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Abstract

We apply the finite dimensional approximation techniques of Furuta,

Kronheimer, and Manolescu to give a new proof of a result of Jaffe and

Taubes.
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1 Introduction

The vortex equations are the absolute minima of the Yang-Mills-Higgs func-
tional. For a unitary line bundle L over a Riemann surface let A be the space
of unitary connections of L and Ω(L) be the space of smooth sections of L then
the Yang-Mills-Higgs functional YMH : A× Ω(L) → R is defined as

YMH(A, v) =

∫

Σ

(

|FA|2 + |∇Av|2 +
1

4
(1− |v|2)2

)

dvol.

Its absolute minima

∂̄Av = 0 (1)

∗FA =
1

2

(

|v|2 − 1
)

are the vortex equations. The Yang-Mills-Higgs functional is invariant under the
action of the gauge group G = C∞(Σ, S1) and hence so are the vortex equations.

For the case Σ = C the moduli spaces for the vortex equations were com-
pletely described by Jaffe and Taubes, see [17]. For solutions (A, v) of the vortex
equations on C satisfying an appropriate decay condition at infinity, it turns out
that the vortex number

N =
1

2π

∫

C

FA

is an integer. Jaffe and Taubes proved that the moduli space of vortices with
vortex number N modulo gauge is given by the N -fold symmetric product

{(1) : vortex number = N}/G ∼= SN
C ∼= C

N .

The case for compact Riemann surfaces Σ was studied by Bradlow and Garcia-
Prada, see [1, 10]. In the compact case the vortex number is

N = 〈c1(L), [Σ]〉

and the moduli space was determined by Bradlow and Garcia-Prada

{(1) : vortex number = N}/G ∼=
{

SNΣ N < vol(Σ)/4π
∅ N > vol(Σ)/4π.

If N = vol(Σ)/4π then solutions of (1) necessarily satisfy v ≡ 0. In this article
we consider the case where Σ = Z is the cylinder. We prove

Theorem A The moduli space N -vortices on the cylinder modulo gauge is SNZ.

We do not claim originality for this theorem since the methods of Jaffe and
Taubes for the complex plane could also be used to determine the vortices on
the cylinder. However, we will present in this paper a new approach for proving
existence of PDE’s by using the finite dimensional approximation techniques of
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Furuta, Kronheimer, and Manolescu [9, 20, 23].
The idea of this new method is the following. Solutions of the vortex equa-
tions on the cylinder can be interpreted as flow lines of an action functional A
defined on an infinite dimensional space L . We consider a finite dimensional
approximation L ⊂ L and homotop the flow lines of A to the flow lines of A|L.
Since L is finite dimensional the flow lines of the restricted action functional are
solutions of an ODE. This enables us to translate the question of existence of a
PDE to the question of existence of an ODE.
However, to prove existence of finite energy Morse flow lines on a noncompact
manifold is still a hard task. To do that we will take advantage of the fact that
the restriction of our action functional to the finite dimensional approximation
has the form of a Lagrange multiplier functional. It is well known from basic
calculus that critical points of a function under a constraint can be found by
considering the Lagrange multiplier functional. However, the Morse flow lines
of the Lagrange multiplier functional and the Morse flow lines of the function
restricted to the constraint are in general quite different. We will develop a the-
ory which shows how they can be homotoped to each other. This theory allows
us to translate the question of existence of Morse flow lines on a noncompact
manifold to the question of existence of Morse flow lines on a compact manifold.

This paper is organized as follows. In Section 2 we prove Theorem A using
finite dimensional approximation modulo the theory of Morse functions with
Lagrange multipliers. In Section 3 we discuss further examples were our meth-
ods could be applied. In the Appendix we discuss the Theory of Morse functions
with Lagrange multipliers.

Acknowledgements: I would like to thank Kaoru Ono for pointing out to me
that the finite dimensional approximation techniques of Furuta, Kronheimer,
and Manolescu can be applied to the vortex equations on the cylinder. The
final part of this paper was written at FIM of ETH Zürich. I wish to thank FIM
for its kind hospitality.
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2 Proof of Theorem A

2.1 The gradient equation

The standard circle action on C given by

z 7→ eiθz, eiθ ∈ S1

is Hamiltonian with respect to the standard symplectic structure ω = dx ∧ dy
on C. A moment map for the action is given by

µ(z) = − i

2
|z|2 + i

2
∈ iR = Lie(S1).

We consider the loop space

L = C∞(S1,C× iR)

and define the action functional A : L → R by

A(v, η) =

∫ 1

0

λ(v)(∂tv) +

∫ 1

0

〈µ(v), η〉dt (2)

where λ = ydx is the Liouville one-form on C satisfying dλ = −ω. The first
term in (2) is just Floer’s action functional on the loop space C∞(S1,C),

Afl(v) =

∫ 1

0

λ(v)(∂tv)

where the second term may be thought of as a Lagrange multiplier to the con-
straint µ−1(0).

The gauge group
H = C∞(S1, S1)

acts on (v, η) ∈ L by

h∗(v, η) = (hv, η − h−1∂th), h ∈ H.

The differential of the action functional dA and the L2-metric gL2 on L are
invariant under the gauge action and hence also the gradient flow lines of ∇gL2A
which are solutions (v, η) ∈ C∞(R× S1,C× iR) of the following PDE

∂sv + i∂tv + iηv = 0 (3)

∂sη + µ(v) = 0.

Solutions of (3) are solutions of (1) in radial gauge. One has a natural bijection

{(1)}/G ∼= {(3)}/H

by setting A = ηdt + ζds and using a gauge transformation g ∈ G such that
g∗ζ = 0.
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Remark 2.1 There is a straightforward generalization of the action functional
(2) to general Hamiltonian group actions on symplectic manifolds. The gradient
flow lines of these action functionals are the symplectic vortex equations [2, 3, 7]
which reduce in the special case of a circle action on 1-dimensional complex space
to the classical vortex equations.

Since the Marsden-Weinstein quotient µ−1(0)/S1 is just a point, the critical
manifold of A is homeomorphic to the gauge group H. In particular,

π0(crit(A)) ∼= π0(H) ∼= π1(S
1) ∼= Z

which enables us to recover the vortex number in this setting. The vortex
number of a solution of (3) is proportional to the energy via

N =
1

π
lim
s→∞

(

A
(

(v, η)(s, ·)
)

−A
(

(v, η)(−s, ·)
)

)

=
1

π
E(v, η)

We denote by VN the moduli space of N -vortices on the cylinder, i.e. gradient
flow lines of ∇gL2

A modulo gauge which converge at the ends to connected
components of crit(A) of difference N ∈ Z. The following theorems follow from
the results in [2].

Theorem 2.2 (Regularity) The moduli spaces VN are smooth manifolds of
dimension 2N .

Theorem 2.3 (Compactness moduli breaking) Let (vν , ην) be a sequence
of N -vortices. Then there exists a subsequence νj, a sequence of gauge transfor-
mations hj ∈ H, Ni-vortices (vi, ηi) for 1 ≤ i ≤ ℓ, and sequences of real numbers

Sj
i such that the timeshifted vortices converge uniformly in the C∞

loc-topology

(hj)∗(v
νj , ηνj )(·, ·+ Sj

i ) −→j→∞ (vi, ηi)

different timeshifts diverge

lim
j→∞

|Sj
i − Sj

i′ | = ∞, i 6= i′

and the total vortex number is preserved

ℓ
∑

i=1

Ni = N.

2.2 Finite dimensional approximation

The gauge group decomposes

H = H0 ⊕ S1 ⊕ Z.

where the infinite dimensional contractible group H0 is given by

H0 =

{

g = exp(ξ) ∈ H : ξ ∈ C∞(S1, iR),

∫ 1

0

ξdt = 0

}

.
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Following Manolescu [23] we get rid of H0 by projecting the gradient equations
to the Coulomb section in L . To see how this works, observe that H0 acts freely
on L and since our gauge group is abelian we can put each η ∈ C∞(S1, iR)
into global Coulomb gauge on the circle, namely there exists a unique hη ∈ H0

such that
0 = d∗

(

(hη)∗η
)

= −∂t
(

(hη)∗η
)

.

Hence we may think of
Lc = C∞(S1,C)× iR

as a section in the principal H0-bundle L , or more precisely, we have a com-
mutative diagram

Lc

✯

ι

✲
c

L /H0

L

❄

π

where ι denotes the canonical inclusion and c denotes the bijection which is
induced by Coulomb gauge.

The L2-metric gL2 on L induces two natural metrics on Lc

g0 = ι∗gL2 , g1 = c∗[gL2 ]

where [gL2 ] denotes the quotient metric of the L2-metric on L /H0.
Abbreviate

Ac = A|Lc
.

Then H0-gauge equivalence classes of flow lines of ∇g
L2A are in natural one-

to-one correspondence with flow lines of ∇g1Ac by projection. The importance
of g0 lies in the fact that flow lines of ∇g0Ac are contained in natural finite
dimensional subspaces of the infinite dimensional space Lc. For integers µ ≤ ν
consider the Fourierapproximations

Lν
µ = {z =

ν
∑

j=µ

zje
2πij : zj ∈ C}

of the loop space C∞(S1,C). The metric g0 is just the product of the L2-metric
on C∞(S1,C) and the metric induced from the inner product on iR and hence

∇g0Ac(z, η) ∈ Lν
µ × iR ⊂ Lc, (z, η) ∈ Lν

µ × iR.

It follows that flow lines of Ac|Lν
µ×iR are actually flow lines of Ac. Moreover,

critical points of Ac are tuples

(v0e
2πimt, 2πmi), |v0| = 1, m ∈ Z
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and hence for every pair of critical points of Ac there exists a finite dimensional
approximation as above which contains both of them.

The following proposition shows that for each finite energy flow line of Ac

one can find a finite dimensional approximation such that the flow line is en-
tirely contained in it. For a set of flow lines which converge at both ends to
the same critical points there can be found a finite dimensional approximation
which contains the whole set simultanuously. However note, that since there are
infinitely many critical points of Ac there is no finite dimensional approximation
in which all finite energy flow lines lie simultanuously.

Proposition 2.4 Assume that (v, η) ∈ C∞(R×S1,C)×C∞(R, iR) is a gradient
flow line of ∇g0Ac such that

lim
s→±∞

(v, η)(s, t) = (v±e
2πim±t, 2πm±i), |v±| = 1, m± ∈ Z

where the limit is uniformly with respect to the C∞-topology. Then (v, η)(s, ·)
is contained in L

−m+

−m−
× iR.

Proof: Abbreviate µ̄(v) ∈ C∞(R, iR) by

µ̄(v)(s) =

∫ 1

0

µ(v(s, t))dt, s ∈ R.

A gradient flow line of ∇g0Ac is a solution of the following PDE

∂sv + i∂tv + iηv = 0 (4)

∂sη + µ̄(v) = 0.

Plugging in the Fourierexpansion

v(s, t) =

∞
∑

m=−∞

vj(s)e
2πijt

into the first equation of (4) we obtain for each Fouriercoefficient the ODE

∂svm(s) +
(

iη(s)− 2πm
)

vm(s) = 0. (5)

Using (5), lims→±∞ ∂svm(s) = 0, and the asymptotic behaviour of η(s), we con-
clude that vm vanishes identically unless m is contained in {−m−, . . . ,−m+}.
This proves the proposition. �

In order to homotop the PDE (3) to an ODE it remains in view of the propo-
sition above to find a homotopy between g0 and g1. This homotopy has to be
compact, i.e. the moduli spaces of finite energy flow lines should be compact
modulo breaking and modulo the remaining action of the noncompact group Z.
Moreover, we require the homotopy to be equivariant with respect to the follow-
ing torus action. There is the circle action on the target manifold C and there
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is a further circle action on the domain S1 given by rotating the circle. The two
actions commute on Lc and lead to an action of the two torus T 2 = S1 × S1

on Lc. Note that the action functional Ac, and the metrics g0 and g1 are
T 2-invariant.

Theorem 2.5 There exists a continuous family of T 2-invariant metrics gr for
r ∈ [0, 1] on Lc with the following property. Assume that for ν ∈ N there
exists a sequence of flow lines (vν , ην) of ∇grν Ac for rν ∈ [0, 1] whose energy is
uniformly bounded, i.e. there exists a constant c > 0 such that for all ν it holds

E(vν , ην) ≤ c.

Then there exists a subsequence νj, a sequence of gauge transformations hj ∈ Z,
flow lines (vi, ηi) for 1 ≤ i ≤ ℓ of ∇gr∞Ac for r∞ ∈ [0, 1], and sequences of real

numbers Sj
i such that the timeshifted vortices converge uniformly in the C∞

loc-
topology

(hj)∗(v
νj , ηνj )(·, ·+ Sj

i ) −→j→∞ (vi, ηi)

different timeshifts diverge

lim
j→∞

|Sj
i − Sj

i′ | = ∞, i 6= i′

and the total energy is preserved

lim
j→∞

E(vνj , ηνj ) =

ℓ
∑

i=1

E(vi, ηi)

Proof: We first construct a T 2-invariant homotopy between g0 and g1. In order
to do that, observe that the geometric reason that g0 and g1 are different lies
in the fact that the infinitesimal gauge action of H0 is not orthogonal to the
Coulomb section Lc with respect to the L2-metric on L . To construct the
homotopy we consider a family of H0 actions on L such that Lc is a section
for the whole family of actions but that for the final action the Coulomb section
gets orthogonal to the infinitesimal gauge action.

Taking advantage of the contractibility of the gauge group H0 we define for
r ∈ [0, 1] and h = exp(ξ) ∈ H0 the h∗r

action on (v, η) ∈ L by

h∗r
(v, η) = (exp(rξ)v, η − h−1∂th).

The deformed actions of H0 are still free on L and Lc is a simultanuous sec-
tion for the whole family of actions. For each r ∈ [0, 1] we have a commutative
diagram

Lc

✯

ι

✲
cr

L /rH0

L

❄

πr
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where L /rH0 denotes the quotient of L under the r-action of H0, πr de-
notes the according canonical projection, and cr refers to the Coulomb gauge of
the r-action. The L2-metric on L is simultanuously H0 invariant for the whole
family of actions and hence induces for every r ∈ [0, 1] a quotient metric [gL2 ]r
on L /rH0. We define

gr = c∗r [gL2]r.

It is easy to check that gr are T 2-invariant for every r ∈ [0, 1]. Moreover, for
r = 0 the Coulomb section is orthogonal to the 0-action of H0 and hence g0
defined in this way agrees with the previous definition of g0.

The gradient flow lines of Ac with respect to the metric gr are solutions of
the following problem

∂sv + ξvv + i∂tv + iηv = 0 (6)

∂sη + µ̄(v) = 0

where ξv ∈ C∞(R×S1, iR) which is determined for every s ∈ R by the conditions

∂tξv(s, ·) = r2
(

µ(v(s, ·))− µ̄(v)(s)
)

,

∫ 1

0

ξv(s, t)dt = 0.

The main difficulty for proving the compactness statement in Theorem 2.5 is
to obtain a uniform L∞-estimate independent of r ∈ [0, 1] for all finite energy
solutions of (6). This provides the following lemma.

Lemma 2.6 Let (v, η) ∈ C∞(S1×R,C)×C∞(R, iR) be a finite energy solution
of (6) for r ∈ [0, 1]. Then there exists a constant c < ∞ independent of r such
that ||v||∞ < c

Proof: Define u(s) = 1
2

∫ 1

0 |v(s, t)|2dt for s ∈ R.

Step 1: u(s) ≤ 1/2 for every s ∈ R.

Using a computation similar to the one in the proof of [3, Proposition 3.5]
we estimate

∂2
su =

∫ 1

0

(

|∂sv + ξvv|2 + |∂tv + ηv|2
)

dt+

2

∫ 1

0

〈

µ(v), (1 − r2)µ̄(v) + r2µ(v) − i/2
〉

dt

≥ 2〈µ̄(v), µ̄(v)− i/2〉
= 2〈u, u+ 1/2〉
≥ 2u(u− 1/2).

Hence if u(s0) > 1/2 for s0 ∈ R, then u cannot have a local maximum at s0.
However the finite energy assumption implies that lims→±∞ u(s) = 1/2 which

9



proves Step 1.

Step 2: There exists a constant c1 and a gauge transformation h ∈ Z such
that ||∂t(h∗v)||∞ ≤ c1||h∗v||2∞ = c1||v||2∞.

Fix some integer n > 3 and consider the finite cylinder Zn = S1 × [−n, n].
It follows from Step 1 that

||v||L2(Zn) = O(1). (7)

After a gauge transformation we may assume without loss of generality that

||η(0)|| = O(1).

Using the second equation in (6) and Step 1 we conclude that

||η||L∞(Zn) = O(1). (8)

The definition of ξv together with Step 1 implies that

||ξv||L∞(Zn) = O(1). (9)

Combining (7),(8), and (9) and using the first equation in (6) we conclude that

||∂̄v||L2(Zn) = O(1)

from which we deduce using (7) and elliptic regularity for the Cauchy-Riemann
operator

||v||W 1,2(Zn−1) = O(1). (10)

It follows from Sobolev’s embedding theorem that for every p < ∞ we have

||v||Lp(Zn−1) = Op(1) (11)

from which we deduce analogously as before

||v||W 1,p(Zn−2) = Op(1). (12)

Using (12) and the definition of ξv we conclude

||ξv||W 1,p(Zn−2) = Op(||v||∞). (13)

The Laplacian of v satisfies the equation

∆v = i(∂tξv)v + iξv(∂tv)− (∂sξv)v − ξv(∂sv) (14)

−i(∂sη)v − iη(∂sv)− η(∂tv).

Using (13) and (12) we conclude from (14) that

||∆v||Lp(Zn−2) = Op(||v||2∞)
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from which we conclude by elliptic regularity for the Laplace operator and (11)

||v||W 2,p(Zn−3) = Op(||v||2∞). (15)

Step 2 follows now from (15) and the Sobolev embedding theorem.

Step 3: Proof of the lemma.

Abbreviate vs = v(s, ·) and let ||vs||p be the Lp-norm on the circle. It fol-
lows from Step 1 and Step 2 that there exist constants c0 and c1 such that

||vs||2 ≤ c0, ||∂tvs||∞ ≤ c1||vs||2∞. (16)

We may assume without loss of generality that

|vs(0)| = ||vs||∞.

We then estimate for t ∈ S1 = R/Z using the second inequality in (16)

|vs(t)| ≥ ||vs||∞ − c1||vs||2∞|t|. (17)

Hence

||vs||2 ≥
(

2

∫ 1/(c1||vs||∞)

0

c21||vs||4∞t2dt

)1/2

=

√

2

3c1
||vs||1/2∞

from which we deduce using the second inequality in (16)

||vs||∞ ≤ 3c1
2

· c20.

This proves the lemma. �

Proof of Theorem 2.5 continued: It follows from the previous lemma that
for gradient flow lines of ∇grAc the first factor v remains in the compact 1-ball
around 0 in the complex plane. Compactness modulo breaking can now be de-
duced from the results in [2]. However note, that their arguments simplify in
our case. Since our gauge group is abelian we only need an easy version of Uh-
lenbeck’s compactness theorem. Moreover, the bubbling analysis can be avoided
for the standard symplectic structure on C by using the elliptic estimate

||v||W 1,2([−N,N ]×S1) ≤ cN
(

||∂̄v||L2([−N−1,N+1]×S1) + ||v||L2([−N−1,N+1]×S1)

)

for every N ∈ N and a constant cN > 0. �
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2.3 The maps of Jaffe and Taubes

In [17] Jaffe and Taubes defined a map from the moduli space of N -vortices on
the complex plane to the N -fold symmetric product of the complex plane and
showed that it is bijective. In this subsection we define the analogon of their
map for the gradient flow lines of ∇grAc for all r ∈ [0, 1]. We prove that for
r = 1 the map is bijective. This proves Theorem A in the introduction. As a
biproduct we will obtain the proof of the compactness statement in Theorem 2.5.

Denote by VN
r the moduli space of N -vortices with respect to the metric

gr. Then VN
1 = VN the moduli space introduced before. It is useful to write

the map of Jaffe and Taubes from VN
r to the N -fold symmetric product of the

cylinder as the composite of two maps. Denote byWN
r the space of distributions

w on the cylinder Z for which there exists N not necessarily distinct points
zj ∈ Z such that w is smooth outside of

⋃N
j=1{zj} on Z and satisfies the

following integro Kazdan-Warner type problem with singularities and prescribed
asymptotic behaviour

−∆w + r2ew + (1 − r2)

∫ 1

0

ewdt− 1 = −4π

N
∑

j=1

δ(z − zj) (18)

lim
s→±∞

w(s, t) = 0

where the limit is uniform with respect to the t-variable. Define the map
TN
r : VN

r → WN
r by

TN
r (v, η) = ln |v|2

and the map JNr : WN
r → SNZ by

J
N
r (w) = [z1, . . . , zN ].

Note that the composition JNr ◦TN
r maps a pair (v, η) to the zeros of v counted

with multiplicity. For simplicity of notation we will often drop the index 1, i.e.
JN means JN1 , etc. We prove the following two theorems.

Theorem 2.7 For every r ∈ [0, 1] and every N ∈ N the map TN
r is bijective.

Theorem 2.8 For every N ∈ N the map JN = JN1 is bijective.

As an easy corollary of the above two theorems we get Theorem A from the
introduction.

Proof of Theorem A: By Theorem 2.7 and Theorem 2.8 the map JN ◦ TN

gives a bijection for every N ∈ N between the moduli space of N -vortices on
the cylinder and the N -fold symmetric product of the cylinder. �

Remark 2.9 For r = 1 the problem (18) simplifies to the following Kazdan-
Warner type problem with singularities (see [19])

−∆w + ew − 1 = −4π

N
∑

j=1

δ(z − zj) (19)

lim
s→±∞

w(s, t) = 0.
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The bijectivity in Theorem 2.8 means that the above problem has a unique so-
lution. The hard part is to prove existence of a solution. Our existence proof is
based on finite dimensional approximation.

Proof of Theorem 2.7: Note that for r ∈ [0, 1] the action functional
Ar : L → R defined by

Ar(v, η) =

∫ 1

0

λ(v)∂tv +

∫ 1

0

〈rµ(v(t)) + (1 − r)µ̄(v), η(t)〉dt

is invariant under the r-action of H0 on L and

Ar|Lc
= Ac.

It follows that the gradient flow of Ar with respect to the L2-metric on L are in
natural one-to-one correspondence with gradient flow lines of Ac with respect to
the gr-metric on Lc by projection on the Coulomb section. Note that projection
on the Coulomb section does not change the value of ln |v|2 and hence we are
left with showing the equivalence of flow line of ∇g

L2Ar and solutions of the

problem (18). Using the notation η̄ =
∫ 1

0 η(t)dt for η ∈ C∞(S1, iR) gradient
flow lines (v, η) ∈ C∞(Z,C× iR) of Ar with respect to the L2-metric solve

∂sv + i∂tv + irηv + i(1− r)η̄v = 0 (20)

∂sη + rµ(v) + (1 − r)µ̄(v) = 0.

It is now an easy exercise to show that TN
r is well-defined, i.e. ln |v|2 of so-

lutions of (20) are solutions of the integro type Kazdan-Warner type problem
with singularities, and that for each solution of (18) there exists a unique gauge
equivalence class of N -vortices satisfying (20), for details see [17]. �

We finally embark on the prove of Theorem 2.8. We first prove a lemma.

Lemma 2.10 For every N ∈ N the map JN is injective and its image is open
and closed in SNZ.

Proof: Assume that w and w′ are two solution of the problem (19) for the same
N -tuple of singularities [z1, . . . , zN ]. Then its difference w−w′ is asymptotically
zero and ∆(w − w′) ≥ ew

′

(w − w′). Hence w = w′.
The map JN ◦ TN is a continuous, one-to-one map between manifolds of the
same dimension. Hence it is open by the Invariance of domain theorem, see for
example [13, Corollary 18.9].
To show that the image of JN is closed, assume that wν ∈ WN is a sequence
such that zν = JN (wν) converges to z ∈ SNZ as ν goes to infinity. For the
sequence of flow lines vν = (TN )−1(wν) there exists a subsequence vνj which
converges to a broken flow line. But since zν converges, the limit broken flow
line is actually unbroken. Hence vνj converges to v ∈ VN and

z = JN (TN (v)).
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Hence the image of JN is closed. �

The main work lies in the following existence statement for 1-vortices.

Theorem 2.11 V1
r is not empty for every r ∈ [0, 1].

Proof: Consider the following cylinder action on the gradient flow lines

(v, η)(s, t) 7→ (v, η)(s + σ, t+ τ), (σ, τ) ∈ Z.

1-vortices cannot break and hence V1
r/Z is compact by Theorem 2.5 for every

r ∈ [0, 1]. By Proposition 2.4 we can identify the flow lines of ∇g0Ac describ-
ing 1-vortices with Morse-flow lines on the finite dimensional approximation
L1
0. The finite dimensional approximation L1

0 can be identified with C2 via its
Fourierbasis and the T 2-action is given by

(eiθ1 , eiθ2)(z1, z2) 7→ (eiθ1z1, e
i(θ1+θ2)z2).

Denote by µL1
0
the moment map of the circle action of the first factor in S1×S1 =

T 2 given by

µL1
0
(z1, z2) = − i

2

(

|z1|2 + |z2|2
)

+
i

2
.

The restriction of the action functional

A = Ac|L1
0×iR = A|L1

0×iR ∈ C∞(L1
0 × iR)

is given by
A(v, η) = Afl(v) + 〈µL1

0
(v), η〉.

The moduli space V1
0/Z can now be identied by Proposition 2.4 with the space

of finite energy Morse flow lines of A modulo T 2×R where the group R acts by
reparametrisation of flow lines.
The space L1

0 × iR is finite dimensional but still noncompact. Using the results
of Appendix A we can homotop our Morse flow lines further to Morse flow lines
on a compact manifold. In order to do that note that the function A on L1

0× iR
is the Lagrange multiplier functional of

H = Afl|µ−1

L1
0

(0) ∈ C∞(µ−1
L1

0
(0)).

Hence finite energy Morse flow lines of A can be homotoped inside a compact
subset of L1

0 × iR to Morse flow lines of H . The manifold µ−1
L1

0
(0) is the three

sphere S3, the circle action of the first factor in T 2 = S1 ×S1 is the Hopf fibra-
tion S3 → S2 and the circle action of the second factor in T 2 acts by rotation
on the two-sphere S2. The function H induces on S2 the height function. In
particular, the action of T 2 × R on the Morse flow lines of H is free and the
quotient consists of exactly one point.
The upshot of our construction is that we can homotop the moduli space V1

r/Z

14



by a compact homotopy to a point. During this homotopy the Fredholm index
is unchanged by Proposition A.2. We are now in position to show that V1

r is
nonempty for every r ∈ [0, 1]. Assume the contrary. Then we apply the abstract
perturbation theory of [8, 21, 22, 24, 25] to our compact homotopy. Actually,
since we do not have to compactify our moduli spaces by broken flow lines
containing bubble trees, the more elementary theory of [4] is already sufficient.
What we obtain is a compact branched manifold containing just one boundary
point of weight one. But such an object does not exist. Hence V1

r is nonempty
for every r ∈ [0, 1]. �

Proof of Theorem 2.8: It follows from Floer’s gluing construction and
Theorem 2.11 that VN is not empty for every N ∈ N. Hence JN (WN ) =
JN ◦TN (VN ) is not empty in SNZ. Since the image im JN is open and closed
by Lemma 2.10 and SNZ is connected it follows that JN is surjective. Since
again by Lemma 2.10 JN is injective the theorem follows. �

3 Further directions

3.1 The symplectic vortex equations and Givental’s toric

map spaces

Instead of the circle action on C we can study more generally linear torus actions
on a complex vector space. Assume that for k ≤ n the torus T k = {eiv : v ∈ Rk}
acts on the complex vector space C

n via the action

ρ(eiv)z = eiAvz, z ∈ C
n, v ∈ R

k

for some (n × k)-matrix A with integer entries. We endow the Lie algebra of
the torus

Lie(T k) = tk = iRk

with its standard inner product. The action of the torus on C
n is Hamiltonian

with respect to the standard symplectic structure ω =
∑n

i=1 dxi∧dyi. Denoting
by AT the transposed matrix of A a moment map µ : Cn → tk is given by

µ(z) = −iATw, w =
1

2







|z1|2
...

|zn|2






, (21)

i.e.
d〈µ, ξ〉 = ιXξ

ω, ξ ∈ t
k

for the vector field Xξ on Cn given by the infinitesimal action

Xξ(z) = ρ̇(ξ)(z), z ∈ C
n.

We assume the following hypothesis,
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(H) The moment map µ is proper and T k acts freely on µ−1(τ).

It follows from (H) that the Marsden-Weinstein quotient

C
n//T k = µ−1(τ)/T k

is a compact symplectic manifold of dimension

dim(Cn//T k) = 2(n− k),

where the symplectic structure is induced from the standard symplectic struc-
ture on Cn.
Let L be the loop space

L := C∞(S1,Cn × t
k).

The gauge group
H = C∞(S1, T k)

acts on L by

h∗(v, η) = (ρ(h)v, η − h−1∂th), h ∈ H, (v, η) ∈ L .

Recall Floer’s action functional Afl : C
∞(S1,Cn) → R given by

Afl(v) =

∫ 1

0

λ(v)(∂tv)

where λ denotes the Liouville 1-form

λ =

n
∑

i=1

yidxi, dλ = −ω.

The Moment action functional A : L → R is defined by

A(v, η) := Afl(v) +

∫ 1

0

〈µ(v(t)) − τ, η(t)〉dt.

Again one may think of η in the second integral as a Lagrange multiplier. In
particular, the critical points of A are the critical points of Floer’s action on the
constraint µ−1(τ).
The gradient flow lines ofA with respect to the L2-metric gL2 on L are solutions
(v, η) ∈ C∞(R× S1,Cn × tk) of

∂sv + i∂tv + iρ̇(η)v = 0

∂sη + µ(v) = τ.

These are examples of the symplectic vortex equations on the cylinder in tem-
poral gauge.
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In this setting the symplectic vortex equations can be homotoped again
via a Floer homotopy compact up to breaking of flow lines to Morse problems
on finite dimensional compact manifolds. If one considers a finite dimensional
Fourierapproximation L of the loop space C∞(S1,Cn) then the T k-action on
C

n induces a T k-action on L by coefficientwise multiplication. This action is
again Hamiltonian with moment map µL normalized such that µL(0) = 0. The
finite dimensional compact manifolds we end up with are

GL = µ−1
L (τ)/T k

and the Morse function is again Floer’s action functional restricted to GL. The
spaces GL are known as Givental’s toric map spaces. They were introduced by
Givental in [12] and studied by different authors in [11, 15, 28].

3.2 Warped product metrics and Chern-Simons Vortices

If we consider the same action functional A : L → R as for the vortex equations
but instead of the standard flat L2-metric a warped product metric gγ for a
smooth function γ : [0,∞) → (0,∞) given by

gγ(v, η)
(

(v̂1, η̂1), (v̂2, η̂2)
)

=

∫ 1

0

〈v̂1, v̂2〉dt+
∫ 1

0

γ(|v|)2〈η̂1, η̂2〉dt

for (v, η) ∈ L and (v̂1, η̂1), (v̂2, η̂2) ∈ T(v,η)L we obtain the following gradient
equations for (v, η) ∈ C∞(R× S1,C× iR)

∂sv + i∂tv + iηv = 0

∂sη +
1

γ(|v|)2µ(v) = 0.

In particular, if we choose

γ(r) =
1

r

we obtain

∂sv + i∂tv + iηv = 0

∂sη + |v|2µ(v) = 0.

These are the selfduality equations for the Chern-Simons vortices on the cylinder
discovered by Hong-Kim-Pac and Jackiw-Weinberg, see [14, 16]. We refer the
reader to the excellent textbook of Y.Yang [29] for a detailed treatment of
this equation. This textbook may also serve as a guide to the corresponding
literature.

Note that for this choice of γ the metric γv becomes singular if v goes to
zero. One may think of this as a continuum of “critical points at infinity”
for each (0, η) where η is a smooth loop in the Lie algebra iR. In particular,
the action functional A takes on the set of “critical points at infinity” every
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value in R. The energy of flow lines which converge at one end to a “critical
point at infinity” can therefore be any value in R, in contrast to the classical
vortex equations where the energy of finite energy flow lines was quantized.
Such solutions are called in the physics literature “nontopological solutions”.
We again refer to the textbook of Y.Yang [29] and the literature cited therein
for a detailed treatment of nontopological solutions. For compact Riemann
surfaces existence of “nontopological solutions” was proved by Tarantello and
Ding-Jost-Li-Peng-Wang [5, 27]. In this case the “nontopological solutions” are
characterized by the property that v converges to 0 under the adiabatic limit
obtained by letting the Chern-Simons coupling parameter tend to zero.

On the finite dimensional approximations the Chern-Simons vortices are
flow lines of a Lagrange multiplier functional with respect to a warped prod-
uct metric. “Critical points at infinity” are responsible for the failure of the
Palais-Smale condition discussed in the appendix. So the study of flow lines
of Lagrange multiplier functionals with respect to a warped product metric is
a finite dimensional analogon of the Abelian Chern-Simons-Higgs theory and
should lead to a deeper understanding of the phenomenons occuring in this
theory.

A Morse functions with Lagrange multipliers

Assume that M is a finite dimensional manifold and V is a finite dimensional
real vector space. It is well known from basic calculus that critical points of
a smooth function f ∈ C∞(M) satisfying a constraint given by the zero set of
a smooth function h ∈ C∞(M,V ) can be found by considering the Lagrange
multiplier functional F ∈ C∞(M × V ∗), where V ∗ is the dual vector space of
V , given by

F (x, v∗) = f(x) + v∗(h(x)).

If 0 is a regular value of h then there is a natural one-to-one correspondence
between critical points of F and critical points of f |h−1(0). However, Morse flow
lines of F and Morse flow lines of f |h−1(0) may be quite different. Even if h−1(0)
is compact it is not a priori clear that the moduli spaces of flow lines of F are
compact modulo breaking since F is neither bounded from above nor below.
However, we will show that if h is locally proper around 0, then F satisfies the
Palais-Smale condition from which we can deduce that flow lines of F remain
in a compact subset of the noncompact manifold M × V ∗.

A first possibility to homotop Morse flow lines of F to Morse flow lines of
f |h−1(0) would be the adiabatic limit method. For a fixed Riemannian metric
gM on M and a fixed Riemannian metric gV ∗ on V ∗, induced from a Euclidean
scalar product on V we consider the family of metrics gǫ on M×V ∗ for ǫ ∈ (0, 1]

gǫ = gM ⊕ ǫ2gV ∗ .

If ǫ goes to zero, then the gradient flow lines of F with respect to the metric gǫ
converge to gradient flow lines of f |h−1(0) with respect to the metric gM |h−1(0).
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If a generalized implicit function theorem as in [6] can be established at ǫ = 0,
then this would lead to a homotopy compact modulo breaking between the two
moduli spaces of gradient flow lines.

In this section we will pursue another approach. We will consider a homotopy
of f and the Riemannian metric gM such that f |h−1(0) is unchanged during the
homotopy but the normal derivatives of ∇gM f at h−1(0) are homotoped to zero.
Since f |h−1(0) is fixed the critical points of the Lagrange multiplier functional
can be canonically identified with the set of critical points of f |h−1(0) during
the whole homotopy. If the normal derivatives of ∇gM f at h−1(0) vanish then
the moduli space of Morse flow lines of f |h−1(0) is canonically contained in the
moduli space of flow lines of F . We will prove that for special choices of f and
gM there are no other flow lines of F . The main idea is to choose gM in such a
way that a tubular neighbourhood of h−1(0) in M becomes very huge and then
prove that finite energy flow lines have to remain in this tubular neighbourhood.

It is natural to formulate our main theorem in the language of Morse-Bott
functions. In order to fix notation we recall briefly its definition. A function F
on a finite dimensional manifold M is called Morse-Bott if the critical set is a
submanifold of M and for each x ∈ crit(F ) we have

Txcrit(F ) = kerHF (x)

where HF (x) is the Hessian of F at x. It is well known that the Morse-Bott
condition implies that flow lines which remain in a compact set of M converge
at both ends exponentially fast to critical points of F . For a Riemannian metric
g onM we denote byM(F, g) the moduli space of finite energy flow lines of∇gF .

The main theorem of this section can now be statet in the following way.

Theorem A.1 Let M be a finite dimensional manifold, Γ be a Lie group acting
on M , and let (V, 〈 , 〉) be a finite dimensional Euclidean vector space. Assume
that gM is a Γ-invariant, geodesically complete Riemannian metric on M , h ∈
C∞(M,V ) and f ∈ C∞(M) are Γ-invariant functions satisfying the following
conditions.

• 0 is a regular value of h,

• h is locally proper around 0, i.e. there exists an open neighbourhood V0 of
0 in V such that h−1(cl(V0)) is compact,

• the restriction of f to the compact manifold h−1(0) is Morse-Bott.

Denote by V ∗ the dual vector space of V and let Γ act on M ×V ∗ by γ(x, v∗) =
(γx, v∗) for γ ∈ Γ and (x, v∗) ∈ M × V ∗. Then there exists a smooth family of
Γ-invariant Morse-Bott functions Fr ∈ C∞(M ×V ∗) for r ∈ [0, 1] and a smooth
family of Γ-invariant Riemannian metrics gr on M × V ∗ satisfying

F0(x, v
∗) = f(x) + v∗(h(x)), g0 = gM ⊕ gV ∗
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where gV ∗ is the metric on V ∗ induced from the scalar product 〈 , 〉 on V , such
that the following conditions are satisfied.

(i) The inclusion ι : h−1(0) → M × V ∗, x 7→ (x, 0) induces a bijection

ι∗ : M(f |h−1(0), gM |h−1(0)) → M(F1, g1)

defined by

ι∗y(s) = ι(y(s)), y ∈ M(f |h−1(0), gM |h−1(0)), s ∈ R.

(ii) For r ∈ [0, 1] there exists a smooth family of diffeomorphism φr : critF0 →
critFr ⊂ M × V ∗.

(iii) There exists a compact set K ⊂ M × V ∗ such that

{

y(σ) : y ∈
⋃

r∈[0,1]

M(Fr, gr), σ ∈ R

}

⊂ K.

Proof: We prove the theorem in seven steps.

Step 1 (Neighbourhood of the constraint): There exists an open neigh-
bourhood V1 of 0 in V , a Γ-invariant open neighbourhood U of h−1(0) in M ,
and a Γ-equivariant diffeomorphism

φ : h−1(0)× V1 → U

where Γ acts on h−1(0)×V1 by γ(x, v) = (γx, v) for γ ∈ Γ and (x, v) ∈ h−1(0)×
V1 such that

h(φ(x, v)) = v, (x, v) ∈ h−1(0)× V1. (22)

Since 0 is a regular value of h there exists an open neighbourhood U0 of h−1(0)
such that dh(y) is surjectiv for every y ∈ U0. For v ∈ V define the vector field
ξv on U0 by the conditions

dh(y)ξv(y) = v, ξv(y) ∈ kerdh(y)⊥, y ∈ U0

where kerdh(y)⊥ denotes the orthogonal complement of the kernel of dh(y)
with respect to the metric gM . Since h−1(0) is compact there exists an open
neighbourhood V1 of 0 in V such that for each v ∈ V1 and for each x ∈ h−1(0)
there exists a unique solution yx,v ∈ C∞([0, 1], U) of the problem

yx,v(0) = x, ∂tyx,v(t) = ξv(yx,v(t)), t ∈ [0, 1],

and the map
φ(x, v) = yx,v(1), (x, v) ∈ h−1(0)× V1
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is a diffeomorphism. Set U = φ(h−1(0) × V1). Since h and gM are Γ-invariant
it follows that γ(yx,v) = yγx,v for γ ∈ Γ and (x, v) ∈ h−1(0)×V1. Hence U is Γ-
invariant and φ : h−1(0)×V1 → U is a Γ-equivariant diffeomorphism. Moreover,
we compute

h(φ(x, v)) = h(yx,v(1))

= h(yx,v(0)) +

∫ 1

0

d

dt
h(yx,v(t))dt

= h(x) +

∫ 1

0

dh(yx,v(t))∂tyx,v(t)dt

=

∫ 1

0

dh(yx,v(t))ξv(yx,v(t))dt

=

∫ 1

0

vdt

= v.

This proves (22) and hence Step 1.

Step 2: We construct the homotopies.

In this step we construct a Γ-invariant function f1 ∈ C∞(M) and a Γ-invariant
metric gM,1 on M . We then set for r ∈ [0, 1]

fr = (1 − r)f + rf1, gM,r = (1− r)gM + rgM,1

and define the homotopy of functions Fr ∈ C∞(M × V ∗) by

Fr(x, v
∗) = fr(x) + v∗(h(x)), (x, v∗) ∈ M × V ∗

and the homotopy of metrics gr on M × V ∗ by

gr = gM,r ⊕ gV ∗ .

Choose a small number δ > 0 such that the open δ-ball Bδ = {v ∈ V :
||v|| < δ} is contained in the neighbourhood V1 of 0 in V constructed in Step 1.
Moreover, since h is locally proper at 0, we may assume that

h(x) > δ ⇒ x /∈ φ(h−1(0)×Bδ). (23)

Choose further a cutoff function β̂ ∈ C∞([0, δ), [0, 1]) such that β̂|[0,δ/2] = 1 and

β̂|[3δ/4,δ) = 0. Denote by π1 : h
−1(0)×Bδ → h−1(0) and by π2 : h

−1(0)×Bδ →
Bδ the projection to the first, respectively the second, factor. We will use the
following Γ-invariant cutoff function on M given by

β(x) =

{

β
(

|π2(φ
−1(x))|

)

x ∈ φ(h−1(0)×Bδ)
0 x /∈ φ(h−1(0)×Bδ).
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Define the function f1 ∈ C∞(M) by

f1(x) =

{

β(x)f
(

π1(φ
−1(x))

)

+
(

1− β(x)
)

f(x) x ∈ φ(h−1(0)×Bδ)
f(x) x /∈ φ(h−1(0)×Bδ).

Set
C := max

x∈h−1(0)
{f(x)} − min

x∈h−1(0)
{f(x)} (24)

and choose a constant

κ >
16C

δ2
. (25)

Let gκ be the product metric on h−1(0)×Bδ

gκ = gM |h−1(0) ⊕ κ2gBδ

where gBδ
is the standard euclidean metric on the ball Bδ ⊂ V . We are now

able to define the metric gM,1 on M by the formula

gM,1(x) =

{

β(x)(φ∗gκ)(x) +
(

1− β(x)
)

gM (x) x ∈ φ(h−1(0)×Bδ)
gM (x) x /∈ φ(h−1(0)×Bδ).

Step 3: The trace of each finite energy flow line y ∈ C∞(R,M ×V ∗) of ∇g1F1

is contained in φ(h−1(0)×Bδ/2)× V ∗.

First note that if x ∈ M \ φ(h−1(0) × Bδ/4) and v∗ ∈ V ∗ then it follows from
(22) and (23) that

||∇g1F1(x, v
∗)|| ≥ ||h(x)|| ≥ δ

4
. (26)

Observe further that the energy of a finite energy flow line is bounded from
above by the constant C introduced in (24), i.e.

∫ ∞

−∞

||∇g1F1(y(s))||2g1ds ≤ C. (27)

Now assume by contradiction that there exists σ ∈ R such that

y(σ) /∈ φ(h−1(0)×Bδ/2)× V ∗. (28)

Denote by τ(σ) > σ the real number

τ(σ) := min{s ∈ R : y(s) /∈ φ(h−1(0)×Bδ/4)× V ∗}.

Note that τ(σ) is finite, since the energy of the flow line y is assumed to be
finite and the critical points of F1 lie in h−1(0) × V ∗. Denoting by distg1(·, ·)
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the distance with respect to the metric g1 we estimate using (25), (26), and (27)

C <
δ2κ

16

≤ δ

4
· distg1

(

y(σ), y(τ(σ))
)

≤ δ

4

∫ τ(σ)

σ

||∂sy(s)||g1ds

=
δ

4

∫ τ(σ)

σ

||∇g1F1(y(s))||ds

≤
∫ τ(σ)

σ

||∇g1F1(y(s))||2ds

≤
∫ ∞

−∞

||∇g1F1(y(s))||2ds

≤ C.

This contradiction shows that (28) cannot hold which proves Step 3.

Step 4: The trace of each finite energy flow line y = (x, v∗) ∈ C∞(R,M × V ∗)
of ∇g1F1 is contained in h−1(0)× {0}.

It follows from Step 3 that x is contained in the image of φ. Denoting

(q, w) = φ−1(x) ∈ C∞(R, h−1(0)×Bδ)

we observe that the triple (q, w, v∗) is a flow line of the function

F (q, w, v∗) = f(q) + v∗(w)

with respect to the metric

gM |h−1(0) ⊕ κ2gBδ
⊕ gV ∗ .

Denote by Λ: V ∗ → V the isomorphism induced from the euclidean scalar
product on V . Flow lines of F are solutions of the following ODE

∂sq +∇gM |
h−1(0)

f(q) = 0 (29)

∂sw +
1

κ
Λv∗ = 0

∂sv
∗ + Λ−1w = 0.

It follows from the two last equations in (29) that there exist w0, w1 ∈ V such
that

w(s) = w0 exp

(

s√
κ

)

+ w1 exp

(

− s√
κ

)

.
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Since the energy of the flow line y is assumed to be finite it follows that w0 =
w1 = 0 and hence

w(s) = 0, v∗(s) = 0, s ∈ R.

This proves Step 4.

Step 5 (Uniform Palais-Smale condition): There exists a geodesically com-
plete Riemannian metric gPS on M × V ∗, a compact set K0 ⊂ M × V ∗ and a
constant ǫ > 0 such that for y ∈ (M × V ∗) \K0 and r ∈ [0, 1]

∇grFr(y) 6= 0, ||∇grFr(y)||2gr ≥ ǫ||∇grFr(y)||gPS
(30)

where || ||g denotes the norm induced from the metric g.

We choose gPS = gM ⊕ gV ∗ = g0. Then gPS is geodesically complete by as-
sumption. For x ∈ M and r ∈ [0, 1] we denote by dh(x)∗r : V ∗ → TxM the
adjoint of dh(x) with respect to the inner products gM,r(x) on TxM and 〈 , 〉
on V ∗. With respect to the natural splitting T(x,v∗)(M × V ∗) ∼= TxM × V ∗ for
(x, v∗) ∈ M × V ∗ the gradient of Fr reads

∇grFr(x, v
∗) =

(

∇gM,r
fr(x) +∇gM,r

(v∗ ◦ h)(x)
h(x)

)

(31)

=

(

∇gM,r
fr(x) + dh∗r (x)v∗

h(x)

)

.

Since 0 is a regular value of h and h−1(cl(V0)) is compact we can find an open
neighbourhood V ′

0 of 0 in V satisfying V ′
0 ⊂ V0 such that dh(x)∗r is injectiv for

every x ∈ cl(V ′
0) and every r ∈ [0, 1]. Set

ǫ′ := min
v∈V \V ′

0

||v|| > 0.

Since the family of injective maps dh(x)∗r depends smoothly on the compact
parameter (x, r) ∈ h−1(cl(V ′

0)) × [0, 1] there exists a compact subset W ∈ V ∗

such that

||∇gM,r
fr(x) + dh(x)∗rv∗||gM,r

≥ ǫ′, v∗ ∈ V ∗ \W, x ∈ h−1(cl(V ′
0 )), r ∈ [0, 1].

(32)
We set

K0 = h−1(cl(V ′
0))×W.

Then K0 is compact and we claim that

||∇gM,r
fr(x) + dh(x)∗rv∗||gM,r

+ ||h(x)|| ≥ ǫ′, y = (x, v∗) ∈ (M × V ∗) \K0.
(33)

To prove the claim we first assume that x /∈ h−1(cl(V ′
0)). We then estimate

||∇gM,r
fr(x) + dh(x)∗rv∗||gM,r

+ ||h(x)|| ≥ ||h(x)|| ≥ ǫ′
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by the definition of ǫ′. Now assume that x ∈ h−1(cl(V ′
0 )) but v∗ /∈ W . We

estimate in this case using (32)

||∇gM,r
fr(x) + dh(x)∗rv∗||gM,r

+ ||h(x)|| ≥ ||∇grfr(x) + dh(x)∗rv∗||gM,r
≥ ǫ′.

This proves (33).
Using (31) and (33) we estimate for y = (x, v∗) ∈ (M × V ∗) \K0

||∇grFr(y)||gr ≥ 1√
2

(

||∇gM,r
fr(x) + dh(x)∗rv∗||gM,r

+ ||h(x)||
)

≥ ǫ′√
2
> 0

which implies the first inequality in (30). To prove the second one we observe
that since the metrics gM,r differ from gM only on a compact subset of M the
metrics gM,r are equivalent for every r ∈ [0, 1], i.e. there exists a constant c ≥ 1
such that

1

c2
gM ≤ gM,r ≤ c2gM , r ∈ [0, 1]. (34)

Using (31), (33), and (34) we estimate for y = (x, v∗) ∈ (M × V ∗) \K0

||∇grFr(y)||2gr = ||∇gM,r
fr(x) + dh∗r (x)v∗||2gM,r

+ ||h(x)||2

≥ 1

2

(

||∇gM,r
fr(x) + dh∗r (x)v∗||gM,r

+ ||h(x)||
)2

≥ ǫ′

2

(

1

c
||∇gM,r

fr(x) + dh∗r (x)v∗||gM + ||h(x)||
)

≥ ǫ′

23/2c
||∇grFr(y)||gPS

.

Hence the second inequality in (30) follows with ǫ = ǫ′/23/2c. This proves Step 5.

Step 6: We prove (iii).

Let y ∈ ⋃r∈[0,1]M(Fr , gr). Let K0 ⊂ M × V ∗ be the compact set found in

Step 5. We estimate for each σ ∈ R the distance distPS(y(σ),K0) between
y(σ) and K0 with respect to the Palais-Smale metric gPS found in Step 5. We
abbreviate

m := max
x∈K0,
r∈[0,1]

Fr(x)− min
x∈K0,
r∈[0,1]

Fr(x).

Since the Morse flow line y has finite energy it follows from (30) that for each
σ ∈ R the set {s ≥ σ : y(s) ∈ K0} is nonempty. We set

τ(σ) = inf{s ≥ σ : y(s) ∈ K0}.
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Using (30) and the gradient equation we estimate

distPS(y(σ),K0) ≤
∫ τ(σ)

σ

||∂sy(s)||gPS
ds

=

∫ τ(σ)

σ

||∇grFr(y(s))||gPS
ds

≤ 1

ǫ

∫ τ(σ)

σ

||∇grFr(y(s))||2grds

≤ 1

ǫ

∫ ∞

−∞

||∇grFr(y(s))||2grds

= −1

ǫ

∫ ∞

−∞

gr(y(s))(∇grFr(y(s)), ∂sy(s))ds

= −1

ǫ

∫ ∞

−∞

dFr(y(s))∂sy(s)ds

= −1

ǫ

∫ ∞

−∞

d

ds
Fr(y(s))ds

≤ 1

ǫ

(

lim sup
s→−∞

Fr(y(s))− lim inf
s→∞

Fr(y(s))

)

≤ m

ǫ
.

We now set

K :=

{

y ∈ M × V ∗ : distPS(y,K0) ≤
m

ǫ

}

.

Since gPS is geodesically complete, the setK is compact. Moreover, the estimate
above shows that

{

y(σ) : y ∈
⋃

r∈[0,1]

M(Fr, gr), σ ∈ R

}

⊂ K

holds. This proves Step 6.

Step 7: We prove the theorem

It remains to show that the functions Fr are Morse-Bott. We prove that in
Proposition A.2 below. This finishes the proof of the theorem. �

If x is a critical point of a Morse-Bott function, then we define the index
indF (x) of F at x as the number of negative eigenvalues of the Hessian of F
at x. Note that the Morse-Bott condition implies that the index is constant on
each connected component of crit(F ). The following proposition shows that if
f |h−1(0) is Morse-Bott, then the Lagrange multiplier functional is also Morse-
Bott and its index is independent of the behaviour of f outside of h−1(0).
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However note, that the Hessian itself depends also on the derivatives of f in the
normal directions of h−1(0).

Proposition A.2 Let M be a finite dimensional manifold and let (V, 〈 , 〉)
be a k-dimensional Euclidean vector space. Assume that f ∈ C∞(M), h ∈
C∞(M,V ) such that 0 is a regular value of h and f |h−1(0) is Morse-Bott. Then
F ∈ C∞(M × V ∗) defined by F (x, v∗) = f(x) + v∗(h(x)) for (x, v∗) ∈ M × V ∗

is also Morse-Bott. Moreover, if λ : crit(F ) → crit(f |h−1(0)) is the natural bijec-
tion given by (x, v∗) 7→ x for (x, v∗) ∈ crit(F ), then for the indices the following
relation holds

indF (λ
−1(x)) = indf |h−1(0)

(x) + k, x ∈ crit(f |h−1(0)).

Proof: Let x ∈ crit(f |h−1(0)). We first choose convenient coordinates around x
in M . Set n = dim(M) and chose δ1, δ2 > 0 so small such that there exists a
diffeomorphism φ from Bn−k

δ1
×Bk

δ2
= {v ∈ Rn−k : ||v|| < δ1}×{v ∈ Rk : ||v|| <

δ2} to an open neighbourhood U of x in M such that

φ(0, 0) = x, h(φ(q, w)) = w, q ∈ Bn−k
δ1

, w ∈ Bk
δ2 .

Choose furthermore an orthonormal basis in V ∗ to define an isomorphism Φ: V ∗ →
Rk. Let f̂ ∈ C∞(Bn−k

δ1
×Bk

δ2
), be given by the pullback of f , i.e.

f̂ = φ∗f |U ,

and F̂ ∈ C∞(Bn−k
δ1

×Bk
δ2

× Rk) be given by the pullback of F , i.e.

F̂ = (φ × Φ)∗F |U×V ∗ .

Then F̂ reads

F̂ (q, w, v) = f̂(q, v) + 〈v, w〉, q ∈ Bn−k
δ1

, v ∈ Bk
δ2 , w ∈ R

k.

We choose the standard flat metric on Bn−k
δ1

× Bk
δ2

× Rk and introduce the
k×k-matrix A, the k× (n−k)-matrix B and the (n−k)× (n−k)-matrix H by

Aij =
∂2f̂(0, 0)

∂wi∂wj
, Bij =

∂2f̂(0, 0)

∂qi∂wj
, Hij =

∂2f̂(0, 0)

∂qi∂qj
.

Denote by π2 : M × V ∗ → V ∗ the projection to the second factor. The Hessian
of F̂ at (0, 0,Φ ◦ π2 ◦ λ−1(x)) with respect to the standard flat metric is given
by

HF̂ (0, 0,Φ ◦ π2 ◦ λ−1(x)) =





H B 0
BT A id
0 id 0





We claim that

dim
(

kerHF̂ (0, 0,Φ ◦ π2 ◦ λ−1(x))
)

= dim
(

kerH
)

. (35)
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To see that assume that the vector (q̂, ŵ, v̂) ∈ Rn−k ×Rk ×Rk lies in the kernel
of HF̂ (0, 0,Φ ◦ π2 ◦ λ−1(x). It follows that







Hq̂ +Bŵ = 0
BT q̂ +Aŵ + v̂ = 0

ŵ = 0

which implies that

(q̂, ŵ, v̂) = (q̂, 0,−BT q̂), q̂ ∈ ker(H).

Hence (35) follows.
To prove that F is Morse-Bott we denote for y ∈ crit(F ) by dimy(crit(F )) the
local dimension at y of the (unconnected) manifold crit(F ) and compute using
(35) and the Morse-Bott assumption on f |h−1(0)

dim
(

kerHF̂ (λ
−1(0)

)

= dim
(

kerHf |
h−1(0)

(x)
)

= dimx(crit(f |h−1(0)))

= dimλ−1(x)(crit(F )).

This proves that F is Morse-Bott.
It remains to compute the index of the Hessian of F . To do that we consider

the smooth family of functions f̂r ∈ C∞(Bn−k
δ1

×Bk
δ2
) for r ∈ [0, 1] defined by

f̂r(q, w) = (1− r)f̂ (q, w) + rf̂(q, 0), q ∈ Bn−k
δ1

, w ∈ Bk
δ2 .

Then
f̂0 = f̂ , f̂r|Bn−k

δ1
×{0} = f̂ |Bn−k

δ1
×{0}, r ∈ [0, 1].

We define the smooth family of functions F̂r ∈ C∞(Bn−k
δ1

×Bk
δ2
×R

k) for r ∈ [0, 1]
by

F̂r(q, w, v) = f̂r(q, w) + 〈v, w〉.
Define further the smooth family of vectors vr ∈ Rk for r ∈ [0, 1] by

(vr)i = −∂f̂r(0, 0)

∂wi
, i ∈ {1, . . . , k}.

The functions F̂r have critical points at (0, 0, vr) and it follows from (35) that
dim

(

kerHF̂r
(0, 0, vr)

)

= dim
(

ker(H)
)

does not depend on r ∈ [0, 1]. Since the
eigenvalues of a continuous family of matrices are continuous, see [18, Theorem
II.5.1] we conclude

indF̂0
(0, 0, v0) = indF̂1

(0, 0, v1). (36)

The Hessian of F̂1 at (0, 0, v1) = (0, 0, 0) is given by

HF̂1
(0, 0, 0) =





H 0 0
0 0 id
0 id 0




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from which we deduce

indF̂1
(0, 0, v1) = indf̂ |

B
n−k
δ1

×{0}

(0, 0) + k. (37)

Combining (36) and (37) we compute

indF (λ
−1(x)) = indF̂0

(0, 0, v0)

= indf̂ |
B

n−k
δ1

×{0}

(0, 0) + k

= indf |
h−1(0)

(x) + k.

This completes the proof of the proposition. �
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