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Introduction

Nowadays, breast cancer (BC) is the most common malig-
nancy in women worldwide and ovarian cancer (OC) is the 
most lethal gynecological malignancy. The recent evi-
dences emerged in tumor behavior and the dramatic 
improvements achieved in the treatment of these malig-
nancies, with particular attention in tumor biology and 
immunobiology,1–8 less traumatic and more aggressive 
surgeries,9–12 and new target drugs,13–21 have already been 
highlighted by the same authors elsewhere. Despite all the 
advances achieved in knowledge and in clinical practice, 
stage at diagnosis still represents the most important 
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prognostic factor and only few patients who are diagnosed 
with an advanced stage disease can be healed. BC related 
mortality has dropped significantly since the widespread 
adoption of mammographic screening.22 Unfortunately, a 
similar effective screening methodology that enables an 
early diagnosis in OC is still lacking.

Approximately 20%–25% of the patients with OC and 
5%–10% of the patients with BC carry an inherited predis-
position to their pathologic condition.23 The most com-
monly involved mutated genes are BRCA 1 and 2. Women 
carrying a BRCA 1 or 2 mutation (BRCAm) have a 57% 
and 49% lifetime risk of developing BC and a 40% and 18% 
risk of developing OC, respectively.24 Furthermore, once a 
BRCA 1/2 mutated woman is diagnosed with BC, she has an 
increased risk of developing a second BC in the contralateral 
breast. For these patients, the most effective risk-reducing 
strategy is a prophylactic surgery. Prophylactic bilateral mas-
tectomy and salpingo-oophorectomy have been shown to 
decrease the incidence of BC and OC in high-risk patients by 
as much as 90% and 80%, respectively.25 However, many 
patients are reluctant to undergo these prophylactic surgeries 
secondary to the negative impact on the self-image percep-
tion derived from the mastectomy and secondary to the pre-
cocious menopause, and the loss of fertility, derived from 
the bilateral salpingo-oophorectomy. Furthermore, nowa-
days genetic testing is only approved for women with a 
diagnosis of, or documented familiarity, for BC and OC.

Whereas an increased radiological and clinical surveil-
lance helps in detecting BC at an earlier stage in high-risk 
patients, no effective screening strategy exists to screen 
BRCA 1/2 mutated women for OC, once the BRCA muta-
tion has been assessed.

Despite the encouraging role of human epididymis protein 
4 (HE4) and HE4 in combination with Carbohydrate-antigen 
125 (CA-125) in identifying OC recurrence,26 these biologi-
cal markers perform poorly as a screening tool in patients 
without adnexal masses and cannot be used as diagnostic 
markers for primary disease due to their low specificity.

New markers are required to identify BC and OC at an 
early stage when they are highly curable, particularly in 
patients at high risk of developing these malignancies.

MicroRNAs (miRNAs) are key regulatory molecules 
operating in the post-transcriptional regulation of gene 
expression. Aberrant expression of miRNAs has been doc-
umented in several pathological conditions, including solid 
tumors suggesting their involvement in carcinogenesis.

MiRNAs were first discovered in 1993 in the nematode 
Caenorhabditis elegans; they are highly conserved across a 
wide range of species and have a central role in gene 
expression by incorporating the RNA-induced silencing 
complex and interacting with their target messenger RNAs 
(mRNAs).27 They comprise approximately 18–22 nucleo-
tides and their regulatory function includes inducing trans-
lation suppression or degradation of RNA. One miRNA can 
bind to several target genes and can be involved in the regu-
lation of various cellular processes such as cell 

development, differentiation, and proliferation.28 Since the 
miRNA loci often map to fragile chromosomal regions 
interfering with DNA functions (such as, amplifications, 
deletions, and translocations), their expression is frequently 
upregulated/downregulated during carcinogenesis.29,30

The latest miRNA database (v20, June 2013) contains 
24,521 microRNA loci from 206 species, processed to pro-
duce 30,424 mature microRNA products.31 The miRNAs 
regulate about 30% of all protein-coding genes of the human 
genome. This can occur via a perfect complimentary bind-
ing of the miRNA to the target mRNA (endonucleolytic 
cleavage of the mRNA) or by an imperfect complimentary 
binding to the target mRNA (translation repression).32

Due to their cell cycle interference, miRNAs are 
involved either as oncogenes or as oncosuppressors in the 
pathogenesis of a huge variety of human cancers such as 
lung cancer,33,34 prostate cancer,35 colorectal cancer,36,37 
leukemia,38–40 gliomas41 and medulloblastoma,42 diffuse 
large B-cell lymphoma,43 hepatocellular carcinoma 
(HCC),44 gastric cancer,45,46 osteosarcoma,47 renal cell car-
cinoma,48 BC,49 and OC.50 Particularly, their presence in 
the blood has been shown to be associated with histology, 
clinical stage, survival, and oncogenic expression in OC 
and BC. Recently, studies have documented the feasibility 
to detect stable miRNAs in urine samples as well. A direct 
correlation between miRNAs expression levels in the blood 
and in the urine has not yet been clearly demonstrated. It is 
believed that specific metabolic processes in the kidney and 
in the urothelial tissue can modify the pattern of presenta-
tion of miRNAs thus expanding these discrepancies. The 
occurrence of high levels of RNases in the urinary tract can 
lead to the total degradation of free RNA types. As a result, 
only exosomal miRNAs remain detectable in the urine.51

Four significantly altered and specifically regulated 
miRNAs (miR-21, miR-125b, miR-451, and miR-155) 
were identified in BC patients as compared to healthy con-
trols in a study that evaluated urinary miRNAs expres-
sion.52 These data suggest their potential role as 
non-invasive innovative biomarkers.

In OC, two important studies have investigated the role 
of urinary miRNAs.53,54 Preliminary results show that 
miRNAs may be significantly upregulated and some exo-
somal fractions of miRNAs/cell-free miRNAs may be 
detected in the urine samples of OC patients (miR-21, 
miR-125b, miR-451, and miR-155).

We aim to give an overview on the studies that investi-
gate the role of urinary miRNAs that are specifically asso-
ciated with a condition of BC and OC and to give an insight 
into their diagnostic and prognostic potential.

Rationale and feasibility of miRNAs 
detection in urine sample

Weber et al.55 confirmed the presence of miRNAs in 12 
human body fluids (plasma, saliva, tears, urine, amniotic 
fluid, colostrum, breast milk, bronchial lavage, 
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cerebrospinal fluid, peritoneal fluid, pleural fluid, and 
seminal fluid).

Urine is the ideal bio-fluid for the biomarker detection as 
it allows for non-invasive collection. MiRNAs detection in 
the urine is usually performed either by isolating and extract-
ing total RNA from extracellular vesicles which can be pre-
sent in the urine samples and by isolating total RNA from the 
cellular fraction. Briefly, once RNA has been isolated from 
the urine, small RNA molecules (<200 nt) are amplified, 
miRNA–complementary DNA (cDNA) probes are diluted in 
RNAse-free water for subsequent quantitative real-time pol-
ymerase chain reaction (qRT-PCR) analysis.

The low number of detectable miRNA species in the 
urine suggests that the majority of circulating miRNAs is 
either “picked up” by the kidneys through an unknown 
mechanism or is destroyed in the urine. Yun et al. validated 
the stability of miRNAs in the supernatant of the urine. 
Even after seven cycles of freezing and thawing or a 72 h 
long storage at room temperature, miRNA levels in the 
urine remained unchanged.56

Generally, urine samples contain lower levels of pro-
teins than blood-based samples, thus reducing protein 
interference during RNA isolation. However, in the kid-
ney, there is a large amount of nucleases, including RNases, 
which could lead to the degradation of long-chain RNAs 
that are unstable in these conditions. In contrast to RNAs, 
miRNAs are more resistant to nuclease degradation mainly 
because of their smaller size.

Quantity and quality of urinary miRNAs are the basic 
features that could influence further analyses. Nowadays, 
there are no standardized criteria for quality assessment of 
RNA purified from blood or other body fluids, creating a 
lack of solid data assessing the application of metabolic 
signature in urinary samples for the detection of systemic 
disease.57

Urinary miRNAs in non-oncologic 
conditions: a brief state of the art

Cardiovascular disease

Recently, the diagnostic role of miRNAs has been success-
fully explored in several settings, such as cardiovascular 
disease.58 A systematic search of published original 
research until 2016 yielded a total of 72 studies, investigat-
ing the potential use of miRNAs as diagnostic and/or prog-
nostic biomarkers in plasma and/or serum in patients with 
atherosclerosis, coronary artery disease, and acute coro-
nary syndrome, and overall 52 different miRNAs were 
reported as effective. The investigation of miRNAs in the 
urine of patients affected by acute myocardial infarction 
reported interesting results.59 Historically, no good bio-
markers are identified in urine after acute myocardial 
infarction, because the blood protein biomarkers creati-
nine phosphokinase–muscle band (CPK-MB), troponin 

T (TnT), and troponin I (TnI) which are currently used as 
biomarkers for acute myocardial infarction are difficult to 
be filtered in the urine. The authors showed that urine 
miR-1 was significantly increased in patients with acute 
myocardial infarction compared to age and sex-matched 
healthy controls (p < 0.05) and a positive correlation was 
demonstrated between serum TnT and urine miR-1 levels 
(r = 0.70, p < 0.05).

Rheumatology

Recent studies showed that miRNAs play an important 
role in the regulation of the immune system and in the 
pathogenesis of autoimmune diseases. The role of miR-
155 has been extensively studied in the immune sys-
tem.60–62 Mice lacking miR-155 are viable and fertile but 
are deficient in lymphocyte development and generation 
of B- and T-cell responses after B-cell receptor or T-cell 
receptor activation. Also, dendritic cells in miR-155-defi-
cient mice have been shown to have an impaired antigen-
presenting function63 supporting the importance of 
miR-155 in the immune cells. In men, it has been demon-
strated that patients with systemic lupus erythematosus 
express lower serum miR-146a (p < 0.05) and miR-155 
levels and higher urinary level of miR-146a (p < 0.05). 
 Estimated glomerular filtration rate correlates with both 
the serum miR-146a (r = 0.519, p = 0.001) and miR-155 
(r = 0.384, p = 0.014).64

Kidney injuries

Unlike liver-specific expression of some miRNA (e.g. 
miR-122), there are no renal-specific miRNAs. However 
the uptake from the blood stream by the renal proximal 
tubular epithelial cells allows for a targeted delivery to the 
kidney. The renal damage (nephropathy) from diabetes is 
currently diagnosed and monitored by urinary microalbu-
minuria. However, microalbuminuria is not specific to dia-
betic nephropathy. Furthermore, tissue damage and 
inflammation may have already occurred at the time of 
detectable microalbuminuria. Biopsy is the present diag-
nostic and prognostic gold standard test despite its inva-
siveness and cost. In this scenario, the use of urinary 
miRNAs as disease biomarkers provides the additional 
advantages of a new non-invasive testing. Argyropoulos 
et al.65 identified a panel of 27 differentially regulated uri-
nary miRNAs that varied with diabetic nephropathy pro-
gression. Differential urinary miRNA expression profiles 
have also been studied in other kidney diseases, such as 
renal fibrosis and immunoglobulin A (IgA) nephropaty66 
and acute kidney injury.67 MiR-21, the miR-29 family, and 
miR-93 have shown to be downstream mediators of the 
transforming growth factor-1 (TGF-1) in patients with IgA 
nephropathy. Particularly, the urinary miR-93 level signifi-
cantly correlated with glomerular scarring (r = −0.392, 
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p = 0.010) and glomerular filtration rate significantly cor-
related with urinary levels of miR-21 (r = 0.338, p = 0.028), 
miR-29b (r = 0.333, p = 0.031), and miR-29c (r = 0.304, 
p = 0.050.66

Dermatology

A panel of miRNAs was identified to be overexpressed in 
cells from skin lesions from patients affected by atopic 
dermatitis.68 Also, miR-203 is downregulated in the urine 
of children with atopic dermatitis as compared to healthy 
controls (p = 0.05) and has recently been reported to serve 
as a biomarker for the severity of inflammation. A receiver 
operating characteristic (ROC) curve analysis was per-
formed and the area under the curve (AUC) for this miRNA 
was 0.6821.69

Obstetrics

In 2008, Chim et al.,70 first, investigated the role of miR-
NAs as a potential biomarker for pathologic pregnancy.70 
Later, it has been demonstrated that circulating tropho-
blast-derived miRNAs reflected the physiological status of 
the pregnancy and could be used diagnostically.71 A miR-
NAs urine profile has been explored in pregnant women 
with intrahepatic cholestasis (ICP) in order to identify a 
potential biomarker. Comparing the ICP patients and the 
healthy controls, 24 miRNAs presented significantly dif-
ferent expression levels. Among them, 15 miRNAs were 
upregulated (p < 0.05) and 9 were downregulated (p < 0.05) 
in the ICP group.72

Neurology

Despite the recent interesting findings of circulatory miR-
NAs in the neurologic setting, such as in Alzheimer’s dis-
ease,73 multiple sclerosis,74 and Parkinson’s disease,75 the 
evaluation of these markers in the urine or in the cephal-
orachidian fluid is still in a primordial phase.

Liver

The use of circulating miRNAs as biomarkers has been 
assessed in liver disorders, such as drug-induced liver 
injury,76 chronic viral hepatitis,77,78 HCC,79 and non-alco-
hol-related fatty liver disease.80 Conversely, the investiga-
tion of urinary miRNAs in liver disorders has been 
performed only in the oncologic field.

Urinary miRNAs in solid tumors

Few studies have been conducted mainly in the urologic 
setting to detect the presence of urinary miRNAs in differ-
ent types of cancers.81 During pathological processes like 
malignant diseases, the RNA turnover is faster than nor-
mal, which results in higher nucleosides’ levels in the 

blood and urine. The modified nucleosides do not undergo 
the same processes as in normal conditions and are usually 
excreted intact into the urine.

It has been noticed that upregulated or downregulated 
levels of specific urinary miRNA are significantly higher in 
people affected by non-gynecologic (Table 1) and gyneco-
logic (Table 2) solid tumors, compared to healthy controls. 
In particular, while the assessment of a single nucleoside 
might result in poor predictability, association of a set of 
miRNAs from urine samples in addition to traditionally 
adopted cancer biomarkers appears to increase both the sen-
sitivity and specificity in detecting cancer at an early stage.

Deregulation of miRNAs has been first noticed in HCC. 
A study that was conducted in high-risk–hepatitis C 
patients in Egypt demonstrated that despite the poor pre-
dictive values of the findings, the sensitivity of miR-650 
and the specificity of the mir-618/miR-650 combination 
were greatly improved compared to the alpha-fetoprotein 
(AFP)-level-based detection method (sensitivity of 68% 
and specificity of 75%). The proposed HCC miRNA sig-
natures may be of great value for the early diagnosis of 
HCC before the onset of the disease among high-risk hepa-
titis C virus (HCV)-infected patients.89 Similarly, with the 
aim to assess the diagnostic value of urine miRNAs in 
bladder cancer, a recent meta-analysis has documented 
that a combination of miRNAs, in blood and urine, may 
represent non-invasive biomarkers for an early diagnosis 
of bladder cancer.106

MiRNAs in ovarian cancer

Circulating miRNAs

The most commonly and widely used biomarkers in OC 
are serum CA-125 and HE4. However, as per the screening 
tool they both are unsatisfying in terms of sensitivity and 
specificity, even when their use is integrated with imaging 
screening methods and clinical evaluation.

MiRNAs have been investigated in OC given their 
proven alteration in other solid tumors. Indeed, OC is char-
acterized by a wide-scale deregulation of miRNAs that has 
resulted mostly in downregulation through both the genetic 
and epigenetic mechanisms as shown by Zhang et al.107 
Shahab et al.108 identified 33 overexpressed and 9 underex-
pressed miRNAs that differentiate OC from the normal 
ovarian surface epithelium. In particular, miRNAs from 
the miR-200 family were underexpressed in the normal 
human ovarian surface epithelium and overexpressed in 
OC (p < 0.05).

Different expression of miRNAs has been investigated 
in different histological types of OC. Wyman et al.109 found 
a set of 124 differentially expressed miRNAs in cancer 
samples as compared to healthy controls, and 38 miRNAs 
were differentially expressed across histologic subtypes of 
OC. Calura et al.110 performed a study on 257 snap-frozen 
stage I epithelial OC biopsies that led to the identification 
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Table 1. Urinary miRNAs in solid tumors.

Authors Tumor Study groups Upregulation Downregulation Sensitivity (%) Specificity (%)

Hanke et al. (2010)82 Bladder P: 18
C: 18

miR-126
miR-182

– 72 82

Yamada et al. (2011)83 Urothelial P: 100
C: 44

miR-96
miR-183

– 71
74

89.2
77.3

Ahumada-Tamayo et al. 
(2011)84

Prostate P: 9
C: 9

miR-196b
mir-5743p
miR-7c
miR-7d
miR-7e
miR-7g
miR-200b
miR-149
miR-20b
miR-17
miR-184
miR-20a
miR-106a

miR-150
miR-328

NR NR

Haj-Ahmad et al. 
(2014)85

Prostate P: 8
B: 22

miR-1825 miR-484 45 75

Miah et al. (2012)86 Bladder P: 68
C: 53

miR-15b
miR-135b
miR-1224-3p
other miRNAs

– 94.1
NS

51
NS

Snowdon et al. (2012)87 Bladder P: 8
C: 5

miR-126
miR-125b

– 80 100

Wang et al. (2012)66 Bladder P: 51
C: 24

miR-155 miR-192
miR-200 family
miR-192

NR
100
NS

NR
52.6
NS

Yun et al. (2012)56 Bladder P: 207
C: 144

– miR-145
miR-200

77.8
84.1

61.1
61.1

Von Brandenstein et al. 
(2012)88

Kidney P: 23
C: 5

miR-15a – NR NR

Abdalla et al. (2012)89 Liver P: 106
C: 12

miR-625
miR-532
miR-618

miR-516-5p
miR-650

58 75

Bryant et al. (2012)90 Prostate P: 118
C: 17

miR-107
miR-574-3p

– 67 43

Kim et al. (2013)91 Bladder P: 138
C: 144

miR-214 – NR NR

Megual et al. (2013)92 Bladder P: 181
C: 136

miR-187
miR-18a
miR-25
miR-92a

miR-142-3p
miR-140-5p
miR-204
miR-125b

84.8
NS
NS
84.9

86.5
NS
NS
74.1

Tolle et al. (2013)93 Bladder P: 36
C: 19

miR-155b-5p
miR-618

– 85
70

68.4
68.4

Srivastava et al. 
(2013)94

Prostate P: 36
C: 12

– miR-205
mir-214

89 80

Zhou et al. (2014)95 Bladder P: 112
C: 78

miR-106b – 76.8 72.4

Zang (2014)96 Bladder P: 6
C: 3

– miR-99a
miR-125b

86.7
81.4

81.1
87

Sapre et al. 2014)97 Prostate P: 16
P/C: 17

miR-16
miR-201
miR-222

– NR NR

Korzeiniewski et al. 
(2015)98

Prostate P: 71
C: 18

miR-483-5p – NR NR

(Continued)
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of robust miRNA markers for clear cell and mucinous histo-
types. The clear cell histotype is characterized by a five-fold 
higher expression of miR-30a and miR-30a, whereas the 
mucinous histotype has five-fold higher levels of miR-
192/194.110 In another study, 18 miRNAs distinguished clear 
cell carcinoma from high-grade serous carcinoma. Among 
these, miR-509-3-5p, miR-509-5p, miR-509-3p, miR-
508-5p, and miR-510 were strong differentiators; high miR-
200c-3p expression was associated with poor progression-free 
survival (PFS; p = 0.031) and overall survival (OS; p = 0.026) 
in patients with high-grade serous carcinoma.111

Taylor et al. demonstrated that microRNA profiles 
(miR-21, miR-141, miR-200a, miR-200c, miR-200b, 
miR-203, miR-205, and miR-214) of ovarian tumors com-
pared to those of tumor exosomes isolated from the same 
patients were similar (correlations from 0.71 to 0.90). 
Whereas exosomes miRNAs were detectable also in 
patients with benign ovarian disease as well (although sig-
nificantly distincted from profiles observed in OC), they 
have not been detected in healthy controls.112

Later, the interplay of circulating miRNA expression in 
cancer has also been investigated with other molecules, 
such as Vitamin D.113 The progressive enrichment in exist-
ing information related to OC biology has convincingly 
revealed that Vitamin D may induce expression of miRNAs, 
thus mediating inhibitory effects on cell proliferation.114

The identification of the miRNAs that significantly 
affect the tumor marker profile was a process that occurred 
gradually. Following, we reported the principal results.

Through qRT-PCR, Resnick et al.115 compared the 
serum of OC patients with that of healthy controls and 
found miR-21, miR-29a, miR-92, miR-93, and miR-126 to 
be significantly overexpressed (p < 0.01), whereas miR-
99b, miR-127, and miR-155 levels were underexpressed in 
the former group (p < 0.01).

In 2010, 24 blood samples from patients suffering from 
relapsed OC were evaluated and compared with blood 
samples of 15 normal subjects; expression levels of four 
miRNAs were significantly different between the two 
groups with miR-30c1 being upregulated in OC patients 

Table 2. Urinary miRNAs in gynecologic malignancies.

Authors Tumor Study groups Upregulation Downregulation Sensitivity (%) Specificity (%)

Erbes et al.52 Breast P: 24
C: 24

miR-155 miR-21
miR-125b
miR-451

83.3 87.5

Záveský et al.54 Ovarian and 
endometrial

P: 16
C: 13

miR-92a
miR-200b

miR-106b
miR-100

NR NR

Zhou et al.53 Ovarian P: 39
C: 50

miR-30a-5p 37 different  
miRNAs

NR NR

MiRNA: microRNA; P: cancer; C: control group (benign disease and/or healthy people); NR: not reported.

Authors Tumor Study groups Upregulation Downregulation Sensitivity (%) Specificity (%)

Stephan et al. (2015)99 Prostate P: 38
C: 38

miR-183
miR-205

– NR NR

Debernardi et al. 
(2015)100

Pancreas P: 46
C: 55

miR-143
miR-30-e

– 83.3 96.2

Yun et al. (2015)101 Prostate P: 99
B: 51

hsv1-miR-H18
hsv2-miR-H9-5p

– NR NR

Eissa et al. (2015)102 Bladder P: 188
C: 170

miR-210
miR-10b
miR-29c

– 71.3
80.9
71.3

91.1
91.1
88.9

Wang et al. (2015)103 Bladder P: 372
C: 69

miR-214 – 90.5 65.6

Salido-Guadarrama 
et al. (2016)104

Prostate P: 73
C: 70

miR-100/200b – NR NR

Sasaki et al. (2016)105 Bladder P: 28
C: 19

miR-146a-5p
miR-301b
miR-563

– 100%
NR
NR

53.3%
NR
NR

MiRNA: microRNA; P: cancer; C: control group (benign disease and/or healthy people); NR: not reported; NS: not significant; P/C: control group: 
low risk.

Table 1. (Continued)
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and miR-342-3p, miR-181a, and miR-450b-5p being 
downregulated (p < 0.05).116 Based on the miRNA profile, 
the discrimination between blood samples of OC patients 
and healthy controls has been estimated to reach an accu-
racy of >76%. When only serous subtypes were consid-
ered and compared with the extended group, the accuracy, 
the specificity, and the sensitivity increased to >85%.116

Interestingly, Zheng et al.,117 in 2013, in a larger sample 
analysis (360 epithelial OC patients and 200 healthy con-
trols), observed that the plasma levels of miR-205 were 
significantly higher and those of let-7f in samples from OC 
patients than controls; combination of these two miRNAs 
with serum CA 125 additionally improved the accuracy of 
the detection. Similarly, serum HE4 and miR-21 have 
shown a positive correlation (r = 0.663, p < 0.0001).118 
Furthermore, in the same study, a significant positive cor-
relation between the relative expression levels of miR-21 
(tumor/adjacent tumor tissue) and tumor grade has been 
found (r = 0.608, p < 0.0001), with an expression of miR-21 
in tumor grade IV lesions which is significantly higher 
than that in tumor grade II–III lesions (p = 0.0002).118 This 
finding suggests that miR-21 may be involved in the inva-
sion and metastasis of tumor cells, and it may be a marker 
for poor prognosis of OC.

MiR-200a, miR-200b, and miR-200c were significantly 
elevated in the serum of 28 patients affected by serous epi-
thelial OC when compared to controls (p < 0.05) even in 
the study led by Kan et al.50 A multivariate model combin-
ing miR-200b and miR-200c gave the best predictive 
power to discriminate serum from OC patients and healthy 
subjects, suggesting that the evaluation of a set of miRNAs 
rather than a single one could improve the sensitivity and 
specificity.50

In 2014, Shapira et al., compared control plasma with 
pre-surgical plasma from patients with OC, found that 19 
miRNAs were underexpressed and 3 overexpressed in 
patients with cancer. However, only six of them—miR-
106b, miR-126, miR-150, miR-17, miR-20a, and miR-
92a—were able to distinguish between plasma from cancer 
patients and healthy control. Significant difference was 
found in the expression of five miRNAs in women with 
short and long overall survival (miR-720, miR-20a, miR-
223, miR-126_3p, and miR-1290 were highly expressed in 
women with short overall survival (<2 years) compared to 
women with longer overall survival; p < 0.05).119

Interestingly, the assessment of circulating miRNAs 
could be useful not only in the early detection of the dis-
ease but also as a biomarker of the response to treatment 
and drug resistance. Benson et al.120 investigated the 
expression levels of miRNAs in patients before and after 
chemotherapy. Of 13 miRNAs, 10 (miR-193a-5p, miR-
375, miR-339-3p, miR-340-5p, miR-532-3p, miR-
133a-3p, miR-25-3p, miR-10a-5p, miR-616-5p, and 
miR-148b-5p) displayed changes in the concentration 
ranging from −2.9- to 4-fold (p < 0.05) in recurrent 

platinum-resistant OC patients, and concentrations of 
miR-148b-5p was correlated with the PFS (p < 0.05). Zhu 
et al. proposed that miRNA expression patterns may play 
an important role in drug resistance among OC. They 
investigated the relationship between resistance to pacli-
taxel and miRNA expression showing that expression of 
the miR-134 gene cluster is significantly lower in the 
paclitaxel-resistant cell line than in the paclitaxel-sensitive 
cell line, while the expression of the miR-17-92 gene clus-
ter is significantly higher in the paclitaxel-resistant cells. 
An analysis of miRNA target–gene protein expression also 
revealed that several targets of miR-17-92 are significantly 
altered between the two cell types. These findings sug-
gested that the higher expression of miR-17-92 and lower 
expression of miR-134 and the associated alterations of the 
target gene expression may be associated with the drug-
resistant nature of some OCs.121

Recently, the Multicenter Italian Trials in Ovarian 
Cancer (MITO)-group identified 35 miRNAs that pre-
dicted risk of progression or relapse in OC patients and 
used them to create a prognostic model, the 35-miR-based 
predictor of Risk of Ovarian Cancer Relapse or progres-
sion (MiROvaR). It allows classifying patients into a high-
risk group (89 patients with a median PFS of 18 months 
(95% confidence interval (CI): 15–22)) and a low-risk 
group (90 patients with a PFS of 38 months (24–not esti-
mable), hazard ratio (HR): 1.85, 95% CI: 1.29–2.64, 
p = 0.00082). MiROvaR represents a significant predictor 
of progression in the two validation sets (OC263—HR: 
3.16, 95% CI: 2.33–4.29, p < 0.0001 and OC452—HR: 
1.39, 95% CI: 1.11–1.74, p = 0.0047) and maintains its 
independent prognostic effect when adjusted for relevant 
clinical covariates using multivariable analyses (OC179—
adjusted HR: 1.48, 95% CI: 1.03–2.13, p = 0.036; OC263—
adjusted HR: 3.09, 95% CI: 2.24–4.28, p < 0.0001; and 
OC452—HR: 1.41, 95% CI: (1.11–1.79), p = 0.0047).122

Urinary miRNAs

In OC, two important studies have investigated the role of 
urinary miRNAs.53,54 Záveský et al.54 examined the expres-
sion of cell free urine miRNAs in OC and endometrial can-
cer patients. They enrolled patients with epithelial OC, 
fallopian tube cancer, endometrial cancer, and benign 
diagnosis undergoing gynecological surgery secondary to 
the suspected diagnosis of ovarian and endometrial can-
cers. They compared the expression between pre- and 
post-surgery OC samples, and they aim to find out whether 
cell-free miRNAs may be detected and differentially 
expressed in urine of patients particularly with OC and 
endometrial cancers as compared to control patients. In 
total, 18 miRNAs were tested. The results showed that 
four miRNAs (miR-92a, miR-200b, miR-106b, and miR-
100) were significantly differentially expressed between 
OC and control samples. The miR-92a and miR-200b were 
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upregulated, and miR-106b along with miR-100 was 
downregulated in cancer samples as compared to control 
samples. The limitation of this study consisted in the 
reduced number of overall tested samples.

Another attempt to investigate the expression on miR-
NAs in the urine of OC patients was made by Zhou et al.,53 
who collected and compared urine samples from 39 ovar-
ian serous adenocarcinoma patients, 26 patients with 
benign gynecological disease, and 30 healthy controls in 
order to determine the clinical value of urinary mRNAs in 
the detection of ovarian serous adenocarcinoma. The 
results were promising: the miRNAs microarray data 
showed that only miR-30a-5p was upregulated and 37 
miRNAs were downregulated in the urine samples of ovar-
ian serous adenocarcinoma patients when compared to 
healthy controls. The upregulation of urinary miR-30a-5p 
was closely associated with early stage ovarian serous 
adenocarcinoma and with metastatic disease to the lymph 
nodes. Furthermore, urinary miR-30a-5p from OC patients 
was notably reduced following the surgical removal of the 
cancer, suggesting that urinary miR-30a-5p was derived 
from the ovarian serous adenocarcinoma tissue. The same 
pattern was not observed in other solid tumors such as gas-
tric cancer and colon–rectal carcinoma patients suggesting 
that the upregulation of urinary miR-30a-5p may be spe-
cific for ovarian serous adenocarcinoma.53

Despite these interesting and promising findings, fur-
ther studies need to be carried out in larger scales to better 
assess the significance and the role of urinary miRNAs in 
OC patients.

MiRNAs in breast cancer

Circulating miRNAs

In BC, the data show a potential role of deregulated miRNAs 
as modulators of carcinogenesis, proliferation, apoptosis, 
and drug-resistance.123–125 Their presence in serum and 
plasma suggest that they could represent as potential novel 
biomarkers for early detection and outcome prediction. Nine 
miRNAs are actually relevant in discriminating BC from 
healthy controls or as predictors in therapy response (miR-
21, miR-34a, miR-125b, miR-155, miR-195, miR-200b, 
miR-200c, miR-375, and miR-451).52 High expression of 
circulating miR-34a and miR-155 in serum was associated 
with primary metastatic BC (p < 0.05) and high miR-34a lev-
els correlated with an advanced stage of disease (p = 0.01).126 
Furthermore, a significant correlation between serum miR-
122 and miR-375 levels and neoadjuvant chemotherapy 
response in locally advanced BC has been documented.127

Upregulation of miR-125b serum levels in BC patients 
significantly discriminates BC patients from healthy con-
trols, and it is able to predict chemotherapeutic resist-
ance.49,128 MiRNAs may have a potential role in the 
therapeutic setting as well: the capability of miR-200 

family in blocking tumor angiogenesis by the inhibition of 
the epithelial–mesenchymal transition may represent a 
potential relevant therapeutic strategy and a predictive 
parameter in BC therapy.129

Finally, the expression of circulating miRNAs in BC 
has also been correlated with the presence of circulating 
tumor cells (CTCs). Higher expression levels of miR-200b 
and miR-200c were observed in serum from CTC-positive 
metastatic BC patients compared to CTC-negative patients, 
suggesting them as indicators for CTC-status and as a 
prognostic marker in metastatic BC.128

In the recurrent setting, seven miRNAs were found to 
be differentially expressed in BC patients with and without 
recurrences. Four miRNAs were upregulated (miR-21-5p, 
miR-375, miR-205-5p, and miR-194-5p) and three miR-
NAs were downregulated (miR-382-5p, miR-376c-3p, and 
miR-411-5p).130

Urinary miRNAs

Before miRNAs were detected in the urine of patients with 
BC, numerous studies had already shown alteration of the 
urinary nucleoside concentration in these patients.

However, based on the results achieved in the other 
malignancies, the interest has been restricted from the uri-
nary nucleosides to the miRNAs, secondary to the poor 
specificity of the urinary nucleosides in detecting and dif-
ferentiating cancer.

The only available study published so far has evaluated 
the differences found in the expression of four 
BC-associated miRNAs quantified as median miRNA 
expression levels.52 Urinary miR-155 levels were signifi-
cantly higher in BC patients as compared to healthy con-
trols (1.49 vs 0.25, p < 0.001). In contrast, as compared to 
healthy controls, BC patients exhibited significantly lower 
urinary levels of miR-21 (2.27 vs 5.07, p < 0.001), miR-
125b (0.71 vs 1.62, p < 0.001), and miR-451 (0.02 vs 0.59, 
p = 0.004). Higher sensibility and specificity appear to be 
associated with the evaluation of a set of urinary miRNAs 
rather than a single one and through the integration of 
serum levels of traditionally used tumor biomarkers.

MiRNAs and BRCA mutations

Recent studies have demonstrated a relationship between 
BRCA mutations (BRCAm) and miRNAs, particularly 
BRCA1. BRCA1 regulates the expression of miRNAs, 
which may in turn regulate the expression of BRCA1.131,132

Seven miRNAS targeting BRCA1 with upstream signal 
have been identified, these include miR-182,133 miR-
146a,134 miR-146-5p,135 miR-15a, miR-16,136 miR-638,137 
and miR-17;138 in addition, six miRNAs targeted by 
BRCA1 with upstream signal have been identified, these 
include miR-155,60,61 miR-148, miR-152,139 miR-205,140 
miR-99b, and miR-146a.141,142 This list of BRCA regulated 
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miRNAs suggests that loss of BRCA1 can upregulate 
oncogenic miRNAs or downregulate tumor-suppressive 
miRNAs, and it opens a new scenario that may lead to the 
development of new targeted therapies. Furthermore, 
because miRNAs often act as downstream effectors of pro-
tein kinases or driver genes mutated in cancer, targeting 
miRNAs may represent a strategy to increase specificity 
and overcome drug resistance.

The use of miRNA agents, such as an upregulating 
oncogenic miRNA antagomirs or downregulating tumor-
suppressive miRNAs mimic, in BRCA1-associated can-
cer, for instance, would be of great interest. Furthermore, 
the combination of these miRNA agents with other thera-
peutic drugs might be a useful strategy for treating 
BRCA1-associated human cancers, including BC and OC.

As of now, the differentiation between BRCAm and 
wild type cancer patients based on urinary miRNAs has 
not been investigated yet. We are currently investigating 
this possibility in OC patients.

Conclusion

Since the identification of circulating miRNAs in OC and 
BC patients, and of the correlation with clinical data and 
prognosis, attempts have been made to identify miRNAs 
in other biological fluids. Urine seems to be a potential 
source of biomarker in several diseases, including solid 
tumors. Although preliminary, identification of different 
specific urinary miRNAs in OC and BC is giving promis-
ing results in diagnostic setting. Furthermore, because 
miRNAs act as key molecule downstream of oncogenic 
pathways involved in cancer progression, it provides the 
rationale for their use as also promising target for therapy.
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