

∣∣∣
1+p̂G

qk

;

until ∆(p̂Gqk) < γ err(p̂Gqk) or qk > 300;

q = qk and p̂q
G = p̂G

qk
;

The constant γ > 0 is chosen equal to 1 in our implementation. Moreover the algorithm

stops if qk > 300 to avoid using Genz’s algorithm in high dimensions.

A.1 Add spatial information

If the random vector X comes from a GRF discretized over a set of points Espat =

{e1, . . . , ed} ⊂ Rl, then we can exploit this information to choose Eq. Let us consider

the sequence of vectors (δj)j=1,...,q, defined for each j as

δj =

j∏
k=1

dist(eik , Espat) (j = 1, . . . , q)

where dist(eik , Espat) denotes the d-dimensional vector of Euclidean distances between eik

and each point in Espat and {ei1 , . . . , eiq} are the points corresponding to the selected active

dimensions Eq. We then adjust Methods A, B by sampling the jth active dimension with

probabilities given by the component-wise products pt
δj
‖δj‖ and pt(1− pt) δj

‖δj‖ respectively.
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B Proofs

Proof of Proposition 1

Proof. We have that E[p̂q] = pq and E[R̂q] = Rq. Then we have

var(p̂) = var(p̂q) + var((1− p̂q)R̂q)︸ ︷︷ ︸
=�

+2 cov(p̂q, (1− p̂q)R̂q)︸ ︷︷ ︸
=N

. (12)

We can write the variance � and the covariance N as

� = var((1− p̂q)R̂q) = (1− pq)2 var(R̂q) +R2
q var(p̂q) + var(p̂q) var(R̂q),

N = cov[p̂q, (1− p̂q)R̂q] = − var(p̂q)Rq,

respectively, by exploiting the independence of p̂q and R̂q. By plugging in those expressions

in Equation (12) we obtain the result in Equation (3).

Proof of Proposition 2

Proof.

var(G̃) =
1

n2m2
var

(
n∑
i=1

m∑
j=1

g(Wi, Zi,j)

)
=

1

nm2
var

(
m∑
j=1

g(W1, Z1,j)

)

=
1

nm2

m∑
j=1

m∑
j′=1

cov
(
g(W1, Z1,j), g(W1, Z1,j′)

)
=

1

nm2

[
m var(g(W1, Z1,1)) +m(m− 1) cov(g(W1, Z1,1), g(W1, Z1,2))

]
=

1

nm2
[m var(g(W1, Z1,1)) +m(m− 1)�] . (13)

where the first equality is a consequence of the independence of W1, . . . ,Wn and the third

equality is a consequence of the independence of Zi,j and Zi,j′ conditionally onWi. Moreover

the covariance denoted by � in (13) can be written as follows.

� = E
[

cov(g(W1, Z1,1), g(W1, Z1,2) | W1)
]︸ ︷︷ ︸

=0 Z1,1,Z1,2 independent conditionally on W1

+ cov
(
E[g(W1, Z1,1) | W1],E[g(W1, Z1,2) | W1]

)︸ ︷︷ ︸
=var(E[g(W1,Z1,1)|W1])

= var
(
E[g(W1, Z1,1) | W1]

)
= var

(
g(W1, Z1,1)

)
− E

[
var
(
g(W1, Z1,1) | W1

)]
. (14)

Equations (13) and (14) give the result (8).
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Proof of Corollary 1

Proof. Denote with e = β(A−B), f = (α+ c)(A−B) +βB, g = (c+α)B, h = Ctot− c0,

then

var(G̃)(m) =
em2 + fm+ g

hm
. (15)

Observe that the first and second derivatives of var(G̃) with respect to m are respectively

∂ var(G̃)

∂m
=

1

h

[
e− g

m2

]
,

∂2 var(G̃)

∂m2
=

2g

hm3
.

The second derivative is positive for all m > 0 then var(G̃) is a convex function for m > 0

and the point of minimum is equal to the zero of ∂ var(G̃)/∂m, which is m =
√
g/e = m̃.

Since var(G̃) is convex in m, the integer that realizes the minimal variance is either bm̃c

or dm̃e. By plugging in m = m̃ − ε =
√
g/e − ε and m = m̃ − ε + 1 =

√
g/e − ε + 1 in

Equation (15), we obtain the condition in (9).

Proof of Proposition 3

Proof. First of all notice that the total cost of sampling Ĝ is Ctot = c0 + n(c + CZ|W ) =

c0n(c + α + β). By isolating n in the previous equation we obtain n = Ctot

c+α+β
, where Ctot

for the sake of brevity and, by computations similar to those in Proposition 2 we obtain

var(Ĝ) =
c+ α + β

Ctot

var(g(W1, Z1,1)) =
c+ α + β

Ctot

A,

where A = var(g(W1, Z1,1)). In the following we will also denote B = E
[

var(g(W1, Z1,1) |

W1)
]

as in Corollary 1. Let us now substitute NCfix
(m∗) in equation (8), thus obtaining

var(G̃) =
(c+ α + βm∗)Am∗ − (m∗ − 1)(c+ α + βm∗)B

Ctotm∗

= var(Ĝ)
(m∗)2β(A−B) +m∗[(c+ α)(A−B) + βB] + (c+ α)B

A(c+ α + β)m∗

= var(Ĝ)
2(α + c)B +m∗[(c+ α)(A−B) + βB]

A(c+ α + β)m∗
, (16)

where in (16) we substituted (m∗)2 from Corollary 1. By rearranging the terms, we obtain

var(G̃) = var(Ĝ)

[
1− (m∗ − 2)(c+ α)B +m∗β(B − A)

A(c+ α + β)m∗

]
= var(Ĝ) [1− η] .

Since A−B,B, c, β, α are always positive, then η < 1 for all m∗ > 0. Moreover η > 0 if

m∗ >
2(α + c)B

(α + c)B + β(A−B)
.
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Figure 7: Efficiency of the probability estimator versus the dimension d. For each d the

experiment is reproduced 15 times. Values in logarithmic scale.

C Numerical study for small and large probabilities

The algorithm GanMC was originally developed to estimate probabilities in the form π(t)

for high dimensional problems where this probability does not decrease rapidly with the

dimension, as, for example, in the numerical study shown in Section 4. In this section

we study two limit cases where this assumption is challenged: first we consider very high

probability values for π(t), second we consider the very small probability case. For very

small probabilities, the anMC method with the default choices implemented in anMC might

not be the correct choice. In fact, if π(t) becomes too small then p = 1− π(t) is very close

to 1 and pq is very close to p. As suggested in Section 2.3, the residual term Rq becomes

increasingly hard to estimate with rejection sampling as pq becomes small. An alternative

sampler for truncated normal vectors might improve performance. This can be achieved in

the function ProbaMax of the package anMC by choosing a user defined truncated normal

sampler.

We construct two benchmark studies with the problem defined in Section 4.1 and by
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changing the threshold t to t = 7.5 for the high probability values and t = 3 for the small

values.

In Figure 7 we show an efficiency comparison for estimating π(t), with t = 3 and t = 7.5,

with the algorithms GanMC, GMC, GHK, MET and QRSVN, see Section 4.2 for details.

The threshold t = 7.5 leads to a high probability setup as the median estimate for

π(t) ranges between 0.99685, for d = 100, and 0.67436, for d = 7000. Figure 7a compares

the estimators’ efficiency. In this case the QRSVN is the most efficient algorithm in low

dimensions. The GMC and the GanMC algorithms however are the most efficient for all

dimensions higher than 2000. The GanMC algorithm is 3 times more efficient than the

MET for d = 3000 and 9 times more efficient than GHK for d = 5000. In this setup

the computational cost of the rejection sampler in R̂q

anMC
is not much higher than the

conditional sampler. In fact, the acceptance probability of the rejection sampler is always

higher than 0.6. In most replications this leads to a choice of m∗ very small or even equal

to 1. Thus GanMC is slower than GMC because of Part 1 in Algorithm 1 while achieving

the same variance. This is the main reason why the GMC algorithm proves to be more

efficient in dimensions 2000, 3000, 5000, 6000, in fact for d = 5000 GMC is 3.6 times more

efficient than GanMC and for d = 6000 the ratio is 1.9. Computations for this experiment

were carried on the cluster of the University of Bern on machines with Intel Xeon CPU

2.40GHz and 16 GB RAM.

For both the case t = 7.5 and t = 5 the probability π(t) does not qualify as small.

Figure 7b shows an efficiency comparison for t = 3, where the value of π(t) is equal to

9.02×10−3 for d = 100, decreases to 1.33×10−13 for d = 2000 and becomes too small to be

estimated reliably for larger dimensions. The GHK method while performing well in low

dimensions is not able to estimate reliably the probability for d = 1000 or higher. Notice

that the GanMC method with the default rejection sampler for the residual part does not

work when d > 500 because the acceptance probability is too low. If the rejection sampler

is replaced by the Hamiltonian Monte Carlo method for truncated normal vectors described

in Pakman and Paninski (2014) and implemented in the R package tmg, then the GanMC

method performs better than GHK and MET for dimensions lower that 2000, however it is

still 3 times less efficient than MET for d = 2000. Higher dimensional comparison were not
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possible as MET and GHK method required more memory than allowed. Computations

for the experiment t = 3 were carried out on the Idiap Research Institute computing grid,

on machines with Intel Xeon E312xx (Sandy Bridge) CPU 3.00GHz and 8 GB RAM.
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