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Abstract

Background: The favorable decay properties of 43Sc and 44Sc for PET make them
promising candidates for future applications in nuclear medicine. An advantage 43Sc
(T1/2 = 3.89 h, Eβ+av = 476 keV [88%]) exhibits over 44Sc, however, is the absence of
co-emitted high energy γ-rays. While the production and application of 44Sc has
been comprehensively discussed, research concerning 43Sc is still in its infancy.
This study aimed at developing two different production routes for 43Sc, based on
proton irradiation of enriched 46Ti and 43Ca target material.

Results: 43Sc was produced via the 46Ti(p,α)43Sc and 43Ca(p,n)43Sc nuclear reactions,
yielding activities of up to 225 MBq and 480 MBq, respectively. 43Sc was chemically
separated from enriched metallic 46Ti (97.0%) and 43CaCO3 (57.9%) targets, using
extraction chromatography. In both cases, ~90% of the final activity was eluted in a
small volume of 700 μL, thereby, making it suitable for direct radiolabeling. The
prepared products were of high radionuclidic purity, i.e. 98.2% 43Sc were achieved
from the irradiation of 46Ti, whereas the product isolated from irradiated 43Ca
consisted of 66.2% 43Sc and 33.3% 44Sc. A PET phantom study performed with 43Sc,
via both nuclear reactions, revealed slightly improved resolution over 44Sc. In order
to assess the chemical purity of the separated 43Sc, radiolabeling experiments were
performed with DOTANOC, attaining specific activities of 5–8 MBq/nmol, respectively,
with a radiochemical yield of >96%.

Conclusions: It was determined that higher 43Sc activities were accessible via the
43Ca production route, with a comparatively less complex target preparation and
separation procedure. The product isolated from irradiated 46Ti, however, revealed
purer 43Sc with minor radionuclidic impurities. Based on the results obtained herein,
the 43Ca route features some advantages (such as higher yields and direct usage of
the purchased target material) over the 46Ti path when aiming at 43Sc production on
a routine basis.

Keywords: Radionuclide production, Cyclotron, 43Sc, 43Ca, 46Ti, Radiolabeling, PET
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Background
Nuclear imaging methods offer the possibility to follow disease processes in the body

on a cellular and molecular level, thus, providing valuable information to oncology,

cardiology and neurology (Bybel et al. 2008, Kitson et al. 2009). The two most widely-

employed imaging techniques in nuclear medicine are Single Photon Emission

Computed Tomography (SPECT) and Positron Emission Tomography (PET)

(Ramogida and Orvig 2013). Traditionally, short-lived, non-metallic PET radionuclides

such as 11C, 13N, 15O and, primarily, 18F are used as tracers by their incorporation into

small organic molecules via covalent bonds. However, radiolabeling of peptide, antibody

and other protein-based targeting agents is hampered by elaborated radiosynthetic

processes necessary to introduce short-lived radionuclides into more complex molecular

structures (Wadas et al. 2010). Metallic radionuclides usually feature prolonged decay

times and, thus, they are considered to be better matches for the previously-mentioned

targeting moieties, having long biological half-lives. The incorporation of such radiometals

into a chelator, which itself is conjugated to a biomolecule, becomes possible by exploiting

their vast coordination chemistry (Wadas et al. 2010, Ramogida and Orvig 2013).

The radiometal 68Ga achieved an important role in oncological PET (Banerjee and

Pomper 2013, Velikyan 2014), as its decay characteristics (T1/2 = 68 min, Eβ+av =

830 keV, [89%]) allow the acquisition of high quality images, for example, the

visualization of neuroendocrine tumors and their metastases by 68Ga-labeled somatostatin

analogues, as demonstrated in a number of clinical studies (Gabriel et al. 2007,

Kwekkeboom et al. 2010). The commercial 68Ge/68Ga generator system ensures an

easy and flexible availability of 68Ga, however, only a limited quantity of radioactivity

(equivalent to two patient doses when using a new generator) can be obtained per

elution (Eppard et al. 2013, Rösch 2013). The short half-life of 68Ga entails a close

proximity of the production facility in question, which is obliged to follow the guide-

lines of good manufacturing practice (GMP) in most countries, to an operating PET

scanner (Breeman, et al. 2011). The feasibility of centralizing the production and dis-

tribution of 68Ga-radiopharmaceuticals is compromised by the resulting high overall

costs which, in turn, encouraged the quest for alternate options.

In this respect, 44Sc was proposed as a suitable alternative to 68Ga for clinical PET

imaging (Pruszynski et al. 2010, Rösch 2012). Its decay is characterized by the

emission of positrons with lower energy (Eβ+av = 632 keV [94%]) compared to 68Ga,

allowing for PET imaging with a potentially improved spatial resolution (Bunka et al.

2016, Domnanich et al. 2016). Considering its physical half-life of 4.04 h (Garcia-Torano

et al. 2016), centralized production of radiopharmaceuticals and their transportation to

remotely-located hospitals becomes attainable. Additionally, with the employment of 44Sc,

radiolabeling of a broader variety of biomolecules with slower pharmacokinetic profiles

comes within reach (Chakravarty et al. 2014, van der Meulen et al. 2015). The production

of 44Sc in sufficient amounts for radiopharmaceutical purposes, as well as the in vitro and

in vivo characterizations of 44Sc-labeled compounds, was the topic of a number of studies

(Rösch and Baum 2011, Pruszynski et al. 2012, Müller et al. 2013, Chakravarty et al. 2014,

Hernandez et al. 2014, Singh et al. 2017). Moreover, the chemical behavior of Sc(III) was

shown to more closely resemble those of the other rare earth elements, which are

commonly used as therapeutics (e.g., 90Y and 177Lu) (Reubi et al. 2000, Majkowska-Pilip

and Bilewicz 2011, Müller et al. 2013, Umbricht et al. 2017). It is hypothesized, however,
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that the clinical application of 44Sc may be compromised by the high dose burden to the

personnel caused by the co-emission of 1157 keV γ-rays with 99.9% intensity.

It was since proposed to introduce another positron-emitting scandium radionuclide –
43Sc – which encompasses similarly favorable decay characteristics as 44Sc, but comes

with a main γ-line of much lower energy and intensity (T1/2 = 3.89 h, Eβ+av = 476 keV

[88%], Eγ = 372 keV [23%]) (Walczak et al. 2015). To date, successful production of 43Sc

was described by α-particle irradiation of natural calcium and enriched 40Ca through the

nuclear reactions 40Ca(α,p)43Sc and 40Ca(α,n)43Ti → 43Sc, respectively. The obtained

product was of high radionuclidic purity, and after its separation from the target material,

successful radiolabeling was demonstrated using a derivative of the macrocyclic

polyaminocarboxylic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

(DOTA) (Szkliniarz et al. 2015, Walczak et al. 2015, Szkliniarz et al. 2016). Deuteron

irradiation of enriched 42Ca targets was suggested as another possible 43Sc production

channel, via the 42Ca(d,n)43Sc nuclear reaction (Walczak et al. 2015), however, the

number of cyclotrons providing α-particle or deuteron beams is limited. The nuclear

reactions 43Ca(p,n)43Sc and 46Ti(p,α)43Sc (Fig. 1) require only protons with low energies

(<50 MeV) (International Atomic Energy Agency 2008, Koning et al. 2015, Experimental

Nuclear Reaction Data (EXFOR) 2017), which can be generated by most biomedical

cyclotrons and renders large-scale 43Sc production possible.

In this work, the feasibility of proton-induced production of 43Sc using 43Ca and 46Ti

as target materials has been demonstrated – to our knowledge – for the first time, with

the final product quality tested by means of radiolabeling. The image resolution of 43Sc

was investigated and compared to that of 44Sc using Derenzo phantoms and a preclinical

PET scanner.

Methods
Chemicals

Enriched 46TiO2 (97.0 ± 0.2% 46Ti, 0.44% 47Ti, 2.28% 48Ti, 0.15% 49Ti, 0.13% 50Ti,

Isoflex, USA) was reduced to metallic 46Ti powder with calcium hydride (CaH2, 98%

metals basis, Mg <1%, Alfa Aesar, Germany; 99.9% trace metals basis, Sigma Aldrich,

USA), argon (Ar, 99.9999%, Linde, Germany) and acetic acid (CH3COOH, 100%

Suprapur, Merck, Germany) and then used as target material. Prior to irradiation, a

Fig. 1 Production of 43Sc from 46Ti (a) and 43Ca (b) via the nuclear reactions 46Ti(p,α)43Sc and
43Ca(p,n)43Sc, respectively
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preceding scan for trace metals (Ca, Cr, Cu, Fe, Ir, K, Mg, Mn, Mo, Na, Sb, Si, Sn,

Sr, Ti, U, Y, Zn, Zr) was performed by ICP-OES (Perkin Elmer Optima 3000).

Enriched 43CaCO3 (28.5% 40Ca, 1.05% 42Ca, 57.9 ± 1.8% 43Ca, 12.36% 44Ca, <0.003%
46Ca, 0.19% 48Ca, Trace Sciences International, USA) and graphite powder

(99.9999%, Alfa Aesar, Germany) were used for the preparation of 43Ca targets.

The chemical separation of Sc(III) from Ti(III) and Ca(II) was performed with

N,N,N′,N′-tetra-n-octyldiglycolamide, non-branched resin (DGA, particle size 50–

100 μm, TrisKem International, France). SCX cation exchange cartridges (100 mg

Bond Elut SCX, particle size 40 μm, Agilent Technologies Inc., USA) served for

the concentration of Sc(III). Furthermore, MilliQ water, hydrochloric acid (HCl, 30%

Suprapur, Merck, Germany) and sodium chloride (NaCl, Trace Select, ≥99.999%, Fluka
Analytical, Germany) were used for the chemical separation procedures. The application

of oxalic acid dihydrate ((COOH)2·2H2O, Trace Select, ≥99.9999% metals basis, Fluka

Analytical, Germany) and ammonia solution (NH3, 25%, Suprapur, Merck, Germany)

enabled full recycling of the target material. DOTANOC acetate was obtained from ABX

GmbH, Germany, and used for the radiolabeling of the final product as a means of quality

control.

Reduction of enriched 46TiO2

The reduction of 46TiO2 to metallic 46Ti was performed with calcium hydride (Alfa

Aesar) at Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany.

The detailed procedure has been outlined elsewhere (Lommel et al. 2014).

In order to increase the reduction yield, the reduction process for 46TiO2 was

optimized at the Paul Scherrer Institute (PSI) with natural TiO2. Enriched
46TiO2 and

natTiO2 (1.15 × 10−3 mol per tablet), respectively, were mixed with a 2–4 fold molar

excess of CaH2 (2.3–4.6 × 10−3 mol per tablet) (Sigma Aldrich) and subsequently

ground to a very fine powder, over a period of 25 min, with an agate mortar in a dry

argon atmosphere. A tablet with a diameter of 10 mm was prepared by placing the

finely-ground mixture in between two layers of ~80 mg CaH2 and pressing it with a

pressure of 3 t for 30–40 s. This tablet was placed in a small tantalum boat inside a

nickel tube, which was evacuated to pressures of 10−3–10−5 mbar. The temperature was

gradually increased to 800–1000 °C over a period of 60–120 min and maintained at this

level for about 30 min. After cooling to room temperature, the reduction products were

retrieved and the metallic 46Ti isolated from the co-produced calcium oxide using

dilute acetic acid. Further details on the isolation procedure can be found elsewhere

(Lommel et al. 2014). The resultant reduced 46Ti metal was directly used for the

preparation of the targets.

The reduction yield was determined by boiling an aliquot of the reduced product

(approx. 5–10 mg) in 2–3 mL concentrated HCl for 10–15 min. Under these conditions,

the reduced 46Ti metal was dissolved completely (Straumanis and Chen 1951) while the

insoluble residue, consisting of TiO and TiO2 (Perry 2011, Rumble 2018), was collected

and weighed. The ratio of soluble to insoluble species served as an indication for the de-

gree of reduction. X-ray diffraction (XRD) analysis (Philips X’PertPro X-ray diffractometer,

wavelength: Cu Kα = 1.541 Å) was additionally employed to identify the chemical speci-

ation of the product.
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Manufacturing and irradiation of 46Ti and 43CaCO3 targets

Targets were prepared by placing 9–28 mg reduced 46Ti metal powder or 8–12 mg

enriched 43CaCO3 on top of ~150 mg graphite powder and pressed into pills with a

pressure of 5–7 t. The resulting thickness of the target in question was between 0.4

and 0.5 mm with a diameter of 16 mm. After encapsulation in aluminum, the target

was introduced into a target holder system. The Injector 2 cyclotron at PSI produces

72 MeV protons and was used for the irradiations presented herein. The required lower

beam energies were achieved using niobium degrader discs of various thicknesses (3.2–

3.5 mm). 46Ti targets were irradiated with proton energies of 15.1 ± 1.9 MeV at beam

currents of 30 μA for 60–420 min, whereas, proton energies of 12.0 ± 2.3 MeV and

10.4 ± 2.6 MeV, respectively, at 50 μA were applied to the 43CaCO3 targets for 90–

220 min. The impinging energies were calculated with SRIM-2010 (Ziegler et al. 2010).

After the end of bombardment (EOB), the activated targets were detached from the tar-

get station and the aluminum encapsulation removed.

Separation of 43Sc from 46Ti

A chemical separation system (schematic shown in Fig. 2) was developed to separate
43Sc from 46Ti. The irradiated target was transferred into a conical glass vial (30 mL,

Schmizo AG, Switzerland) with an integrated charcoal filter (2 mL chromatography

column, BioRad, France, filled with charcoal, Merck, Germany)on top. The target was

dissolved in 4–5 mL of boiling 8.0 M HCl for 15–20 min. The concentration of the

obtained HCl solution was adjusted to ~4.0 M with the addition of MilliQ water. The

insoluble graphite disc remained in the glass vial while the radioactive solution was

pumped through a filter (1 mL cartridge fitted with a 10 μm frit, ISOLUTE SPE

Accessories, UK) before loading onto a 1 mL column cartridge, containing ~85 mg

DGA extraction chromatographic resin. Negligible sorption of Ti(III) and a simultaneous

strong Sc(III) retention on DGA resin at HCl molarities below 6 M (Pourmand and

Fig. 2 Schematic diagram of the 46Ti/43Sc separation system
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Dauphas 2010) facilitated its application for the separation of these elements. The

reaction vessel was rinsed with 2.0 mL 4.0 M HCl and the solution pumped through the

DGA resin. Further 5.0 mL 4.0 M HCl were applied directly onto the DGA column to

ensure complete removal of residual 46Ti. The 43Sc fraction was finally eluted with 4.0 mL

0.1 M HCl directly onto a second column containing SCX cation exchange resin to

concentrate the 43Sc in a small volume. From this resin, 43Sc was eluted with 700 μL

4.8 M NaCl/0.13 M HCl (pH 0–0.5) and partitioned into three fractions. The volumes of

the fractions were 100, 400 and 200 μL, respectively, with the second fraction directly

used for radiolabeling.

Separation of 43Sc from 43Ca

The chemical separation of 43Sc from 43Ca was performed as for the previously

reported procedure for 44Sc (van der Meulen et al. 2015). In brief, the irradiated target

was dissolved in HCl and the separation of 43Sc performed on a DGA extraction

chromatographic column. 43Sc was directly eluted onto a SCX cation exchange resin

cartridge, from where it was eluted in a small volume of NaCl/HCl and directly used

for radiolabeling.

Target recycling

The Ti-containing eluate collected from the DGA column was heated to boiling and

the pH adjusted to 8.0 with 25% ammonia solution. As a consequence, a black, flaky

precipitate formed immediately and transformed into white TiO2 over a waiting period

of 40 min. The precipitate was filtered through a glass filter crucible (30 mL, pore size

10–16 μm, Duran Group GmbH, Germany), heated to 400 °C, in air, and kept at this

temperature for 1 h to ensure complete oxidation. XRD-measurements were employed

for the specification analysis of the recovered target material.

Recycling of the valuable enriched 43Ca target material from the collected waste fraction

was performed as described previously for 44Ca (van der Meulen et al. 2015).

Radionuclidic purity

A N-type high-purity germanium (HPGe) coaxial detector (Canberra, France) in

combination with the InterWinner software package (version 7.1, Itech Instruments,

France) was employed for analyzing the radionuclidic purity of the final products.

The measurements were performed with an aliquot of 2.5–5.0 MBq 43Sc and the

counting time adjusted to ensure a statistical measurement error of <5%. Further γ-

spectroscopy measurements of the same samples with long counting times were

performed several days post-separation, aiming to determine low-level activities

originating from long-lived radionuclidic impurities.

PET phantom study using 43Sc

An aliquot was withdrawn from the second fraction of the respective eluate and diluted

with 70% ethanol to a volume ratio of 3:1 (aliquot of 43Sc eluate: ethanol). The holes

(diameter ranging from 0.8–1.3 mm in 0.1 mm steps) of a polycarbonate Derenzo

phantom (D = 19.5 mm, H = 15.0 mm) were filled with 600 μL of the diluted solution.

Particular care was taken to avoid the inclusion of air bubbles (Bunka et al. 2016). The
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phantom was closed with a screw cap and aligned on a small-animal PET/CT scanner

(eXplore VISTA PET/CT, GE Healthcare, Spain). The determined total radioactivity in

the phantom was ~4–8 MBq at the beginning of the PET scan. The energy window was

set to 400–700 keV and each phantom scanned for 30 min. Using the post-processing

software VivoQuant™ (version 2.00, inviCRO Imaging Service and Software, Boston

USA), one representative single transversal section was selected and analyzed at three

different phantoms depths. The resulting intensity plots of the profiles were transferred

to Origin® 2016 (OriginLab). The full-width at half-maximum (FWHM) was determined

for each slice and used for calculating the arithmetic mean and standard deviation. A

detailed description of the quantification of the relative resolution is described by Bunka

et al. (Bunka et al. 2016).

Radiolabeling for quality control of the produced 43Sc

Radiolabeling of a DOTA-functionalized peptide at pre-defined specific activities was

employed for quality control of the product. As non-radioactive metal impurities would

compete with the radionuclide for complexation by a DOTA chelator, this method serves

as a reasonable benchmark to evaluate the success of a chemical separation (Severin et al.

2012, Valdovinos et al. 2014). After separation of 43Sc from the 46Ti and 43CaCO3 target

material, the activity of the obtained eluate was quantitatively determined with a dose

calibrator (ISOMED 2010, Nuclear-Medizintechnik Dresden, GmbH, Germany –

calibrated on a fortnightly basis). The quality of the 43Sc was investigated by means of its

radiolabeling capability with DOTANOC. The required activity (20–50 MBq) was with-

drawn from the vial and mixed with sodium acetate solution (0.5 M, pH 8), in order to

obtain a pH of 3.5–4.5, followed by the successive addition of DOTANOC (3.5–14.3 μL of

a 0.7 mM solution in MilliQ water, ABX GmbH, Advanced Biochemical Compounds,

Germany). The reaction mixture was incubated at 95 °C for 15 min. High performance

liquid chromatography (HPLC) with a C-18 reversed-phase column (Xterra™ MS, C18,

5 μm, 150 × 4.6 mm, Waters, USA) was employed in order to determine the radiolabeling

yield. Before analysis, the addition of 10 μL 2 mM Na-DTPA solution ensured the

complexation of free radiometals. A UV (LaChrom L-7400) and a radiodetector (Berthold,

HPLC Radioactivity Monitor, LB 506B) were used for detection. The analysis sequence

comprised the gradual change of the mobile phase from 95% A (MilliQ water containing

0.1% trifluoracetic acid) and 5% B (acetonitrile) to 20% A and 80% B, over a period of

15 min and at a flow rate of 1.0 mL/min.

Results
Reduction of enriched 46TiO2

The yield of the reduction procedure of 46TiO2 to metallic 46Ti, performed at GSI, was

determined by dissolution of the metallic product in conc. HCl as 95.7%. Comparable

yields of 90–98% were verified by the authors of the study when reducing 50TiO2 and

employing energy-dispersive X-ray spectroscopy (EDX) for analysis (Lommel et al.

2014).

While the method using the vacuum-based system at PSI was successful, several

parameters were optimized using natTiO2, aiming to enhance the yield of the reduction

process. The use of four-fold surplus of reducing agent in a finer granulated form with
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46TiO2 and
natTiO2 was found to be a suitable starting mixture. The mixed powder was

embedded in between two layers of CaH2. Reduction yields of 96–99%, determined by the

dissolution test in boiling HCl and verified by XRD analysis, were achieved at pressures

<10−4 mbar and by increasing the temperature to 950–1000 °C. The XRD spectra are

given in the Additional file 1: Figure S2 a-b.

Production of 43Sc from 46Ti via the (p,α) nuclear reaction

The activities of the 46Ti-targets at the end of bombardment (EOB) ranged between 60

and 225 MBq 43Sc, however, theoretically achievable activities (A(43Sc)calc) were

estimated to be between 590 and 2340 MBq (Table 1). The calculations were performed

by taking into account the mass of 46Ti, the irradiation time (tirr), the proton flux (Φ)

and the cross section for the reaction 46Ti(p,α)43Sc amounting to 36 ± 2 mbarn

(Carzaniga et al. 2017). Differences between the experimental and the calculated

activity are expressed by the factor f(43Sc), which were typically in the range between

5.6 and 12.3. The values of f(43Sc) characterize how many times larger the theoretical

activity is than that experimentally obtained. In one particular production run, an

exceptionally high activity of ~1.0 GBq 43Sc was generated under identical irradiation

conditions. The resulting, rather low value of f(43Sc) = 1.9, clearly demonstrates the

potential of this approach. Formulae used for the calculations of A(43Sc)calc and f(43Sc)

are given in the Additional file 1: Figure S1 a-b.

Chemical behavior of 43Sc and 46Ti on DGA resin and their separation

The chemical behavior of Sc(III) and Ti(III) on DGA resin was investigated using

~30 mg naturalTi metal, spiked with trace amounts of radioactive 46Sc (1.7 kBq) and
44Ti (2.3 kBq). γ-Spectroscopy was employed in order to quantify the 46Sc and 44Ti

radioactivity in each fraction (the resulting elution profile is shown in Fig. 3). Using

9.2 mL 4.0 M HCl solution, Sc(III) was quantitatively sorbed on DGA resin, while

Ti(III) was not retained. Before the final elution of Sc(III) with 4.0 mL 0.1 M HCl, the

resin was rinsed with additional 5.0 mL 4.0 M HCl to ensure complete removal of

Ti(III).

With the developed separation system (Fig. 2), 89.7 ± 3.1% of the total 43Sc activity

could be eluted in a small volume using 4.8 M NaCl/0.13 M HCl as eluent. Fractionized

collection revealed that ~90% of the eluted 43Sc activity were obtained in the second

fraction (400 μL), the remaining 10% were divided between the first (100 μL) and third

Table 1 Comparison between the experimental A(43Sc)exp and the calculated activities A(43Sc)calc,
obtained from proton irradiations of enriched 46Ti targets, measured at EOB

Number of irradiations m(46Ti) [mg] tirr [min] A(43Sc)exp at EOB [MBq] A(43Sc)calc [MBq] f(43Sc)

2 10 180–240 110–140 930–990 7.2–8.4

5 11 110–240 60–180 590–1080 6.0–12.2

3 12 120–240 130–150 700–1180 5.6–8.7

1 15 390 1030 1990 1.9

1 16 420 225 2210 9.9

1 17 420 190 2340 12.3
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fraction (200 μL). The residual overall 43Sc activity (~10%) was left on the graphite disc,

the DGA and SCX resin columns, respectively.

Production of 43Sc from 43Ca via the (p,n) nuclear reaction and separation

Total activities of 380–720 MBq were generated by the irradiation of 43CaCO3 targets,

which consisted of 66.2% 43Sc and 33.3% co-produced 44Sc (Table 3), consequently,

resulting in final yields of 250–480 MBq pure 43Sc radioactivity at EOB (Table 2).

Theoretically accessible activities of 1270–3200 MBq 43Sc were calculated based on

beam energies of 12 MeV at a corresponding cross section of 275 mbarn (Carzaniga et

al. 2017). The discrepancies between the experimental and the calculated activities,

once more expressed by the factor f(43Sc), were within the range between 3.9 and 6.8,

which is slightly lower than those determined for the 46Ti(p,α)43Sc route.

The isolation of 90.4 ± 5.5% of the total 43Sc/44Sc activity was possible in a small

volume (700 μL) of 4.8 M NaCl/0.13 M HCl eluent by using the previously-developed

separation system (van der Meulen et al. 2015). The residual ~10% of 43Sc/44Sc activity

were left on the remaining components of the setup, e.g. graphite disc, DGA and SCX

resin columns, respectively.

Fig. 3 Elution profile of 44Ti/nat.Ti (blue squares) and 46Sc (red dots) on DGA extraction chromatographic
resin. Each fraction was measured by γ-spectroscopy until the statistical measurement error was <5%

Table 2 Comparison of the measured total activities A(43/44Sc)exp, the experimental 43Sc activities
A(43Sc)exp as well as the calculated activities A(43Sc)calc, obtained from proton irradiations of
enriched 43CaCO3 targets, measured at EOB

Number of
irradiations

m(43CaCO3) [mg] tirr [min] A(43/44Sc)exp at EOB
[MBq]

A(43Sc)exp at EOB
[MBq]

A(43Sc)calc
[MBq]

f(43Sc)

1 8 90 380 250 1270 5.0

4 9 90–220 440–670 290–440 1420–2910 3.9–6.6

1 10 220 720 480 3200 6.8
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Target recycling

A γ-spectroscopic measurement of the 46Ti-containing fraction indicated the pres-

ence of 48V (T1/2 = 16 days), presumably being formed in the nuclear reaction
48Ti(p,n)48V. In order to avoid any co-precipitation, the liquid was set aside until
48V was completely decayed to stable 48Ti. Consequently, the target recycling

process was developed with natural titanium. The achieved overall recovery yield

for the precipitation of natTiO2 was 97.6%, with XRD measurements confirming the

chemical identity of the product. The XRD spectrum is given in the Additional file

1: Figure S3.

The recovery of enriched 43Ca target material was performed according to the

previously-described method used for 44Ca (van der Meulen et al. 2015) at an equiva-

lent efficiency. The 43Sc obtained by irradiation of recovered material, proved to be of

the same quality as with targets from newly-purchased 43CaCO3. An unchanged radio-

nuclidic purity of the obtained 43Sc eluate confirmed the absence of trace element im-

purities in the recycled 43CaCO3.

Radionuclidic purity of 43Sc produced from 46Ti and 43Ca target material

Irradiation of 46Ti targets (97.0% enriched) with protons yielded a product of high

radionuclidic purity, containing 98.2% 43Sc and only 1.5% 44Sc. In comparison, the
43Sc eluate isolated from proton irradiated 43CaCO3 (57.9% enriched) contained

66.2% 43Sc and 33.3% 44Sc. Long-term γ-spectroscopic measurements determined low

activity levels of 0.079% 44mSc, 46Sc, 47Sc, 48Sc and 0.34% 44mSc, 47Sc, 48Sc in the final

products of irradiated 46Ti and 43Ca targets, respectively (Table 3). All radionuclides

of Sc were formed in (p,n), (p,2n), (p,α) and (p,2p) nuclear reactions, with stable

isotopes of titanium (46Ti, 47Ti, 48Ti, 49Ti, 50Ti) and calcium (40Ca, 42Ca, 43Ca, 44Ca,
46Ca, 48Ca), being present in the respective target material. In the case of the 46Ti/
43Sc production route, the amount of 46Sc was found to exceed the prediction by a

factor of ~50, while no long-lived 46Sc, even if predicted, could be determined in the

final eluate available from the 43Ca/43Sc route. Low levels of various Y radionuclides

(86Y, 87Y, 87mY and 88Y) were present in products isolated from 46Ti and 43CaCO3

target material, in total, amounts of 0.29% and 0.19%, respectively. No Y isotopes

were observed in the 43Sc eluate obtained from 46Ti target material which was re-

duced at PSI, however.

PET phantom study

PET images of Derenzo phantoms were acquired on a small-animal PET/CT scanner

using 44Sc as well as 43Sc, produced via the 46Ti and 43Ca routes (radionuclidic purity:

98.2% and 66.2% 43Sc), respectively. A simple visual comparison already suggests a

favorable image quality and an improved resolution for 43Sc in comparison to 44Sc (Fig.

4). The numerical expression of these differences was derived by means of the FWHM,

which was determined for a hole diameter of 1.3 mm. The resolution was found to be

the best for 43Sc obtained from 46Ti, followed by 43Sc from 43Ca and, finally, by 44Sc

(Table 4), hence, the calculated FWHM values corroborate the visual evaluation. The

observed sequence is in agreement with the expectations according to the average

positron energies of the respective radionuclides.
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Quality control of 43Sc

Quality control of the 43Sc (Fig. 5) was performed by radiolabeling of DOTANOC,

isolated from irradiated 43CaCO3 targets. Reproducibly, >96% radiochemical purity

were achieved at a specific activity of 8 MBq 43Sc per nmol DOTANOC. Lower activity

concentrations of the 43Sc eluate, obtained from irradiated 46Ti targets, rendered

radiolabeling at high specific activities more challenging. The radiolabeling reaction

could be reproducibly performed at 5 MBq/nmol.

Table 3 The radionuclide inventory of the 43Sc eluate, isolated from irradiated 46Ti and 43CaCO3

targets is shown, together with the calculated values at EOB. Cross section data for the nuclear
reactions 46Ti(p,α)43Sc, 43Ca(p,n)43Sc and 44Ca(p,n)44Sc were taken from Carzaniga et al. (Carzaniga
et al. 2017), while the data for all other nuclear reactions was retrieved from the TENDL 2015
database (Koning et al. 2015)
43Sc eluate isolated from irradiated 46Ti

Radionuclide inventory at EOB [%]

Isotope Nuclear reaction Calculated prediction Experimental results

14.6/15 MeV 15.1 ± 1.9 MeV
43Sc 46Ti(p,α)43Sc 99.1 98.2 ± 0.3
44gSc 47Ti(p,α)44gSc 0.9 1.5 ± 0.2
44mSc 47Ti(p,α)44mSc 1.3 × 10−2 4.2 × 10−2 ± 1.6 × 10−2

46Sc 47Ti(p,2p)46Sc49Ti(p,α)46Sc 2.2 × 10−4 1.1 × 10−2 ± 5.7 × 10−3

47Sc 50Ti(p,α)47Sc48Ti(p,2p)47Sc 3.0 × 10−3 9.6 × 10−3 ± 4.7 × 10−3

48Sc 49Ti(p,2p)48Sc 1.6 × 10−7 1.7 × 10−2 ± 7.0 × 10−3

86Y, 87Y, 87mY, 88Y – 0.16, 2.7 × 10−2, 9.5 × 10−2, 1.0 × 10−2

43Sc eluate isolated from irradiated 43CaCO3

Radionuclide inventory at EOB [%]

Isotope Nuclear reaction Calculated prediction Experimental results

9.9/10.0 MeV 12.4/12.0 MeV 10.4 ± 2.6/12.1 ± 2.3 MeV
43Sc 43Ca(p,n)43Sc 67.4 65.5 66.2 ± 1.5
44gSc 44Ca(p,n)44gSc 32.4 34.3 33.3 ± 1.5
44mSc 44Ca(p,n)44mSc 0.1 0.2 0.2 ± 5.3 × 10−2

46Sc 46Ca(p,n)46Sc 1.5 × 10−5 1.2 × 10−5 –

47Sc 48Ca(p,2n)47Sc 2.0 × 10−2 2.6 × 10−2 2.2 × 10−2 ± 1.0 × 10−2

48Sc 48Ca(p,n)48Sc 5.7 × 10−2 2.3 × 10−2 0.1 ± 2.9 × 10−2

86Y, 87Y – – 0.2, 1.0 × 10−2

Fig. 4 Transversal slices of PET scans of Derenzo phantoms (hole diameter ranging from 0.8–1.3 mm in
0.1 mm steps) filled with >99% 44Sc (a), 66.2% 43Sc (b) and 98.2% 43Sc (c). The acquisition of the PET scans
was performed in an energy window of 400–700 keV for 30 min, in order to obtain a total number of
~6 × 107 coincidences
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Discussion
Enriched 46Ti is only commercially available as 46TiO2. As titanium dioxide requires hot

sulfuric or hydrofluoric acid for dissolution, the reduction prior to target manufacturing

was necessary. After conversion to the metallic state, the dissolution of 46Ti under less

stringent conditions becomes possible. The initial reduction process described elsewhere

(Lommel et al. 2014) was changed to a vacuum-based system. A four-fold molar excess of

reducing agent in a fine granulated formulation with 46TiO2, pressures <5 × 10−3 mbar

and temperatures of 950–1000 °C were identified to be crucial conditions to achieve

maximum yields. The optimized procedure allowed for reduction yields between 96% and

99%, determined by the dissolution test in concentrated HCl and verified by XRD analysis

(Additional file 1: Figure S2 a-b).

Activities of 60–225 MBq 43Sc could be regularly obtained by the irradiation of the

enriched 46Ti targets, while 250–480 MBq 43Sc (equivalent to total activities of 380–

720 MBq 43Sc/44Sc) was produced via the 43Ca(p,n)43Sc nuclear reaction. The 2–4-fold

higher 43Sc activity available from 43Ca irradiations can be attributed to the higher

nuclear cross section of the 43Ca(p,n)43Sc reaction in comparison to the 46Ti(p,α)43Sc

nuclear reaction (Additional file 1: Figure S4). A theoretical 43Sc yield obtainable via

the 46Ti route, was calculated to be 0.6–2.3 GBq, whereas 1.3–3.2 GBq 43Sc were

calculated for the 43Ca route. The discrepancies to the experiment results in this work

can be mainly explained by the rather large energy degradation of the proton beam

(using niobium), from the initial 72 MeV to ~10–15 MeV, resulting in a beam with a

Table 4 FWHM determined for phantom hole-diameters of 1.3 mm for 44Sc and 43Sc in three dif-
ferent sections of the PET scan

Radionuclide Radionuclidic purity [%] Eβ+average [keV] FWHM [mm]
44Sc >99 (<1% 44mSc) 632 2.12 ± 0.04
43Sc from 43Ca 66.2 (33.3% 44Sc) 476 2.04 ± 0.06
43Sc from 46Ti 98.2 (1.5% 44Sc) 476 1.87 ± 0.14

Fig. 5 HPLC chromatograms of 43Sc isolated from 46Ti and 43CaCO3 target material and 44Sc, directly after
the radiolabeling reaction with DOTANOC (the chromatograms of 43Sc- (43Ca) and 44Sc-DOTANOC are
shifted up and sideways for better visibility). The retention times of free 43Sc and 44Sc were determined to
be 2.2 ± 0.2 min and 9.7 ± 0.3 min for 43Sc/44Sc-DOTANOC
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broad spread of energies at diminished intensities. Another addition to the discrepancy

of results is the lack of beam diagnostics closer than 80 cm from the target. The

exceptionally high yield of ~1 GBq became attainable when the proton beam was

precisely positioned, at a specific energy, on the target material.

A product of high radionuclidic purity was isolated from irradiated 46Ti samples,

containing only 1.5% 44Sc and 0.079% of all other Sc radioisotopes, which is comparable

to the calculations determined from the cross section measurements (Koning et al. 2015,

Carzaniga et al. 2017). The quantity of 46Sc (0.011%, T1/2 = 83.8 d) was about 50 times

higher than expected, however, the percentage can be still related to the threshold value

for the long-lived 68Ge (T1/2 = 270.8 d) impurity in the 68Ga generator eluate (0.001%) set

by the European Pharmacopoeia (Council of Europe 2013). γ-Spectroscopic measure-

ments of the 43Sc eluate, isolated from irradiated 43CaCO3 targets, revealed the presence

of 66.2% 43Sc and 33.3% 44Sc. The co-formation of 44Sc originated from 44Ca (12.36% in

the target material) via the (p,n) nuclear reaction, as the cross section maxima of both

reactions, 44Ca(p,n)44Sc and 43Ca(p,n)43Sc, are centered around 9–10 MeV (Additional

file 1: Figure S4). Performing the irradiation with proton energies of 10 or 12 MeV

did not influence the ratio of 43Sc and 44Sc, which is in compliance with the calculations

performed (Koning et al. 2015, Carzaniga et al. 2017), hence, the isolated product can be

rather considered as a combination of two PET nuclides, with comparable decay

properties. Trace activities of various Y radioisotopes were identified in both products,

conceivably produced via (p,n) and (p,α) nuclear reactions with natSr and natZr impurities,

both being present as low-level contaminants in the target materials (Additional file 1:

Table S5). A scan for impurities of trace metals by ICP-OES in enriched 46TiO2 and
46Ti

metal suggests that they were probably introduced in the course of the reduction process

performed at GSI. These impurities were later eliminated with the use of calcium hydride

of higher chemical purity, hence, the introduction of trace metals was avoided, confirmed

by the absence of any Y isotopes in the 43Sc eluate. The limited quantity and high costs of
43CaCO3 did not allow for a similar analysis.

The separation of 43Sc from 43Ca target material was performed at a comparable yield

(90.4 ± 5.5%) to the previous separations of 44Sc and 47Sc from irradiated 44Ca and 46Ca

targets (98.0 ± 0.3% and 94.8 ± 2.1%) (van der Meulen et al. 2015, Domnanich et al. 2017).

Using the developed 46Ti/43Sc separation system, about 90% of the initial 43Sc activity

could be isolated within 45 min, which is about 10 times faster compared to all

previously-reported radiochemical separation methods in this regard (Kolsky et al. 1998).

Radiolabeling of 43Sc with the model compound DOTANOC was utilized to assess

the chemical purity of both eluates, obtained by irradiation from 46Ti and 43CaCO3

target material, respectively (Severin et al. 2012, Valdovinos et al. 2014). Reproducible

radiosynthesis of 43Sc-DOTANOC was demonstrated at specific activities of 5–8 MBq/

nmol. These results are slightly lower than previously achieved with eluates of 44Sc and
47Sc (van der Meulen et al. 2015, Domnanich et al. 2017), but still comparable when

taking the obtained low 43Sc activity concentrations into consideration.

The establishment of a recovery process for the enriched 46Ti target material was an

important part of the present study. A simple, fast and efficient method was employed

to precipitate TiO2 with a high overall yield, however, it was only performed with

natural titanium thus far. The established method for 44Ca was successfully employed,

for the recycling of the enriched 43Ca target material. Both recycling methods have
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great potential to significantly reduce the production cost as the current prices for the

target materials amount to about 30 USD and 260 USD for 1 mg of enriched 46Ti and
43Ca, respectively.

The resolution of a PET image is, among other factors, influenced by the

radionuclide’s positron range. The discriminability between two different radioactive

sources in an image is described by the spatial resolution which is, on a particular

PET system, only dependent on the radionuclide’s positron energy (Palmer et al.

2005). Herein it was shown, that scanning at slightly improved resolution is demonstrated

when using 43Sc instead of 44Sc. An intermediate resolution is shown with 43Sc obtained

from 43Ca (66.2% radionuclidic purity) target material. These findings are in line with the

expectations, based on the correlation between lower positron energy and enhanced

image quality. To date, no FWHM values have been published for 43Sc, but the results in

this work are comparable with previously published data for 11C and 89Zr (Palmer et al.

2005, Bunka et al. 2016). This modest gain in resolution, demonstrated using a small

animal PET scanner, is unlikely to play a significant role in clinical practice. Speculation

whether the co-emitted γ-radiation of 43Sc (Eγ = 372 keV [23%]) will interfere with the

image resolution of a clinical PET scanner should not emerge, as modern PET systems

based on scintillation crystals use energy windows in between 430 and 650 keV for the

detection of annihilation photons (the γ-energy lies outside this range and should be cut

off by the standard energy window) (Gnesin 2017). The absence of co-emitted high

energetic gamma rays as they are emitted by 44Sc at high intensity (Eγ = 1157 keV

[100%]), would be clearly advantageous regarding the dose burden to patients and medical

staff.

Conclusion
The production of several hundred MBq 43Sc was demonstrated for the first time by

proton irradiation of enriched 46Ti and 43Ca. Only moderate proton energies of 10–

15 MeV are required for the respective nuclear reactions, 46Ti(p,α)43Sc and
43Ca(p,n)43Sc, which are available from most commercial biomedical cyclotrons. It was

shown that higher 43Sc radioactivities were produced via the 43Ca route. At the same

time, this production pathway is accompanied by a comparatively less complex target

preparation and separation procedure. Even though the irradiation of 46Ti yielded a

product of higher radionuclidic purity, the eluate obtained from irradiated 43CaCO3

can be rather considered as combination of two PET nuclides. The cost of enriched
43Ca is significantly higher than that of 46Ti, however, the expenses are kept within

limits by the implementation of recycling procedures. Based on the results obtained, it

can be concluded that the 43Ca route features several advantages over the 46Ti path

when aiming at a production of 43Sc on a routine basis. In future, the production will

be optimized to reproducibly obtain high quantities of 43Sc in order to assess the gain

in resolution in a clinical setting. Further studies in this regard are necessary for the

upscale of production by means of increasing target material quantities. This is

currently underway, utilizing a biomedical cyclotron.

Additional file

Additional file 1 Supplementary experimental data. (DOCX 445 kb)
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