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1 Introduction

Explaining the matter-antimatter asymmetry of the Universe through experimentally ver-

ifiable laws of nature remains one of the most important open issues for particle physics

and cosmology. The scenario of baryogenesis through GeV-scale sterile neutrino oscilla-

tions has established itself as a nice framework in which concrete progress can be made on

all aspects of this problem. The original idea was put forward in ref. [1], and a significant

reformulation, constituting the current understanding of various parametric dependences,

was provided by ref. [2]. Representative examples of recent refinements can be found in

refs. [3–18]. Among these, the present investigation can most easily be contrasted with

ref. [12], whose benchmark point we adopt as a central test case for our numerical solution.

The present paper is a follow-up to ref. [19], in which rates and rate equations were

derived for the behaviour of baryon and lepton asymmetries and the sterile neutrino density
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matrix at complete leading order in Standard Model couplings. The derivation generalized

and built up on techniques developed in several previous works [20–26]. In particular

it required a resummation of infrared sensitive 1 + n ↔ 2 + n scatterings as well as a

computation of all 2 ↔ 2 contributions to sterile neutrino production rates and chemical

and kinetic equilibration coefficients. These coefficients display a non-trivial momentum

dependence, which in combination with the general structure of the rate equations leads to

non-trivial momentum dependences of different components of the density matrix as well.

The parameter space of the (type-I seesaw) model in question has been nicely de-

lineated in ref. [6]. In a so-called “scenario I”, two sterile neutrinos are responsible for

generating active neutrino mass differences, the observed baryon asymmetry, and a large

lepton asymmetry. A third sterile neutrino constitutes keV scale dark matter, whose pro-

duction is resonantly boosted by the above-mentioned large lepton asymmetry. In a broader

“scenario II”, the production of a large lepton asymmetry is not considered, but the fo-

cus is otherwise on the same two-flavour problem for active neutrino mass differences and

baryon asymmetry. In the parametrically most relaxed “scenario III”, three flavours of

sterile neutrinos participate in the production of active neutrino mass differences and the

baryon asymmetry. In a technical sense, our study corresponds to scenario II, which is

minimal in the dimension of its parameter space. However, the same methods would

also permit to address the more restrictive scenario I if the solutions for the lepton asym-

metries were followed deep into the Higgs phase, and the more relaxed scenario III if a

larger-dimensional density matrix were considered. We postpone these numerically more

demanding investigations into future.

The structure of this paper is as follows. The basic equations from ref. [19], transcribed

into an expanding cosmological background, are reviewed in 2. The most important terms,

helpful for analytic understanding and numerical estimates, are identified in section 3. The

main numerical challenge of the problem, namely that both “fast” and “slow” processes

play a role, is tackled in section 4. Numerical solutions are presented in section 5, and we

conclude in section 6. Appendix A reviews the definitions and some relevant properties

of the rate coefficients Q,R, S from ref. [19], appendix B explains our parametrization of

neutrino Yukawa couplings, and appendix C summarizes our treatment of the so-called

sphaleron rate.

2 Review of basic equations

We start by rewriting and completing the set of rate equations derived in ref. [19], tran-

scribing them from a flat to an expanding background. The expansion is characterized by a

Hubble rate H =
√

8πe/(
√

3mPl), where e is the energy density and mPl = 1.22×1019 GeV

is the Planck mass. The entropy density s and the speed of sound squared c2
s = ∂p/∂e also

appear, where p is the pressure. Yield parameters are defined as

Yi ≡
ni
s
, (2.1)

where the ni stand for various particle number asymmetries (“particles minus antiparti-

cles”). The coefficient functions A,B, . . . introduced in ref. [19] are rescaled as

Â ≡ A

3c2
sH

, etc . (2.2)
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Denoting furthermore

Y ′ ≡ dY

dx
, x ≡ ln

(
Tmax

T

)
, kT ≡ k

{
s(T )

s(Tmin)

}1/3

, (2.3)

where Tmax is a maximal temperature, Tmin is a minimal temperature, kT is a co-moving

momentum, and k is the momentum at T = Tmin, the evolution equation for lepton asym-

metry of generation a minus one third of baryon asymmetry reads

Y ′a−
Y ′B
3

=
4

s

∫
kT

Tr
{
−nF(kT )[1−nF(kT )] Â+

(a) +
[
ρ+−1nF(kT )

]
B̂+

(a) + ρ−B̂−(a)

}
, (2.4)

where

Â+
(a)IJ ≡ Re(hIah

∗
Ja) µ̄a Q̂

+
{IJ} , (2.5)

B̂+
(a)IJ ≡ −i Im(hIah

∗
Ja) Q̂

+
{IJ} + Re(hIah

∗
Ja)
[
µ̄a R̂

+
{IJ} + µ̄Y Ŝ

+
{IJ}

]
, (2.6)

B̂−(a)IJ ≡ Re(hIah
∗
Ja) Q̂

−
{IJ} − i Im(hIah

∗
Ja)
[
µ̄a R̂

−
{IJ} + µ̄Y Ŝ

−
{IJ}

]
. (2.7)

Here Q̂, R̂ and Ŝ are rate coefficients from ref. [19] that have been rescaled as in eq. (2.2);1

ρ± are helicity-symmetrized and antisymmetrized density matrices; hIa ≡ (hν)Ia are

Yukawas coupling a sterile neutrino of flavour I to an active lepton of generation a;

µ̄a ≡ µa/T and µ̄Y ≡ µY /T are rescaled lepton and hypercharge chemical potentials;2

and unexplained notation is identical to that in ref. [19]. A way to fix the values of hIa in

terms of observable quantities is reviewed in appendix B.

The evolution equations of the density matrices, integrated along co-moving mo-

menta, read

(ρ±)′(kT ) = i
[
Ĥ0, ρ

±]+ i
[
∆̂0, ρ

∓]+ 2nF(kT )[1− nF(kT )] Ĉ±

−D̂±
[
ρ+ − 1nF(kT )

]
−
[
ρ+ − 1nF(kT )

]
D̂±† − D̂∓ρ− − ρ−D̂∓† . (2.8)

The coefficients describing real processes (particle creations and annihilations) are

Ĉ+
IJ ≡ −i

∑
a Im(hIah

∗
Ja) µ̄a Q̂

+
{IJ} , (2.9)

Ĉ−IJ ≡
∑

a Re(hIah
∗
Ja) µ̄a Q̂

−
{IJ} , (2.10)

D̂+
IJ ≡

∑
a Re(hIah

∗
Ja) Q̂

+
IJ − i

∑
a Im(hIah

∗
Ja)
[
µ̄a R̂

+
IJ + µ̄Y Ŝ

+
IJ

]
, (2.11)

D̂−IJ ≡ −i
∑

a Im(hIah
∗
Ja) Q̂

−
IJ +

∑
a Re(hIah

∗
Ja)
[
µ̄a R̂

−
IJ + µ̄Y Ŝ

−
IJ

]
, (2.12)

whereas the unitary part of the evolution is determined by a Hermitean Hamiltonian with

Ĥ0IJ =
1

6kT c
2
sH

{
δIJ

[
M2

I −
∑

L
(M2

L + 1
4

∑
a |hLa|2T 2)∑

L

]
+

∑
a Re(hIah

∗
Ja)T

2

4

}
, (2.13)

∆̂0IJ = −
i
∑

a Im(hIah
∗
Ja)T

2

24kT c
2
sH

. (2.14)

We have here chosen Ĥ0 to be traceless (the trace part drops out in eq. (2.8)).

1The basic definitions of Q,R and S, some of their relevant properties, and an update on their numerical

evaluation, are summarized in appendix A.
2The latter represents, more properly, the expectation value of the hypercharge gauge potential.
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A further rate equation concerns the time evolution of the baryon asymmetry, and

requires a careful discussion. Let us denote the right-hand side of eq. (2.4) as a “force”,

Fa. If we were to write equations separately for Ya and YB, they would have the forms

Y ′a = Fa +
Fdiff

6
, (2.15)

Y ′B =
Fdiff

2
, (2.16)

where Fdiff is the anomalous baryon plus lepton number violating rate. Going over to the

usual variables Ya − YB/3 and YB+L ≡
∑

a Ya + YB, the rate equations become

Y ′a −
Y ′B
3

= Fa , (2.17)

Y ′B+L =
∑
a

Fa + Fdiff . (2.18)

At high temperatures, where Fdiff �
∑

a Fa, the first term is sometimes omitted from

eq. (2.18) (cf. e.g. ref. [19]). However, we want to solve the equations down to low tem-

peratures, where Fdiff �
∑

a Fa, and then this term must be kept. It guarantees that the

baryon yield stops evolving below the electroweak crossover:

Y ′B =
Y ′B+L −

∑
a[Y
′
a − Y ′B/3]

2
=

Fdiff

2
. (2.19)

Following the notation of ref. [19], the anomalous force term here reads (nG ≡ 3)

Fdiff = −
2n2

G Γdiff(T )

3sc2
sH

µ̃B+L

T
, (2.20)

where µ̃B+L is a chemical potential associated with the baryon plus lepton asymmetry,

and Γdiff is the Chern-Simons diffusion coefficient, whose T -dependence is reviewed in

appendix C.

The equations above depend on the chemical potentials µ̄a, µ̄Y and µ̃B+L. The first

two can be obtained by going through chemical potentials associated with lepton minus

baryon asymmetries, µ̃a, and through µ̃B+L, via [19]

µ̄a =
µ̃a + µ̃B+L

T
, (2.21)

µ̄Y =
8

33T

(∑
a

µ̃a +
3µ̃B+L

2

)
. (2.22)

Here, up to corrections of O(α
1/2
w , αs) [22, 27],

µ̃1

µ̃2

µ̃3

µ̃B+L

 =
1

144T 2


319 31 31 −23

31 319 31 −23

31 31 319 −23

−23 −23 −23 79




n1 −
nB
3

n2 −
nB
3

n3 −
nB
3

nB +
∑

a na

 . (2.23)

This closes the set of rate equations. (The matrix appearing in eq. (2.23) is modified in the

Higgs phase [28], but for our considerations at T >∼ 130 GeV where the Higgs expectation

value is parametrically v <∼ gT , this amounts to a higher-order effect.)

– 4 –



J
H
E
P
0
2
(
2
0
1
8
)
0
7
8

3 Identification of the most important terms

In order to solve the equations of section 2 numerically, it is convenient to go over into the

interaction picture. Moreover, in order to understand the structure of the solution, it is

helpful to identify which of the many terms on the right-hand sides of the equations are

the most important ones. The latter maneuver is not necessary for a numerical solution

at early times, however it facilitates finding a simplified solution valid at late times (cf.

section 4.3).

As a first step, focussing for concreteness on two generations, we rename the upper

diagonal component of Ĥ0, i.e. (Ĥ0)11, as

Ĥfast ≡
1

12kT c
2
sH

[
M2

1 −M2
2 +

∑
a(|h1a|2 − |h2a|2)T 2

4

]
. (3.1)

The essential term here is the vacuum mass difference M2
1−M2

2 . Let U be a rapidly varying

phase factor satisfying

U ′(x) = iĤfast(x)U(x) , (3.2)

and denote

ρ± ≡
(
U 0

0 U∗

)
ρ̃±
(
U∗ 0

0 U

)
, Â+

(a) ≡
(
U 0

0 U∗

)
Ã+

(a)

(
U∗ 0

0 U

)
, (3.3)

and similarly for the other coefficients. Substituting eq. (3.3) into eqs. (2.4) and (2.8),

the equations of motion retain their form but with Â replaced by Ã, etc, and Ĥ0 replaced

by H̃slow ≡ H̃0 − diag(Ĥfast,−Ĥfast). Simultaneously the off-diagonal components of the

coefficient matrices become time-dependent:

Ã =

(U∗ 0

0 U

)( Â11 Â12

Â21 Â22

)(U 0

0 U∗

)
=

( Â11 Â12(U∗)2

Â21U
2 Â22

)
. (3.4)

Apart from depending on time, the off-diagonal components play another important

role: they contain the complex phases responsible for CP violation. Therefore, they act as

sources for lepton asymmetry. This suggests a way to simplify the rate equations. Indeed

we can define diagonal and off-diagonal components not only for the coefficients, but also

for the density matrix. In particular, the rate equation for the lepton asymmetry, eq. (2.4),

obtains a form in which the contributions from the diagonal and off-diagonal components

of the density matrix are nicely separated (we denote nF ≡ nF(kT )):

Y ′a −
Y ′B
3

=
4

s

∫
kT

{∑
I

|hIa|2
[
Q̂−II ρ̃

−
II − µ̄a Q̂+

II nF(1− nF)−
(
µ̄a R̂

+
II + µ̄Y Ŝ

+
II

)(
nF − ρ̃+

II

)]
+2 Re(h1ah

∗
2a) Q̂

−
{12}Re

(
U2ρ̃−12

)
− 2 Im(h1ah

∗
2a) Q̂

+
{12} Im

(
U2ρ̃+

12

) }
. (3.5)

Here the coefficients have been evaluated up to leading order in small chemical potentials.

The terms proportional to chemical potentials are washout terms, the others are source

terms. At early times, the solution is dominated by the source terms on the second row.
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Consider then the source terms for the density matrix. The key point is that the

helicity asymmetry, parametrized by ρ̃−II , is odd in parity (P). Given that sterile neutrinos

are their own antiparticles, it is even in charge conjugation (C). Therefore it is odd in CP,

just like lepton asymmetries. Consequently ρ̃−II is as small as lepton asymmetries, and

in general much smaller than the other components of the density matrix. Moreover, the

off-diagonal components ρ̃±12 are much smaller than the diagonal components ρ̃+
II , because

both their initial values and their equilibrium values vanish.3 To summarize, we can assume

that the solution satisfies

|µ̄a| ∼ |ρ̃−II | � |ρ̃±12| � |ρ̃+
II | . (3.6)

In order to write the evolution equations in this limit, it is helpful to compactify the

notation somewhat, denoting

r12 ≡
∑
a

Re(h1ah
∗
2a) , i12 ≡

∑
a

Im(h1ah
∗
2a) , (3.7)

Γ̂+
I ≡ 2

∑
a

|hIa|2Q̂+
II , Γ̂+

mix ≡
Γ̂+

1 + Γ̂+
2

2
, Q̂0 ≡

T 2

24kT c
2
sH

. (3.8)

Now, for the diagonal helicity-symmetric ρ̃+
II , all terms on the right-hand side involving

µ̄a, ρ̃
−
II , or ρ̃±12, are small. Therefore the evolution equation reads

(ρ̃+
II)
′ = Γ̂+

I

(
nF − ρ̃+

II

)
(no sum over I) . (3.9)

In the numerics, other terms are trivially included, and in general they do affect the final

results on a few percent level, however eq. (3.9) is sufficient for a qualitative understanding.

As far as the rate equations for ρ̃±12 are concerned, we need to include washout con-

tributions from ρ̃±12 itself, as well as source terms from the large ρ̃+
II . The latter can

contribute both through a unitary oscillation part (parametrized by Q̂0) as well as through

a decay/production part (parametrized by Q̂±12):

(
ρ̃+

12

)′
= −Γ̂+

mix ρ̃
+
12 + r12(U∗)2

{
iQ̂0(ρ̃+

22 − ρ̃
+
11) + Q̂+

21(nF − ρ̃+
11) + Q̂+

12(nF − ρ̃+
22)
}
,

(3.10)(
ρ̃−12

)′
= −Γ̂+

mix ρ̃
−
12 + i12(U∗)2

{
Q̂0(ρ̃+

22 − ρ̃
+
11)− iQ̂−21(nF − ρ̃+

11)− iQ̂−12(nF − ρ̃+
22)
}
.

(3.11)

The other components follow from ρ̃+
21 = (ρ̃+

12)∗ and ρ̃−21 = (ρ̃−12)∗.

3For the benchmark point analyzed in section 5 we observe that the infrared (IR) modes of ρ̃−
12 can be as

large as their ρ̃+
II counterparts before oscillations become relevant. However, once oscillations have become

fast and we make use of the simplified equations below, ρ̃−
12 is very close to its vanishing equilibrium value.
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Finally, with the same notation, the diagonal helicity-antisymmetric ρ̃−II obeys

(ρ̃−11)′ = − Γ̂+
1 ρ̃
−
11 + 2

∑
a

|h1a|2
[
µ̄a Q̂

−
11 nF(1− nF) +

(
µ̄a R̂

−
11 + µ̄Y Ŝ

−
11

)(
nF − ρ̃+

11

)]
−2 r12

[
Q̂+

12 Re
(
U2ρ̃−12

)
− Q̂0 Im

(
U2ρ̃−12

)]
+2 i12

[
Q̂−12 Im

(
U2ρ̃+

12

)
+ Q̂0 Re

(
U2ρ̃+

12

)]
, (3.12)

(ρ̃−22)′ = −Γ̂+
2 ρ̃
−
22 + 2

∑
a

|h2a|2
[
µ̄a Q̂

−
22 nF(1− nF) +

(
µ̄a R̂

−
22 + µ̄Y Ŝ

−
22

)(
nF − ρ̃+

22

)]
−2 r12

[
Q̂+

21 Re
(
U2ρ̃−12

)
+ Q̂0 Im

(
U2ρ̃−12

)]
+2 i12

[
Q̂−21 Im

(
U2ρ̃+

12

)
− Q̂0 Re

(
U2ρ̃+

12

)]
. (3.13)

More terms are needed than before because there are many effects of similar (small) mag-

nitude. In fact, there is a substantial cancellation in the two terms proportional to Q̂0,

which has to be properly tracked in the numerical solution.

4 Treatment of fast and slow evolutions

4.1 Outline

There is a specific challenge with the solution of the rate equations of sections 2 and 3,

namely that certain modes evolve much faster than others. Normally, fast evolutions should

be “integrated out”, so that in the actual dynamics only slow modes appear. However, a fast

rate can be important if it leads to a new effect, absent from the purely slow evolution. This

is the case with sterile neutrino oscillations, leading to CP violation, and with anomalous

baryon plus lepton number violation, converting a part of the total lepton asymmetry into

a baryon asymmetry.

More precisely, both of these rates cross the Hubble rate during the period under

consideration [2], and therefore play a crucial role. At very high temperatures, the sterile

neutrino oscillation rate is much smaller than the Hubble rate. Then there is no time for CP

violation to take place, and no lepton asymmetries get generated. Around a certain tem-

perature, referred to as the oscillation temperature Tosc (numerically Tosc ∼ 104 . . . 105 GeV

for the benchmarks considered here), the oscillation rate is similar to the Hubble rate, and

individual lepton asymmetries get generated. Later on the oscillation rate is much faster

than the Hubble rate: fast oscillations can be averaged over, and the evolution becomes

“decoherent”.

In contrast, the baryon plus lepton number violation rate starts by being much faster

than the Hubble rate. Later on it rapidly switches off, at a temperature referred to as

the sphaleron temperature Tsph (numerically Tsph ∼ 130 GeV). For T � Tsph, this rate is

exponentially small, and baryon number becomes a conserved quantity.

In the remainder of this section we show how the fast modes, whose direct numerical

integration is challenging, can be handled. The basic idea for their treatment is that we

solve their equations of motion within a “static” background of the slow modes, which
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appear effectively as parameters in the solution. This solution is then inserted into the

equation of motion of the slow modes. Thereby the rate equations of the slow modes get

modified through “virtual” fast corrections. This is similar in spirit to the usual effective

theory approach.

4.2 Anomalous baryon number violation

Consider first the anomalous baryon number violation rate, discussed in eqs. (2.15)–(2.20).

Let us define Y eq
B+L as the value of YB+L at which µ̃B+L from eq. (2.23), and consequently

Fdiff from eq. (2.20), vanishes [29]:

Y eq
B+L ≡

23

79

∑
a

(
Ya −

YB
3

)
. (4.1)

Then the evolution equation for YB+L (cf. eq. (2.18)) can be rewritten as

Y ′B+L =
∑
a

Fa − γ (YB+L − Y
eq
B+L) , γ ≡

79n2
GΓdiff

216c2
sHT

3
. (4.2)

Assuming that
∑

a Fa, Y
eq
B+L and γ vary slowly, the fast evolution determined by γ can be

integrated exactly in a short time interval x− x0 � x0, resulting in

YB+L(x) = Y eq
B+L +

∑
a Fa
γ

+

[
YB+L(x0)− Y eq

B+L −
∑

a Fa
γ

]
e−γ (x−x0) . (4.3)

This equation applies both for γ (x − x0) � 1 and γ (x − x0) � 1. The resulting value of

YB+L affects the evolution of the slow modes through eqs. (2.21)–(2.23).4

4.3 Fast sterile neutrino oscillations

The second fast term originates from sterile neutrino oscillations, described by Ĥfast, cf.

eq. (3.1). For our benchmark parameter values, Ĥfast ∼ 108 for k ∼ 3T at T ∼ Tsph, and

tracking the corresponding oscillations on par with the slow evolution poses a challenge.

Let us, however, look at the fast evolution on its own, in a given background of the

slow modes. Consider the form of U from eq. (3.2), viz.

U(x) = exp

{
i

∫ x

x0

dx′ Ĥfast(x
′)

}
U(x0) . (4.4)

This is not integrable because of the non-trivial x-dependence of Ĥfast. Suppose, however,

that we integrate only over a short period of time (i.e. small interval of x, so that (x −
x0)∂xĤfast � Ĥfast). Then we can expand Ĥfast in slow variations, and to leading order

use a constant Ĥfast,

U(x) ≈ eiĤfast
(x−x0) U(x0) . (4.5)

With this form, the fast oscillatory dynamics of eqs. (3.10)–(3.13) can be integrated.

4As an alternative recipe, leading in practice to indistinguishable results, we may equate YB+L with

eq. (4.1) down to T ∼ 140 GeV, and solve eq. (2.18) exactly at lower temperatures. We also note that upon

completion of our work, a paper appeared discussing other approaches to a treatment of the sphaleron

rate [17].
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Concretely, denoting

F+ ≡ r12

{
iQ̂0(ρ̃+

22 − ρ̃
+
11) + Q̂+

21(nF − ρ̃+
11) + Q̂+

12(nF − ρ̃+
22)
}
, (4.6)

F− ≡ −i× i12

{
iQ̂0(ρ̃+

22 − ρ̃
+
11) + Q̂−21(nF − ρ̃+

11) + Q̂−12(nF − ρ̃+
22)
}
, (4.7)

the solution for ρ̃±12 from eqs. (3.10) and (3.11), multiplied by U2 as is needed in eqs. (3.5),

(3.12) and (3.13), reads

U2ρ̃±12(x) ≈ F± × e(2iĤ
fast
−Γ̂+

mix
)(x−x0) − 1

2iĤfast − Γ̂+
mix

+ e(2iĤ
fast
−Γ̂+

mix
)(x−x0) U2

0 ρ̃
±
12(x0) , (4.8)

where U2
0 ≡ U2(x0). Let now 〈. . .〉 denote an average of the solution over one oscillation

period centered around x = x̄. Then, to leading order in 1/Ĥfast,

〈U2ρ̃±12〉 =
1

2Ĥfast

[
iF± − iΓ+

mixe
(2iĤ

fast
−Γ̂+

mix
)(x̄−x0) U2

0 ρ̃
±
12(x0)

]
+O

(
1

Ĥ2
fast

)
. (4.9)

The constant part iF±/(2Ĥfast) emerges because the phase factor (U∗)2 in eqs. (3.10)

and (3.11) is compensated for by U2 in eqs. (3.5), (3.12) and (3.13). This yields a source

term for lepton asymmetries as we now show.

In the evolution equation for the lepton asymmetries, eq. (3.5), the integration over

the spatial momenta eliminates the second term from eq. (4.9),5 up to corrections of order

1/Ĥ2
fast. Therefore we can replace

Re
(
U2ρ̃−12

)
−→ − ImF−

2Ĥfast

, Im
(
U2ρ̃+

12

)
−→ ReF+

2Ĥfast

. (4.10)

Inserting F± from eqs. (4.6) and (4.7) yields

Y ′a −
Y ′B
3
≈ 4

s

∫
kT

{∑
I

|hIa|2
[
Q̂−II ρ̃

−
II − µ̄a Q̂+

II nF(1− nF)−
(
µ̄a R̂

+
II + µ̄Y Ŝ

+
II

)(
nF − ρ̃+

II

)]
+

Re(h1ah
∗
2a) i12 Q̂

−
{12}Q̂

−
21 − Im(h1ah

∗
2a) r12 Q̂

+
{12}Q̂

+
21

Ĥfast

(
nF − ρ̃+

11

)
+

Re(h1ah
∗
2a) i12 Q̂

−
{12}Q̂

−
12 − Im(h1ah

∗
2a) r12 Q̂

+
{12}Q̂

+
12

Ĥfast

(
nF − ρ̃+

22

)}
. (4.11)

In this equation all terms on the right-hand side evolve slowly, i.e. without U2 or (U∗)2.

We note in passing that if we sum over a, and subsequently undo the helicity sym-

metrization/antisymmetrization of Q̂± (cf. eq. (A.3)), then the numerator on the second

row of eq. (4.11) becomes

r12i12

[
Q̂−{12}Q̂

−
21 − Q̂

+
{12}Q̂

+
21

]
= −r12i12

2

[
Q̂(+){12}Q̂(−)21 + Q̂(+)21Q̂(−){12}

]
, (4.12)

5Note that Ĥfast varies rapidly with kT , so that the integrand is oscillatory.
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and similarly for the third row. This is suppressed by the helicity-conserving coefficients

Q̂(−) ∼ M1M2/(g
2T 2). Nevertheless a total lepton asymmetry is generated even in the

massless limit, because individual lepton asymmetries are generated through the source

terms in eq. (4.11), and the washout terms (proportional to µ̄a in eq. (4.11)) depend on a.

“Decoherent” evolution equations, such as eq. (4.11), can also be obtained for the

density matrix. If we carry out an average like in eq. (4.9) but for ρ̃±12, a simple exercise

shows that

〈ρ̃±12〉 = e−Γ̂+

mix
(x̄−x0)

[
ρ̃±12(x0)− i (U∗0 )2F±

2Ĥfast

]
+O

(
1

Ĥ2
fast

)
. (4.13)

Therefore the average value of ρ̃±12 evolves slowly towards equilibrium,

〈ρ̃±12〉
′ ≈ −Γ̂+

mix〈ρ̃
±
12〉 , (4.14)

where 〈. . .〉′ ≡ ∂x̄〈. . .〉.
Consider finally the source terms for ρ̃−II , from the second rows of eqs. (3.12) and (3.13).

Given that in the end we only need the integrals over momenta of these components, the

oscillatory terms from eq. (4.9) lead to corrections suppressed by 1/Ĥ2
fast and can again be

omitted. Inserting the non-oscillatory parts from eq. (4.9) yields

〈ρ̃−11〉
′ ≈ −Γ̂+

1 〈ρ̃
−
11〉 + 2

∑
a

|h1a|2
[
µ̄a Q̂

−
11 nF(1− nF) +

(
µ̄a R̂

−
11 + µ̄Y Ŝ

−
11

)(
nF − ρ̃+

11

)]
+
r12 i12

Ĥfast

(
Q̂+

21Q̂
−
12 − Q̂

+
12Q̂

−
21

)(
nF − ρ̃+

11

)
, (4.15)

〈ρ̃−22〉
′ ≈ −Γ̂+

2 〈ρ̃
−
22〉 + 2

∑
a

|h2a|2
[
µ̄a Q̂

−
22 nF(1− nF) +

(
µ̄a R̂

−
22 + µ̄Y Ŝ

−
22

)(
nF − ρ̃+

22

)]
+
r12 i12

Ĥfast

(
Q̂+

12Q̂
−
21 − Q̂

+
21Q̂

−
12

)(
nF − ρ̃+

22

)
. (4.16)

Making use of the definitions of Q̂± from eq. (A.3) shows that

Q̂+
21Q̂

−
12 − Q̂

+
12Q̂

−
21 =

1

2

[
Q̂(+)12Q̂(−)21 − Q̂(+)21Q̂(−)12

]
. (4.17)

This structure is proportional to the helicity-conserving coefficients Q̂(−) and therefore sup-

pressed by M1M2/(g
2T 2) [19]. In addition, eq. (4.17) vanishes if the dependence on flavour

indices is symmetric; this is violated only by soft corrections of order (M2
1−M2

2 )/(g2T 2) [19].

In total, we thus find a suppression ∼M1M2(M2
1 −M2

2 )/(g4T 4Ĥfast) in the source terms.

Obviously, the method presented above can only be used for Ĥfast � 1. Empirically, we

find that it works well if Ĥfast
>∼ 103. Note that Ĥfast depends strongly on kT , cf. eq. (3.1),

so smaller values of kT decohere earlier than large values. Therefore Y ′a − Y ′B/3 should in

general get a contribution both from a decoherent small-kT domain according to (4.11) and

from a coherent large-kT domain according to eq. (3.5). We have verified that after the

implementation of this setup, our results are independent of the precise value of Ĥfast at

which we switch from the coherent to the decoherent evolution.

– 10 –



J
H
E
P
0
2
(
2
0
1
8
)
0
7
8

5 Numerical examples

5.1 Outline

For the numerical solution, we start from initial conditions at which both the sterile neu-

trino density matrix and all lepton asymmetries vanish, at some temperature Tmax. For

theoretical consistency, this temperature has to be so high that sterile neutrino oscillations

have had no time to take place [2]. It can therefore be determined from eq. (3.1), by

requiring Ĥfast � 1. The solution depends on the co-moving momentum kT . By writing

kT = Tosc
≡ κTosc, evaluating thermodynamic functions at leading order in Standard Model

couplings, and omitting the thermal mass corrections from eq. (3.1), we get

Tosc ∼ 7× 104 GeV

(
M

GeV

|∆M |
MeV

1

κ

)1/3

, (5.1)

where M ≡ (M1 +M2)/2 and ∆M ≡M2 −M1. We choose in practice Tmax = 107 GeV as

the initial temperature, and keep track of momenta κ>∼ 0.01.6

An important aspect of the problem concerns the dependence of the solution on ∆M .

With increasing |∆M |, the value of Ĥfast at the low temperature Tsph increases, and there-

fore the efficiency of baryon asymmetry generation, which is suppressed by 1/Ĥfast at low

T (cf. section 4.3), decreases. At the same time Tosc increases according to eq. (5.1), so

that there is a longer period between Tosc and Tsph for the process to take place [2].

Another important dependence originates from the momentum kT . According to

eq. (3.1), the oscillations start earlier for the smallest values of kT , and at a given temper-

ature are fastest for the small-kT modes. At the same time, the damping coefficients Q̂, R̂,

Ŝ grow rapidly with decreasing kT (cf. appendix A). This implies that the small-kT modes

both oscillate and equilibrate much faster than the large-kT modes.

5.2 Parameter choices

As a main benchmark point we consider a case marked with ? in figure 4 of ref. [12],

which lies in the middle of the viable domain of “scenario II” (cf. section 1) according

to the parameter scans performed in ref. [12]. In the notation of appendix B, the input

parameters read

M1 = 0.7688 GeV , M2 = 0.7776 GeV , “inverted hierarchy” , (5.2)

z = 2.444− i3.285 , φ1 = − 1.857 , δ = − 2.199 . (5.3)

Here δ is a Dirac-like CP-violating phase, and Im z and φ1 are other complex phases

which are not observable in active neutrino oscillation experiments but enter when sterile

neutrinos are considered. In order to consider the same physical situation as in ref. [12],

we have inverted the signs of the complex phases, for reasons explained below eq. (B.9).

The corresponding Yukawa couplings are

hIa = 10−7 ×

(
3.522 + i5.341 0.675 + i1.090 0.682− i1.210

−5.367 + i3.543 −1.104 + i0.670 1.227 + i0.696

)
. (5.4)

6As elaborated upon in section 6, even very small momenta κ<∼ 0.1 have a surprisingly large influence.
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Here, to a good approximation, h2a ≈ ih1a. This leads to cancellations in neutrino mass

formulae whereby active neutrino mass differences can be kept at their physical values

despite largish neutrino Yukawa couplings.

In the domain MI � gT that we are interested in, and restricting to temperatures T >

100 GeV so that processes relevant for the “symmetric phase” dominate [26], the coefficients

Q̂, R̂, Ŝ only display a powerlike mass dependence: helicity-flipping coefficients are mass-

independent, whereas helicity-conserving coefficients are quadratic in masses. We have

evaluated the coefficients according to ref. [19], inserting M = 1 GeV as an IR regulator

where needed. As an example, for T = 4 × 104 GeV (cf. figure 3) and kT = 3T , the

coefficients read

Q(+)IJ = 5.29× 10−3 T , Q(−)IJ = 1.16× 10−3 MIMJ

T
, (5.5)

R(+)IJ = − 1.76× 10−3 T , R(−)IJ = − 0.37× 10−3 MIMJ

T
, (5.6)

S(+)IJ = 0.87× 10−3 T , S(−)IJ = 0.04× 10−3 MIMJ

T
. (5.7)

The equation of state is taken from ref. [30] (cf. also ref. [31]).7 The evolution equations

are integrated from Tmax = 107 GeV down to Tmin = 100 GeV, where the Chern-Simons

diffusion rate has switched off and no more baryon asymmetry is being produced.

5.3 Results

In figure 1, the separate lepton minus baryon asymmetries Ya − YB/3 are shown for the

benchmark point of eqs. (5.2), (5.3), together with the corresponding full baryon and

lepton asymmetries. In figure 2, the integrals over components of the density matrix are

illustrated, normalised to the entropy density. In figure 3, the momentum dependence

of the density matrix is shown at T ≈ 4 × 104 GeV, where the lepton asymmetries are

being most efficiently produced (cf. figure 1). All shapes differ significantly from the Fermi

distribution, with in particular the IR modes of ρ̃+
II having already reached equilibrium.8

Remarkably, the total baryon asymmetry that we obtain with the parameter values

of eqs. (5.2), (5.3) is YB ≈ 1.3 × 10−10, i.e. ∼ 50% larger than the value 0.86 × 10−10 in

ref. [12]. In other words, the parameter scans carried out in ref. [12] could be somewhat

conservative in their predictions for the viable domain.

It can be noted from figure 1(right) and figure 2(right) that YL-B ≡ −YB-L and 2
∑

I
Y −II

cancel against each other to a good approximation at T >∼ 120 GeV. This is because in the

7The non-trivial feature of this equation of state is that the heat capacity has a noticeable peak at

around the electroweak crossover temperature T ≈ 160 GeV. As a result, the Universe spends more time in

this temperature range, diluting extra energy density into expansion. Therefore there is relatively speaking

more time for various production and equilibration processes to take place at around T ≈ 160 GeV. We

note that in principle the effect of sterile neutrinos should also be included in the equation of state, however

this results in corrections on the percent level and is furthermore very difficult to implement correctly, as

it requires solving the Einstein equations simultaneously with the other ones.
8A similar qualitative finding was reported in ref. [4], however the rate equations and coefficients were less

complete than the current ones, for instance the rate coefficients did not include the dominant contribution

from gauge scatterings. We elaborate on the significance of the IR modes in section 6.
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Figure 1. Left: lepton minus baryon asymmetries Ya − YB/3 as a function of T/GeV for the

parameters in eqs. (5.2), (5.3). Right: the total baryon minus lepton asymmetry YB-L ≡ −
∑

a(Ya−
YB/3), the total baryon plus lepton asymmetry YB+L, the total baryon asymmetry YB, and the total

lepton asymmetry YL. The baryon yield can be compared with its observed value, YB = nB/s =

0.87(1)× 10−10 [32].
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Figure 2. Averaged values of the density matrices, Y ±
IJ ≡ 1

s

∫
k
T
ρ̃±
IJ , as a function of T/GeV.

Left: the helicity-symmetric diagonal components. Middle: the helicity-antisymmetric non-diagonal

components. Right: the remaining components, which are of similar magnitude as the baryon

asymmetry.

symmetric phase YL-B + 2
∑

I
Y −II , sometimes called a fermion number, remains zero up to

corrections suppressed by M1M2/(g
2T 2) [19]. At lower temperatures the coefficient Q(−)

kicks in (cf. appendix A and ref. [13]) and fermion number violation becomes rapidly visible.

Finally, in figure 4, we illustrate the dependence of the final baryon asymmetry on

the sterile neutrino mass splitting and on the CP-phase δ. The parameters have been

fixed according to eqs. (5.2), (5.3), except that we now consider the less favourable normal

hierarchy. It is seen how the value of δ is important for obtaining the correct sign of the

baryon asymmetry, and how the magnitude of the baryon asymmetry is strongly affected

by ∆M .
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Figure 3. The shapes of various components of the density matrix at T = 4× 104 GeV, where the

production of lepton asymmetries is fastest according to figure 1. The shapes have been normalized

to the Fermi distribution. The infrared modes (k <∼ 0.1T ) of the large components ρ̃+
II have already

reached their equilibrium values.
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Figure 4. The dependence of the final baryon asymmetry on the sterile neutrino mass splitting

∆M and on the CP violating phase δ. The parameters are fixed according to eqs. (5.2), (5.3), with

M ≡ (M1 + M2)/2 and ∆M ≡ M2 −M1, except that we now consider normal hierarchy (NH),

choose five different values of ∆M , and let δ vary freely. The horizontal line represents the observed

value YB = nB/s = 0.87(1)× 10−10 [32].

6 Conclusions

The purpose of this study has been to numerically integrate the evolution equations derived

in ref. [19], in order to determine how the sterile neutrino density matrix and the lepton

and baryon asymmetries evolved in the Early Universe. We find that the momentum

dependence of the density matrix plays an important role in the solution, with the IR

modes oscillating and equilibrating much faster than the UV modes. Therefore the shape

of the density matrix differs substantially from the Fermi distribution at the time when
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leptogenesis is most efficient, cf. figure 3. This effect was not included in an extensive

recent parameter scan which otherwise employed similar rates and rate equations as our

study [12].9

As a drastic illustration for the importance of the momentum dependence, we find that

even very soft modes 0.01T < k < 0.1T can give a surprisingly large ∼ 5% contribution

to the final baryon asymmetry. For our benchmark point the soft modes add up to the

contribution from the hard modes. Understanding more precisely the physics of the IR

modes may merit further study.10

As another observation from tracking the momentum dependence, we note that even

though single-kT modes experience oscillations (cf. figure 3 for a snapshot of spectra), the

lepton asymmetries, which contain an integral over all momenta, oscillate much less (cf.

figure 1), because different momentum modes add up incoherently.

As a benchmark point, taken from ref. [12], we focussed on two sterile neutrinos which

are somewhat but not extremely degenerate in mass, cf. eqs. (5.2), (5.3). Then the produc-

tion of lepton asymmetries is fastest at Tosc ∼ 4 × 104 GeV, much above the temperature

Tsph ∼ 130 GeV at which sphaleron processes cease to be active. This parameter choice

represents a typical case for the so-called “scenario II” outlined in section 1. For this

benchmark point we find a baryon asymmetry ∼ 50% larger than the observed value (i.e.

the result of ref. [12]). However it would be easy to re-adjust the baryon asymmetry to the

observed value, by modestly changing the sterile neutrino mass splitting or CP-violating

phases, cf. figure 4.

In the more restrictive “scenario I”, which aims to generate not only a baryon asymme-

try but subsequently also much larger lepton asymmetries, it is natural to choose param-

eters leading to Tosc ∼ Tsph. This case has recently been studied in refs. [13, 17], and we

hope to apply our methods to that situation in the future. Another case meriting further

scrutiny is the so-called symmetry protected scenario, ∆M/M → 0 and |Imz| → ∞ in the

language of eq. (5.3), which leads to large neutrino Yukawa couplings and therefore to the

best prospects for experimentally detecting sterile neutrinos (cf. ref. [18] for an overview).

We end by remarking that our main results, including the rate

coefficients Q,R, S used, are publicly available from the web site

http://www.laine.itp.unibe.ch/leptogenesis/. We have also tabulated final

results for many more benchmark points than discussed in this presentation. Examples

of additional points are those included in the parameter scan illustrated in figure 4,

showing the dependence of the results on the sterile neutrino mass splitting and on the CP

violating parameter measurable in active neutrino oscillation experiments. We would be

happy to add further results on the web site, should readers provide us with their desired

input parameters in the format of eqs. (5.2), (5.3).

9Ref. [12] omitted helicity-conserving rates and terms proportional to the hypercharge chemical potential,

but for our benchmark point both of these have an effect only on the 1% level.
10For M,m2

φ/(4T ) � kT � T , where mφ is the thermal Higgs mass, the coefficient Q(+) grows as

∼ m2
φT/k

2
T , cf. eq. (A.7). Inserting into eq. (4.11), the contribution from small kT is ∼

∫
dkT /kT (nF− ρ̃+

II).

Therefore there is a logarithmic IR sensitivity, dynamically lifted if the small-kT part of ρ̃+
II has equilibrated.

The IR sensitivity is even stronger in the terms influenced by the helicity-conserving coefficients Q(−), cf.

eq. (A.8).
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A On the rate coefficients Q, R and S

The coefficients Q, R and S that parametrize the rate equations of section 2 (cf. eqs. (2.5)–

(2.7) and (2.9)–(2.12)) capture the processes relevant for sterile neutrino production, their

kinetic and chemical equilibration, as well as lepton number washout. They can be defined

by considering the Euclidean correlator

ΠE(K̃) ≡
∫
X
eiK̃·X

〈
(φ̃†`a)(X) (¯̀

aφ̃)(0)
〉
, K̃ = (kn − iµa,k) , (A.1)

where φ̃ = iσ2φ
∗ is a Higgs doublet, `a = (ν e)Ta is a left-handed lepton doublet of generation

a, and kn is a fermionic Matsubara frequency. The analytic continuation kn − iµa →
−i[k0 + i0+] gives the retarded correlator ΠR(K), whose imaginary part equals the spectral

function ρa(K). Taking matrix elements of ρa(K) with on-shell spinors leads to the desired

rate coefficients:

ūkτJ aL ρa(KJ) aR ukτI√
ωkI ω

k
J

≡ Q(τ)IJ + µ̄aR(τ)IJ + µ̄Y S(τ)IJ +O
(
µ̄2
)
, (A.2)

where KJ ≡ (ωkJ ,k) with ωkJ ≡
√
k2 +M2

J ; aL, aR are chiral projectors; and ukτI is an

on-shell spinor for sterile flavour I in the helicity state τ = ±. The lepton and hypercharge

chemical potentials have been scaled with the temperature, µ̄a ≡ µa/T and µ̄Y ≡ µY /T .

The specific combinations playing a role in the main body of the text are obtained by

symmetrizing or anti-symmetrizing the original coefficients with respect to helicity, and in

some cases by symmetrizing them with respect to flavour indices:

Q±IJ ≡
Q(+)IJ ±Q(−)IJ

2
, Q±{IJ} ≡

Q±IJ +Q±JI
2

. (A.3)

As an example, consider very high temperatures and Born level processes. As discussed

in ref. [23], one has to omit the lepton thermal mass m` from the Born computation

since it is not a mass in the usual sense but a modification of the dispersion relation at

large momenta. The dominant processes are Higgs decays and inverse decays [20], and we

may write

ρ1↔2
a (K) =

∫
p

π δ(εφ − k0 − p)
2p εφ

[
nB(εφ − µH) + nF(p+ µLa)

]
/P

=

∫ m2
φ

4k−
−k+

m2
φ

4k+
−k−

dp
nB(k0 + p− µH) + nF(p+ µLa)

16πk3

×
[
2p
(
k0 /K −M2γ0

)
+ (m2

φ −M2) k · γ
]
. (A.4)
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Here nB and nF are Bose and Fermi distributions, εφ ≡
√

(p + k)2 +m2
φ, µH ≡ µY /2,

µLa ≡ µa − µY /2, P ≡ (p,p) is the lepton momentum, and k± ≡ (k0 ± k)/2. It is

straightforward to carry out the integral over p, leading to logarithms and dilogarithms.

Taking matrix elements according to eq. (A.2) and expanding in chemical potentials

yields the coefficients Q, R and S. For transparent expressions, let us restrict to M � k.

Then, employing the functions

l1f(p) ≡ ln
(

1 + e−p/T
)
, l2f(p) ≡ Li2

(
−e−p/T

)
, (A.5)

l1b(p) ≡ ln
(

1− e−p/T
)
, l2b(p) ≡ Li2

(
e−p/T

)
, (A.6)

the coefficients read

Q1↔2
(+)IJ ≈

m2
φT

8πk2

[
l1f

(
m2
φ

4k

)
− l1b

(
k +

m2
φ

4k

)]
, (A.7)

Q1↔2
(−)IJ ≈

MIMJT
2

8πk3

[
l2b

(
k +

m2
φ

4k

)
− l2f

(
m2
φ

4k

)]
, (A.8)

R1↔2
(+)IJ ≈ −

m2
φT

8πk2
nF

(
m2
φ

4k

)
, (A.9)

R1↔2
(−)IJ ≈ −

MIMJT
2

8πk3
l1f

(
m2
φ

4k

)
, (A.10)

S1↔2
(+)IJ ≈

m2
φT

16πk2

[
nF

(
m2
φ

4k

)
+ nB

(
k +

m2
φ

4k

)]
, (A.11)

S1↔2
(−)IJ ≈

MIMJT
2

16πk3

[
l1f

(
m2
φ

4k

)
− l1b

(
k +

m2
φ

4k

)]
. (A.12)

We observe that the coefficients grow rapidly at small k but are then cut off at k ∼ m2
φ/(4T ).

At the same time, they overestimate the correct values at k >∼T , because they do not contain

the lepton thermal mass m` that restricts the phase space in that region.

In ref. [19], not only the 1↔ 2 processes but also 1+n↔ 2+n and 2↔ 2 contributions

to ρa(K) were included. However, in order to complete this task, use was made of the

“collinear” kinematic simplification m2
φ/T,M,m`,mφ � k. Given that we observe the

domain k <∼mφ to give a significant numerical contribution to lepton asymmetries, we need

to extrapolate the coefficients to that domain. In order not to grossly overestimate their

values, we replace the collinear 1 ↔ 2 contributions by eqs. (A.7)–(A.12) at small k for

mφ > m`. We furthermore apply an overall scaling factor to the small-k corrections, in

order not to inadvertently change the sign of the resulting coefficients in a region where

their determination is not trustworthy.

In the domain m` < mφ, i.e. close to the electroweak crossover, the small-k region

cannot be corrected as above. Particularly at 120 GeV <∼T <∼ 140 GeV, there is a lot of

structure but also some numerical uncertainty in the determination of Q(−), R(−) and

S(−). At the same time, “indirect” contributions, i.e. oscillation from active neutrinos,

become important at these temperatures. Adopting the notation and results of ref. [26],

we have included them as δQ(−) = Im ΠR|indirect/k, which indeed dominates over the direct
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contributions in the broken phase.11 A similar correction is expected for the chemical

potential dependence, parametrized in the symmetric phase by R(−), S(−), however this

would require a comprehensive re-organization of the framework, because in the broken

phase the dependence on chemical potentials is non-linear and because the gauge potential

A3
0 develops an expectation value in addition to the hypercharge gauge potential. We do not

dwell on these issues further here, apart from noting that we have checked that in practice

the broken phase values of R(−) and S(−) play very little role for our benchmark point.

Finally we remark that one of the 2 ↔ 2 contributions, namely scattering off

soft Higgs bosons, was also observed to give an IR-sensitive contribution in ref. [19].

Its eq. (3.34) needs to be refined at k <∼mφ, as the energy conservation constraint

δ(q0 − k +
√

(k− q)2 +m2
φ) can only be satisfied for k > mφ in the range 0 < q0 < k.

Concretely, we now evaluate eq. (3.34) of ref. [19] as12

∆S2↔2
(+) =

g2
1 + 3g2

2

(4π)34k2

∫ k−mφ

0
dq0

∫ k+
√

(k−q0)2−m2
φ

k−
√

(k−q0)2−m2
φ

dq
−T 2

(k − q0)2

[
k

2
− π2T 2

2k

]
θ(k −mφ)

=
(g2

1 + 3g2
2)T 2

4(4π)3k

(
π2T 2

k2
− 1

)[
ln

(√
k2−m2

φ+k

mφ

)
−

√
k2−m2

φ

k

]
θ(k −mφ) , (A.13)

rather than approximating the square brackets through ln(2k/mφ)− 1 for all k.

B Parametrization of neutrino Yukawa couplings

We provide here a self-contained exposition of the parametrization of neutrino Yukawa

couplings, in order to be clear about our sign and phase conventions.

B.1 General discussion

Let us consider the leptonic sector of a Lagrangian including right-handed neutrinos. In

order to be transparent about minus-signs, we employ Euclidean conventions here:

LE ≡ ¯̀
L /D`L + ν̄R /∂νR + ēR /DeR +

1

2

(
ν̄cRMνR + ν̄RM

†νcR
)

+φ†ēR he`L + ¯̀
L h
†
e eR φ+ φ̃†ν̄R hν`L + ¯̀

L h
†
ν νR φ̃ . (B.1)

Here `L ≡ (νL eL)T ; φ̃ ≡ iσ2φ
∗ is a Higgs doublet; νcR ≡ Cν̄TR denotes a charge-conjugated

spinor; and M , he and hν are complex matrices with generation indices.

Given that ν̄cRMνR = ν̄cRM
T νR, the mass matrix M is symmetric, MT = M . Through

the so-called Takagi factorization (a special case of singular value decomposition), it can be

written as M = V∆M V T , where V is unitary and ∆M is a diagonal matrix with real non-

negative entries. The matrices V and ∆2
M can be found by diagonalizing the Hermitean

matrix MM †. Subsequently V can be eliminated through a unitary rotation of νR. In the

11The small-k domain of the indirect contribution has been investigated in ref. [33].
12We take the opportunity to also correct a typographic error, namely a missing overall factor T/k from

eq. (3.34) of ref. [19]. This did not affect any numerical results presented in ref. [19].
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following we assume that this field redefinition has been carried out, and that therefore

M = diag(M1,M2,M3), where MI ≥ 0 are referred to as the Majorana masses.

The Yukawa matrix he can also be assumed to be real and diagonal. Indeed, a biunitary

transformation permits us to write it as he = W †R ∆he
WL, where WR,L are unitary matrices.

There is no unique choice for WR,L, but possibilities can be found by diagonalizing the

Hermitean matrices heh
†
e and h†ehe, respectively. In the following, we assume that `L has

subsequently been rotated as `L → W †L`L and eR as eR → W †ReR, so that he is diagonal,

with real positive entries proportional to charged lepton masses.

After the field redefinitions of νR and `L, the matrix hν is in general complex and non-

diagonal. There are three free phases in WL which can be used to remove redundancies.

Therefore, the total number of parameters introduced by N = 3 right-handed neutrinos is

18 (N from MI and 2N2 − N from the complex matrix hν with three unphysical phases

projected away). Of these, 5 are currently known (two active neutrino mass differences and

three mixing angles) and 2 are frequently considered accessible (absolute mass scale of active

neutrino masses and “Dirac-like” CP-violating phase in the active neutrino mixing matrix).

The remaining 11 can be chosen as the three 3 Majorana masses MI , 2 “Majorana-like”

phases in the active neutrino mixing matrix (see below), and 3 complex angles related to

the so-called R matrix of the Casas-Ibarra parametrization [34] (see below). Combinations

of these can possibly be constrained by 0νββ and B-factory-type experiments.

As a next step, let us go to the Higgs vacuum, setting φ̃ ' (v/
√

2, 0)T where v '
246 GeV. We denote

MD ≡
h†νv√

2
=

Y v√
2
, (B.2)

where Y corresponds to the notation of ref. [12]. Then, from eq. (B.1) and recalling the

transformation carried out with M , the mass terms in the neutrino sector read

δLE =
1

2

(
ν̄cRMνR + ν̄RMνcR

)
+ ν̄RM

†
D νL + ν̄LMDνR . (B.3)

Inserting −1 = CC and noting that νTRC = ν̄cR, we can write

ν̄LMDνR =
1

2

(
ν̄LMDνR − νTRMT

D ν̄
T
L

)
=

1

2

(
ν̄LMDνR + ν̄cRM

T
D ν

c
L

)
, (B.4)

and similarly ν̄RM
†
D νL = ν̄cLM

∗
D ν

c
R. Thereby

δLE =
1

2

(
ν̄cL ν̄R

)( 0 M∗D
M †D M

)
︸ ︷︷ ︸

≡Mν

(
νL
νcR

)
+

1

2

(
ν̄L ν̄

c
R

)( 0 MD

MT
D M

)(
νcL
νR

)
. (B.5)

Here Mν corresponds to the notation of ref. [35], representing a matrix multiply-

ing (νL ν
c
R)T .

The matrixMν is symmetric and can again be represented via the Takagi factorization:

Mν = U∗ diag(mν ,Mh)U † , (B.6)
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where mν and Mh are real matrices containing the active and sterile neutrino masses,

respectively. According to eq. (2.17) of ref. [35], in the seesaw limit we can write

U ≈

(
UPMNS i UPMNSm

1/2
ν R†M−1/2

iM−1/2Rm
1/2
ν 1

)
, (B.7)

where UPMNS is the Pontecorvo-Maki-Nakagawa-Sakata matrix, and R is orthogonal.

As the final step, UPMNS can be rotated away from active neutrino masses through νL →
UPMNSνL. It is then re-introduced into the non-diagonal parts of the weak interaction term,

LE ≈
(
ν̄LU

†
PMNS , ēL

)
/D

(
UPMNSνL

eL

)
+ ēR /DeR +

∑
a=e,µ,τ

maēaea +
1

2

(
ν̄cLmννL + ν̄Lmνν

c
L

)
,

(B.8)

where ma are the charged lepton masses. Because of the freedom of N phase rotations of

WL mentioned above, UPMNS has N2 −N = 6 free parameters (see below).

The relation in eq. (B.7) underlies the so-called Casas-Ibarra parametrization [34] and

its generalization beyond the seesaw limit [35]. Specifically, combining eqs. (B.5)–(B.7),

inspecting the upper right block, and expanding to leading order in 1/M , we obtain

M∗D = −iU∗PMNS

√
mν R

T
√
M , MD = iUPMNS

√
mν R

†√M . (B.9)

We note that eq. (2.5) of ref. [12] cites the left version for MD, so in comparisons with ref. [12]

we need to flip the signs of complex phases, if we want to study the same physical situation.

B.2 Parametrization of U
PMNS

We proceed to the parametrization of UPMNS, which fixes the neutrino Yukawa couplings

according to eqs. (B.2) and (B.9). As mentioned above, 6 real parameters are needed: 4

“Dirac-like” parameters like for the Cabibbo-Kobayashi-Maskawa matrix, and two addi-

tional parameters, which can be chosen as “Majorana-like” phases. Ref. [12] writes

UPMNS = VPMNS

 1 0 0

0 eiφ1 0

0 0 eiφ2

 , (B.10)

where VPMNS is the Dirac-like part. The Dirac-like part is conventionally expressed as

VPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23

 , (B.11)

where cij ≡ cos θij and sij ≡ sin θij . For the mass differences, we denote ∆m2
ij ≡ m2

i −m2
j .

Two cases are considered, normal hierarchy (NH) and inverted hierarchy (IH). According
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to ref. [36], the best-fit values are

(NH) : θ12 = 33.48◦+0.78
−0.75 , θ23 = 42.3◦+3.0

−1.6 , θ13 = 8.50◦+0.20
−0.21 , (B.12)

∆m2
21 = 7.50+0.19

−0.17 × 10−5eV2 , ∆m2
31 = 2.457+0.047

−0.047 × 10−3eV2 , (B.13)

(IH) : θ12 = 33.48◦+0.78
−0.75 , θ23 = 49.5◦+1.5

−2.2 , θ13 = 8.51◦+0.20
−0.21 , (B.14)

∆m2
21 = 7.50+0.19

−0.17 × 10−5eV2 , ∆m2
23 = 2.449+0.048

−0.047 × 10−3eV2 . (B.15)

B.3 Specialization to two sterile generations

After the general discussion above, we now focus on a special case. In the so-called νMSM

parameter corner (scenarios I and II in the language of section 1), one Majorana mass is very

small (∼ keV), and the corresponding Yukawa couplings are tiny, so that the contribution

from these Yukawas to active neutrino masses is vanishing. Following ref. [12], the small

Majorana mass is denoted by M3, and we set (hν)3a → 0.13 Consequently, the smallest of

the active neutrino masses necessarily vanishes. Therefore active neutrino masses are now

fixed:

(NH) : mν = diag
(

0,
√

∆m2
21,
√

∆m2
31

)
, (B.16)

(IH) : mν = diag
(√

∆m2
23 −∆m2

21,
√

∆m2
23, 0

)
. (B.17)

After the choice (hν)3a → 0, MD in eq. (B.9) is effectively a 3 × 2 matrix, whereas M

and R are effectively 2× 2 matrices. Concretely, we write

M =

(
M1 0

0 M2

)
, R =

(
cos z sin z

− sin z cos z

)
, z ∈ C . (B.18)

Eqs. (B.2) and (B.9) imply

hν = −i
√
M RP

√
mν U

†
PMNS

√
2

v
, (B.19)

where the projection operator is

PNH =

(
0 1 0

0 0 1

)
, PIH =

(
1 0 0

0 1 0

)
. (B.20)

Only the phase φ1 defined as in eq. (B.10), present with both of the mass structures

in eqs. (B.16) and (B.17), is assumed non-zero. In total there are 6 independent real

parameters: M1, M2, Re z, Im z, δ and φ1. Benchmark values are given in eqs. (5.2), (5.3).

13In the line of work reviewed in ref. [6], it is rather the Majorana generation I = 1 that is decoupled.
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C Parametrization of the Chern-Simons diffusion rate

For the Chern-Simons diffusion rate we employ a numerical parametrization based on clas-

sical lattice gauge theory simulations [37]. At low temperatures, the rate is approximated as

Γ
(T<Tc)
diff ' T 4 exp

(
−147.7 +

0.83T

GeV

)
. (C.1)

At high temperatures, Γ
(T>Tc)
diff ' 18α5

wT
4. The rate originates from the diffusive Langevin

dynamics of almost-static gauge fields [38], and we therefore employ a dimensionally re-

duced gauge coupling for numerical estimates,

αw ≡
g2
DR

4π
, g2

DR ≈ g2
w(µ̄)

{
1 +

g2
w(µ̄)

(4π)2

[
43

3
ln

(
µ̄e−γE

4πT

)
− 8 ln

(
µ̄e−γE

πT

)
+

2

3

]}
, (C.2)

where the MS coupling is g2
w(µ̄) ≈ 48π2/[19 ln(µ̄/ΛMS)], and we set µ̄ ' 2πT in practice.

The value of ΛMS is fixed by g2
w(mZ) = 0.425. The crossover from the high-temperature

to the low-temperature behaviour is rapid according to ref. [37], and we have approxi-

mated it as

Γdiff(T ) ≡ min
{

Γ
(T>Tc)
diff ,Γ

(T<Tc)
diff

}
. (C.3)
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