Towards Synthesis of Petri Nets from Scenarios

Robert Lorenz! and Gabriel Juhds?

! Lehrstuhl fiir Angewandte Informatik
Katholische Universitit Eichstétt-Ingolstadt, Eichstitt, Germany
robert.lorenz@ku-eichstaett.de
2 Faculty of Electrical Engineering and Information Technology
Slovak University of Technology, Bratislava, Slovakia
gabriel.juhas@stuba.sk

Abstract. Given a set of scenarios, we answer the question whether this set
equals the set of all executions of a Petri net.

Formally, scenarios are expressed by (isomorphism classes of) labelled partial
orders (LPOs), also known as pomsets or partial words. An LPO is an execution
of a Petri net if it is a sequentialization of an LPO generated by a process of the
net. We propose a definition of regions for a set of LPOs, i.e for a partial lan-
guage. Given a partial language of scenarios, we prove a necessary and sufficient
condition (based on regions) for the partial language of scenarios to be the par-
tial language of executions of a place/transition Petri net. Finally, we prove our
notion of regions to be consistent with the notion of regions of trace languages.

1 Introduction

Scenario based specifications of information systems become recently very popular
both in theory and practice, see e.g. [16]. There are approaches which concentrate on
scenario mining [1,2]. There are also several methods for the synthesis of a system
model from a set of scenarios (see e.g. [23, 15,3, 28,7, 8] for some of them), the sce-
nario based verification of the system model ([21,9]), and for test generation and vali-
dation purposes ([22]). They differ mostly in the formalisms used for scenarios and the
system model. In this paper, we consider place/transition Petri nets (p/t-nets) as system
models.

The simplest way to describe scenarios for p/t-nets is to use sequences of fired transi-
tions. Thus, the set of scenarios specifying the system can be described by a formal lan-
guage over the set of transitions or by a transition system. For this kind of specifications
the synthesis problem is solved using the theory of regions [3,6,7, 8,5, 4, 25]. However,
sequences lack any information about independence between occurring events and Petri
nets are popular mainly because they allow to easily describe their non-sequential be-
havior and concurrency of occurring events.

There are several different ways how to formalize the non-sequential behavior of
Petri nets, most of them based on a partial order between events labelled by transitions.
In such a partial order, an ordering of events a and b expresses that the occurrence of
a precedes the occurrence of b. The absence of an ordering expresses their concurrent
(independent) occurrence.

303

The probably most common way to express the partial order based behavior of Petri
nets is by labelled causal (occurrence) nets and processes [12, 13]. Dropping the condi-
tions and keeping the events in a process leads to a labelled partial order (LPO), called
run. Runs capture the causal ordering of events. Naturally, events which are indepen-
dent can occur sequentially in any order. Thus, adding order to a run still leads to a
possible execution. For example, any occurrence sequence of transitions, which can be
seen as a labelled total order, sequentializes a run. Generalizing this relationships, any
LPO which sequentializes a run, is a possible execution of the net.

A partial order based semantics can also be defined through sequences of (concur-
rent) steps of transitions. A step of transitions is a multi-set of transitions. It is enabled
in a marking, if there are enough tokens to fire all transitions concurrently, where a tran-
sition can be contained in a step more than once (auto-concurrency). The non-sequential
behavior of p/t-nets can be described by step transition systems. A region based char-
acterization of those step transition systems describing the non-sequential behavior of
p/t-nets was given in [24]. The notion of enabled steps of transitions leads to the notion
of enabled LPOs: Given a partial order of events labelled by transitions, it is said to
be enabled to occur if the following condition is satisfied for every cut (i.e. for every
maximal set of independent events) [14]: If all the events before the cut have occurred,
then in the reached marking the step of transitions determined by the cut is enabled to
occur. It was proven in [20, 29] that an LPO is an execution if and only if it is enabled.

There are also other descriptions of the non-sequential behavior of Petri nets. For
example, one can take step sequences and relate them via an equivalence, getting so
called rraces. A region based characterization of trace languages which describe the
non-sequential behavior of p/t-nets was given in [17].

Because the identity of vertices (events) of LPOs is not important, it is usual to dis-
tinguish LPOs only up to isomorphism. An isomorphism class of LPOs can be also
understood as a partial word (over a set of labels), similarly as a labelled total order (a
sequence) is understood as a (total) word [14]. A set of LPOs (over a set of labels) is
called a partial language (over a set of labels). Another view is to understand isomor-
phism classes of LPOs as pomsets (partially ordered multi-sets (of labels)) [27].

In [14] Grabowski characterizes partial languages of executions of 1-safe Petri nets.
In case of p/t-nets, there is no characterization of partial languages of executions similar
to those based on regions for total languages or trace languages. In this paper, we fill
this gap.

In [18] we gave a characterization of p/t-net executions based on so called roken
flow functions. Roughly speaking, a token flow function labels any arc connecting an
event a with an event b in an LPO by the number of tokens produced by the occurrence
of a which are consumed by the occurrence of b in a fixed place p. For each event
the sum of token numbers annotated to its outgoing arcs defines the outgoing token
flow (w.r.t. p). The sum of token numbers annotated to ingoing arcs defines its ingoing
token flow (w.r.t. p). Given a p/t-net, we formulated a necessary and sufficient condition
for the executability of an LPO, called the roken flow property. An LPO fulfills the
token flow property w.r.t. to a marked p/t-net if and only if for every place p there
exists a token flow function of the LPO satisfying the following: for every event, its
outgoing token flow (w.r.t. p) does not exceed the number of tokens produced by the

304

corresponding transition, provided that for every event its ingoing token flow (w.r.t. p)
equals the number of tokens consumed by the corresponding transition of the p/t-net.

The notion of regions presented in this paper is based on the extension of the notion
of token flow functions from single LPOs to partial languages of LPOs. Regions are
exactly those extended token flow functions, for which there is an upper bound for the
outgoing token flows of events and equally labelled events have equal ingoing token
flows. Given a set of scenarios in form of a partial language of LPOs, its regions are
used to define its so called associated p/t-net: The regions form the set of places and the
event labels form the set of transitions. Given a region r and a transition ¢, the ingoing
token flow of events labelled by ¢ defines the weight of the arc connecting r with ¢, and
the maximum of all outgoing token flows of events labelled by ¢ defines the weight of
the arc connecting ¢ with .

As the main result of the paper, we show that a partial language £ of LPOs equals the
partial language of executions of a p/t-net if and only if all executions of the associated
p/t-net belong to £. We also prove that our notion of regions is consistent with the
notion of regions for trace languages as given in [17].

The main result of this paper is a step towards the synthesis of p/t-nets from sets
of scenarios. It is also a step towards the synthesis of p/t-nets from incomplete sets
of scenarios L, since the p/t-net associated to £ can be considered as the net with the
”smallest” behavior including £. The necessary steps to derive synthesis algorithms,
namely a finite representation of an infinite set of scenarios and a necessary and suf-
ficient condition for existence of a finite representation of the (possibly) infinite set of
regions are discussed in the conclusion (Section 4).

The rest of the paper is organized as follows: In Section 2 we state basic mathemati-
cal notations and give the definitions of LPOs and of syntax and semantics of p/t-nets.
In Section 3 we briefly restate the definitions and results from [18], define regions of
partial languages, prove a characterization of partial languages of executions of p/t-nets
based on this notion of regions and finally show that our notion of regions is consistent
with the notion of regions of trace languages as presented in [17].

2 Preliminaries

2.1 Mathematical Notations

By N we denote the nonnegative integers. Given a function f from A to B and a subset
C of A we write f|c to denote the restriction of f to the set C. By id4 we denote
the identity function on a set A, and by 1x we denote the characteristic function of a
subset X C A (given by 1x(a) = 1fora € X and 1x(a) = 0 otherwise). Given a
finite set A, the symbol | A| denotes the cardinality of A. The set of all subsets of a set
A we denote by 2. The set of all multi-sets over a set A is the set N4 of all functions
f A — N. We do not distinguish between a subset X C A and the multi-set 1 x.
Addition 4 on multi-sets is defined as usual by (m+m’)(a) = m(a)+m/(a). We also
write) . 4, m(a)a to denote a multi-set mm over A. Given a binary relation R C A x A
over a set A, the symbol R denotes the transitive closure of R, and R* the reflexive
transitive closure of R.

305

2.2 Labelled Partial Orders

In this subsection we recall the definition of labelled partial orders (LPOs). It is based
on the notion of directed graphs. A directed graph is a pair (V, —), where V' is a finite
set of nodes and —C V' x V is a binary relation over V called the set of arcs. As usual,
given a binary relation —, we write a — b to denote (a, b) €—.

Definition 1 ((Labelled) partial order)

A partial order is a directed graph po = (V, <), where < is an irreflexive and transitive
binary relation on V. A labelled partial order (LPO) is a triple Ipo = (V, <, 1), where
(V, <) is a partial order, and | : V' — T' is a labelling function with set of labels 7".

Two nodes v, v" € V, v # v/, of a partial order (V, <) are called independent if v £ v’
and v' £ v. By co C V' x V we denote the set of all pairs of independent nodes of V.
A co-set is a subset C' C V fulfilling: Vx,y € C': xcoy. A cut is a maximal co-set. If
co is transitive, then the partial order (V, <) is called stepwise linear.

For a co-set C' of a partial order (V, <) and anode v € V \ C we write v < C,
if v < s foran element s € C, and vcoC, if vco s for all elements s € C. For two
co-sets O/, C we write C' < O, if s’ < C for all elements s’ € C’.

For each co-set C' of (V, <) the partial order (V', < |y/xy/) with V! = {v € V|
v < C}UC is called prefix of (V, <).

Definition 2 (Sequentialization, step-linearization)
Given two partial orders po, = (V,<1) and po, = (V,<3), we say that po, is
a sequentialization of po, if <1C<y, and a proper sequentialization if additionally
<17£<2.

If pos is stepwise linear and a sequentialization of poi, the pos is called a step-
linearization of po;.

We use the above notations defined for partial orders also for labelled partial orders. If
X is the set of labels of Ipo = (V, <,l),i.e.l: V — X, thenforaset V' C V, we
define the multi-set |[V'|; € NX by |[V'|;(z) = [{v € V |v € V' Al(v) = z}|.

In the case, an LPO lpo = (V, <, 1) is stepwise linear, the relation co U{(v,v) | v €
V'} is an equivalence relation on V. By [v] ., we denote the equivalence classes of this
equivalence relation. Let {[v]¢o | v € V} = {v1,...,vx} suchthati < j = v; < v;.
Then |v1]; ... |vg|; is the step sequence of 1po.

We will often consider LPOs only up to isomorphism. As usual, two LPOs (V, <, 1)
and (V', <’,l") are called isomorphic, if there is a bijective mapping ¢ : V' — V"’ such
that [(v) = U'(¢p(v)) forv € V,and v < w <= ¥ (v) <" ¥ (w) for v,w € V. By [Ipo]
we will denote the set of all LPOs isomorphic to Ipo. The LPO lpo is said to represent
the isomorphism class [Ipo].

Definition 3 (Partial language). Let 1" be a set. A subset L C {[lpo] | lpo is an LPO
with set of labels T'} is called partial language over 7.

2.3 Place/Transition-Nets

In this subsection we give the definitions of p/t-nets and their semantics based on pro-
cesses and labelled partial orders (also known as partial words [14] or pomsets [27]).

306

The syntax of p/t-nets is based on the notion of nets. A net is a triple (P, T, F),
where P is a (possibly infinite) set of places, T' is a finite set of transitions satisfying
PNT=0,and F C (P xT)U (T x P) is aflow relation.

Let z € PUT. The preset *x of zistheset {y € PUT | (y,x) € F'}. The postset
z® of x istheset {y € PUT | (z,y) € F'}. Givenaset X C P U T, this notation is
extendedby *X =J,.y *rand X* = J, .y =° . For technical reasons, we consider
only nets in which every transition has a nonempty preset and postset.

Definition 4 (Place/transition net)
A place/transition-net (shortly p/t-net) N is a quadruple (P, T, F, W), where (P, T, F)
is a net, and W : F' — N7 is a weight function.

We extend the weight function W to pairs of net elements (z,y) € (P x T)U (T x P)
with (z,y) € F'by W((x,y)) = 0.

A marking of anet N = (P,T", F, W) is a function m : P — N, i.e. a multi-set over
P. A marked p/t-net is a pair (N, my), where N is a p/t-net, and m, is a marking of V,
called initial marking.

We omit the semantics of a p/t-net N = (P, T, F, W) based on occurrence sequences
and step sequences. The semantics of p/t-nets based on processes is defined using oc-
currence nets. An occurrence net is anet O = (B, E,G) such that | *b|, [b*| < 1 for
every b € B (i.e. places are unbranched), and O is acyclic (i.e. G is a partial order).
Places of an occurrence net are called conditions and transitions of an occurrence net
are called events.

The set of conditions of an occurrence net O = (B, E, G) which are minimal (maxi-
mal) according to G is denoted by Min(O) (Max(0)). Clearly, Min(O) and Max(O)
are cuts w.r.t. G (recall that events have nonempty pre- and postsets by assumption).

Definition 5 (Process)

Let (N, mg) be a marked p/t-net, N = (P,'T", F,W). A process of (N, my) is a pair
K = (O, p), where O = (B, E,G) is an occurrence netand p: BUFE — PUT isa
labelling function, satisfying:

(i) p(B) C Pand p(E)C T,

(ii) YVee E,Vpe P: [{be ®¢|
{b€e® | p(b) =p}| = W((

(iii) Yp € P: [{b€ Min(O) | p(

Definition 6 (Run, Execution)
Let K = (O,p), O = (B, E,G), be a process of a marked p/t-net (N, mg). Then
Ipoy, = (E,G"|gxw, p|E) is called run of (N, mg) representing K.

A run lpo of (N, mg) is said to be minimal, if 1po is not a proper sequentialization
of a run 1po’.

A sequentialization 1po of a run Ipo’ of (N, my) is called an execution of (N, my).

If Ipo is an execution of (N, mg), then the isomorphism class [lpo| is also called
execution of (N, my), . Denote Lpo(N, mg) = {[lpo] | Ipo execution of (N, mq)} the
partial language of executions of a marked p/t-net (N, my).

Another definition of the non-sequential semantics of p/t-nets is given by the notion of
enabled LPOs:

307

Definition 7 (Enabledness). Ler (N, mq) be a marked p/t-net, N = (T, P, F,W). An
LPO lpo = (V, <,l) with | : V' — T is called enabled (to occur) w.r.t. (N, my) if for
every cut C of Ipo and every p € P:

mo(p) + Y (W(((v),p)) = W((p,1(v)))) = Y W((p.1(v)))-

veVAav<C veC

Its occurrence leads to the marking m' given by m/ (p) = m(p)+>_, o (W ((I(v),p))—
W((p,1(v)))) forp € P.

An isomorphism class [Ipo] is called enabled w.r.t. a marked p/t-net (N, mg), if Ipo is
enabled w.r.t. (N, mg). An important result relating the notions of enabled LPOs and
executions was proven in [20, 29].

Theorem 1. Let (N, mg) be a marked p/t-net. An LPO lpo is enabled w.r.t. (N, mg) if
and only if Ipo is an execution of (N, my).

3 Synthesis of p/t-Nets

In this section, we first recall an alternative characterization of LPOs to be an execution
called roken flow property, we presented in [18]. We then discuss the formal problem
setting of p/t-net synthesis from a given partial language. After that, we propose a notion
of regions of partial languages and derive a characterization of those partial languages
which allow a p/t-net synthesis. Finally, we establish the relationship between our no-
tion of regions and the definition of regions of a trace language as defined in [17].

3.1 Token Flow Property

There is another characterization of LPOs to be executions of a marked p/t-net called
token flow property. For motivation purposes we shortly recall the basic definitions and
results.

Fix a marked p/t-net (N,mg) and a place p of N = (P, T, F, W). Given an LPO
Ipo = (V, <, 1) with [(V') = T" we assign non-negative integers to its edges through a
so called token flow function. The aim is to find a token flow function x assigning values
z((v,v")) to edges (v, v’) in such a way that there is a process with exactly z((v,v"))
post-conditions of v labelled by p which are also pre-conditions of v’. Thus, such a
token flow function of lpo abstracts from the individuality of conditions of a process
and encodes the flow relation of this process by natural numbers. Clearly, finding such
a token flow function for every place means that Ipo is a sequentialization of the run
representing this process. In order to simplify the formal definition of the token flow
property, let us define an extension of lpo = (V, <, () by adding an initial node which
is smaller than all nodes from V" and is labelled by a new label. It represents a transition
producing the initial marking and helps to avoid several case differentiations in the
following definitions.

Definition 8 (0-extension, of an LPO). Ler Ipo = (V, <,1) be a LPO. Then an LPO
Ipo” = (V°,<9,19), where VO = (V U {wo}) with vy ¢ V, <°==< U({vo} x V), and
19(v) ¢ 1(V) and I°|yy = 1, is called 0-extension of Ipo.

308

We denote for an LPO lpo = (V, <, 1), a function x :<— Nandv € V:

- In(v,z) = Ev’<v ZC((’U/,U)).
- Out(v,z) = ZKU, z((v,0")).

Definition 9 (Token flow function, of an LPO). Ler Ipo = (V, <,[) be an LPO and
Ipo” = (V°, <9,19) be a 0-extension of Ipo. A function x :<°— N is called token flow
function of Ipo, if it satisfies the following property:

(Tff) x is consistent with the labelling l in the following sense:
Vo, € VO l(v) =1(v) = In(v,z) = In(v . z).

We denote In(v, x) the intoken flow of v w.r.t. and Out(v, x) the outtoken flow of v
w.r.t. z forv € V.

Example 1. Figure 1 shows a p/t-net, a process of this p/t-net and a 0-extension Ipo° of
the run representing this process. The LPO lpo” has annotated a token flow function.
Its intoken flow (outtoken flow) equals 0 (2) for the a- and b-labelled node, resp. 2 (0)
for the c-labelled nodes.

This definition differs from that in [18]. While in [18] token flow functions were de-
fined as general as possible, we here additionally require property (Tff). This is more
intuitive and does not restrict the setting or change the argumentations, since (Tff) is
implicitly contained in the token flow property defined below. Each process of a marked
p/t-net defines a token flow function of the run representing this process in the following
way:

Let K = (O, p) be a process of a marked p/t-net (N, mg) with O = (B, V, G) and
let Ipo = (V, <, 1) be the run representing K. Let Ipo” = (V?, <%, 1%) be a 0-extension
of Ipo. Denote v] = Min(O). We define for every place p € P the canonical token
flow function x, :<°— N of Ipo w.r.. p as follows:

zp((v,0)) = [{b € B| p(b) = pAbE v® N '},

Fig. 1. A p/t-net (left picture), a process of this p/t-net (middle picture) and a 0-extension of the
run representing this process together with annotated canonical token flow function w.r.t. the grey
place (right picture)

309

Example 2. In Figure 1 there is shown the canonical token flow function of the shown
run w.r.t. the grey place.

Observe, that by definition 5 (ii) the canonical token flow function of a run lpo w.r.t. a
place p fulfills (Tff) (what justifies the above definition). By definition, each canonical
token flow function respects the weight function and the initial marking of (NN, mg) in
the sense that the following two properties are fulfilled:

(IN) The intoken flow of an event v equals the number of tokens consumed from
place p by the occurrence of transition [(v).

(OUT) The outtoken flow of an event v is less or equal to the number of tokens
which are produced by the occurrence of transition [(v) in place p. In par-
ticular, the outtoken flow of the source event vy is less or equal to the
number of tokens in place p of the initial marking my.

In general, we say that an arbitrary LPO, whose labels are transitions of (IV,mg),
fulfills the token flow property w.r.t. (N, my), if for every place there exists a token flow
function which fulfills the properties (IN) and (OUT).

Definition 10 (Token flow property). Let lpo = (V, <,1) be an LPO with [(V') =T,
Ipo’ = (V°,<°,1°) be a O-extension of lpo and let (N, mo) be a marked p/t-net,
N = (P, T, F,W). Denote W ((l(vg),p)) = mo(p) for each place p € P. We say that
Ipo fulfills the token flow property w.r.t. (N, mg) if the following statement holds: For
all p € P there is a token flow function x, :<°— N with

(IN) In(v',zp) = W((p,L(v")))for every v €V,
(OUT) Out(v',x,) < W((L(v"),p)) for every v’ € V°.

In [18] we showed:

Theorem 2. An LPO is an execution of a marked p/t-net if and only if it fulfills the
token flow property w.r.t. this marked p/t-net.

3.2 Problem Setting

As mentioned in the introduction, in this paper we consider the problem of finding a
marked p/t-net whose non-sequential behavior is represented by a given partial language
L. The p/t-net synthesis problem reads formally:

Given: A partial language L.
Searched: A marked p/t-net (N, myg) satisfying £ = £po(N, my).

Obviously, a marked p/t-net may have an infinite number of (finite) runs, that means
the partial language of executions of a marked p/t-net may be countably infinite. When
considering the problem in practice, one has to restrict the setting to finite sets of finite
LPOs or to use some adequate finite representation of infinite sets of finite LPOs. A
detailed discussion of this topic is out of scope of this paper, but we will present some
thoughts in the conclusion.

A partial language £ of executions of a marked p/t-net satisfies the following imme-
diate properties (induced by the definition of executions):

310

(£1) The set of labels of £ is finite.
(L2) V[lpo] € L: If Ipo’ is a prefix of Ipo, then [Ipo’] € L.
(L3) V[lpo] € L: If Ipo’ is a sequentialization of Ipo, then [Ipo’] € L.

Therefore, in the following, we will only consider partial languages which satisfy these
conditions and denote them as LPO-specifications.

Definition 11 (LPO-specification). A partial language L is called LPO-specification,
if it satisfies the properties (L1) - (L3).

For the following notions we will need a set L of concrete LPOs representing a given
LPO-specification £, i.e. satisfying [lpo] € £ <= 3Jlpo’ € L : [lpo] = [Ipo’].
We denote L(L) = {[lpo] | Ipo € L}. For technical reasons we will require such a
representation L of £ to fulfill the following properties.

(L1) The set of labels of L is finite.

(L2) Vlpo € L: If Ipo’ is prefix of Ipo, then Ipo’ € L.

(L3) Vlpo € L: If Ipo’ is sequentialization of Ipo, then Ipo’ € L.

LAy V(V. <,0),(V!,<'.I) € L:iv e VNV’ = I(v) = I'(v).

(L5) For each two LPOs Ipo = (V, <,1),1po’ = (V/, </, l') € L with VNV’ #
() there is Ipo” € L such that Ipo and 1po’ both are sequentializations of
prefixes of Ipo”.

That means, L should be prefix and sequentialization closed and should represent
alternative executions by LPOs with disjoint sets of nodes (condition (L.5) separates the
node sets of executions which are in conflict). It is straightforward to observe that an
LPO-specification always allows such a representation.

Remark 1. In particular, (L5) allows to decompose L into subsets X of LPOs with
pairwise disjoint node sets, each representing one (infinite) run. Namely, each such set
X is defined as a maximal prefix and sequentialization closed subset of L satisfying:

(Seq) Each two LPOs Ipo, Ipo’ € X are sequentializations of prefixes of another
LPO Ipo” € X.

For a set of BPOs L we denote W, = U(V,<,l)eL V,E, = U(V,<,l)eL <andl; =
Uv,<.1yer, { and write for an LPO Ipo = (V, <,l) € L, a functionz : E;, — N and
veV:

- Inlpo(v7$) = Zv’<v .CC((U/,”U)).
= Outypo(v,2) = > o 2((v,0")).

In examples we will always give such L by a set of minimal LPOs, such that each LPO
in L is a sequentialization of some prefix of one of these minimal LPOs.

Example 3. Figure 2 shows the two different LPO-specifications L1 = {lpo;,lpoy}
and Ly = {lpog,, | n € N}.

311

bO
a0
v
: >"
Ipo, . (times| * - -
a !
ad
b a
Ipo, Ipos ,
L, L,

Fig. 2. Two LPO-specifications

3.3 Regions

For the rest of the paper we consider each LPO-specification given by a set of LPOs
L satisfying (L1)-(L5). In subsection 3.1 we established that a token flow function of a
partially ordered multi-set of transitions which fulfills the properties (IN) and (OUT)
for some place defines a distribution of the tokens produced by a transition in this place
onto the following transition in the given order, such that all transitions in the LPO are
enabled w.r.t. this place. This gives rise to the idea to consider token flow functions of
LPOs as regions, that define places of a p/t-net. For this, we define, as for LPOs, the
notions of 0-extension and token flow function of L.

Definition 12 (0-extension). Let vy ¢ Wy, and Ipo® = (V°, <°,1°) be a 0-extension
of each Ipo € L such that V°® =V U {vg}, and 19(vo) = 19(vo) for each two (V, <1
1), (Va. <g,13) € L. Then the set L° = {1po° | Ipo € L} is called 0-extension of L.
We denote W) = Wro, EY = Ero and 19 = lpo.

Example 4. Figure 3 shows 0-extensions of the LPO-specifications L; and Ly shown
in Figure 2.

Definition 13 (Token flow function). Let L° be a 0-extension of L. A function x :
EY — N s called token flow function of L, if it satisfies the following property:

(Tff) x is consistent over all LPOs:
Vipo = (V, <,1),Ipo’ = (V/, <", I") € L°,

Yo e VO v e (V)0
L) =1(V") = Inpeo (v,) = Inapeo (v, x).

312

(Ipoy)® (Ipos)
(L2 (Lo)®
Fig. 3. 0-extensions of L; and L, with annotated possible token flow functions 1 of L, and x2

of L2

Example 5. Figure 3 shows possible token flow functions x; of L; and x2 of Lo given
by arc annotations.

Observe that according to (¥ff) for Ipo = (V,<,l) € L and v € V the value of
Iny, o0 (v, x) is independent of the choice of Ipo. It is interpreted as the number of tokens
consumed by transition [(v). On the other hand, the value Out,,,0 (v, x) is dependent
on lpo and can even differ for equally labelled nodes. It is interpreted as the number
of tokens produced by transition [(v) which are consumed by other transitions. Not
consumed tokens remain in the final marking of the considered Ipo. Of course, a token
flow function can represent a place of a p/t-net only if the number of produced tokens
represented by Outy, o (v, x) is bounded over all LPOs Ipo € L:

Definition 14 (Region). Let L° be a 0-extension of L. A token flow functionr : E9 —
N of L is called a region of L if there is M € N such that

(R) HOutyeo(v,r) |lpo=(V.<,l) € L, v e V0}| < M.
We denote

= Pre,(v) = Iny,p0(v,7) forlpo = (V, <,1) € Lwithv € V.

— Post,(v) = max{Outy,,0 (v, 7) | Ipo = (V,<,1) € L, v/ € VO, 1) (V') =1} (v)}
forv e Wp.

— mg(r) = Post,(vg).

A region which does not equal the O-function is called non-trivial.

313

1 1
a a
v v
1 0
: a
. 11! | esssmmsmms >
1 0
0 1
1 0
a 0 a 1
Y1 Yo

Fig. 4. Two token flow function y; and y2 of L2 and a part of the p/t-net associated to L2

For a label a, a node v with l;,(v) = a and a region r of L we also denote Pre,.(a) =
Pre,(v) and Post,(a) = Post, (v).

Example 6. The token flow functions x; and x2 shown in Figure 3 are both regions. It
holds: Pre,, (a) = Pre,, (b) = 1, Post,, (a) = 2, Post,, (b) = 0 and mq(z1) = 1.

Consider the token flow functions y; and ys of Lo shown in Figure 4. While y;
defines a region with Pre,, (a) = Post,, (a) = mo(y1) = 1, y» does not because
Outlpog," (vo,y2) = nforn € N.

By the definition of regions, we can associate a p/t-net to L by considering regions as
places. By construction, each LPO of L is an execution of the associated p/t-net, but in
general the associated p/t-net has more executions as specified.

Definition 15 (associated p/t-net). We denote R, the set of non-trivial regions of L.
Denote P = {p, | r € R}, T the set of labels of L, W ((p,11.(v))) = Pre,(v) and
W ((lg(v),pr)) = Post,(v) forl(v) € T andp, € P, F = {(z,y) | W((z,y)) >
0}, and mq(p,) = mo(r) for p, € P. Then the p/t-net (N1, my), N;, = (P, T, F,WW),
we call the p/t-net associated to L.

Example 7. The left part in Figure 5 shows some (of the infinite many) regions of L.
The right part shows (a part of) the p/t-net associated to Lo with the places p; = p.,,
1=1,2,3.

Of course, the associated p/t-net (N, mp,) is a candidate for a p/t-net satistying £(L) =
£po(Np, my). Observe that P = () (i.e. Ry, = ()) is possible. In this case the associated
p/t-net would have an unrestricted behavior and trivially £ is part of this behavior.

314

[y
(=]
-

N

z, z, z, Ps3

Fig. 5. Some regions of L» with corresponding places of the associated p/t-net

In particular, if *¢ = () for a transition ¢ of (N,mr), (Nr,my) does not satisfy
L(L) D Lpo(Nr,mp,) . The following Lemma tells us that (N, my,) always satisfies
L(L) € £po(Nr,mrp).

Lemma 1. Ler lpo € L and (Ny,,myp), Np = (P, T, F,W), be the p/t-net associated
to L. Then [lpo] is an execution of (N, mr,).

Proof. We can assume without loss of generality that P # (). According to Theorem 2,
it is enough to show that Ipo = (V, <, 1) fulfills the token flow property w.r.t (N7, myp,).
In fact, for each place p, € P the token flow function r|_o fulfills the properties (IN)
and (OUT) according to (¥ff) and (R). O

The main theorem reads:

Theorem 3. There is a marked p/t-net (N, mg) with L(L) = £po(N,myg) if and only
if L(L) = Lpo(Ny,, my,) for the marked p/t-net (Ny,, my,) associated to L.

We prove the theorem in the next subsection.

3.4 Proof of the Main Result

The ”if’-part is obvious. To prove the “only if”-part, let (N, mg), N = (P, T, F, W),
be a p/t-net satisfying L(L) = £po(N, my). It is enough to show that for each p € P
there is a region r = r(p) of L such that for each transition ¢

(i) Pre,(t) = W((p,t)),
(i) Post,(t) < W((t,p)),
(iii) mo(r) < mo(p).

315

Namely, in this case each token flow function of some LPO, which satisfies (IN) and
(OUT) w.rt. p,, also satisfies (IN) and (OUT) w.r.t. p. In other words, then each
LPO which is an execution of (N, mp,) is also an execution of (N, my), i.e. L(L) C
Lpo(Np,mp) C £po(N, my) = L(L). The construction of such regions r(p) is shown
through the following Lemmata.

Fix a place p € P. For the construction of r(p) we use that for each lpo € L there
is a token flow function xi}’o of Ipo fulfilling (IN) and (OUT) w.r.t. p (since each
Ipo € L is enabled w.r.t. (N, mg) according to L(L) = £po(NN,my)). According to
remark 1, L can be decomposed (through an appropriate equivalence relation) into sets
X of LPOs , which have pairwise disjoint node sets and satisfy property

(Seq) Each two LPOs Ipo, Ipo’ € X are sequentializations of prefixes of another
LPO Ipo” € X.

We first construct (p) for each such maximal subset X of L. Each such set X obviously
satisfies additionally the properties (L1)-(L5). The further argumentation is based on the
“representation” of X by an appropriate sequence of minimal LPOs which increases
w.r.t. the prefix ordering:

Lemma 2. Let X be a set of LPOs satisfying (L1) - (L5) and (Seq). Then there is a
sequence of LPOs (1po,,)nen € X, such that

(i) 1po,, is prefix of Ipo,, , 1,
(ii) lpo,, is minimal in X, and
(iii) each LPO in X is a sequentialization of a prefix of some 1po,,.

Proof. Observe that each two LPOs Ipo, Ipo’ € X are sequentializations of prefixes of
another LPO Ipo” € X. Order the set of all nodes of LPOs in X inductively as follows:

— As node v; choose an arbitrary node which is minimal for one arbitrary LPO in X.

— Suppose the nodes vy, ..., v, are chosen. Remove the nodes vy, ..., v, from all
LPOsin X and denote X, the set of all those modified LPOs. As node v, 41 choose
an arbitrary node which is minimal for one arbitrary LPO in X,.

Note that for each n € N there are LPOs in X with node set {v1, ..., v,} (according to
the chosen ordering and (L5)), and that there is in fact a unique minimal one (since two
different LPOs with the same node set are sequentializations of prefixes of some other
LPO). Let Ipo,, be this minimal LPO with node set {v1,...,v,}. Obviously, Ipo,, is
then a prefix of Ipo,, , , since Ipo,, | ; restricted to the node set {v1, ..., vy} is also in
X. Clearly, every LPO in X is a sequentialization of a prefix of some lpo,,. O

If the LPOs of all such X C L have “consistent” token flow functions, we can construct
aregion of L:

Lemma 3. Let Pre, Post : T' — N and (Ipo,,) nen be a sequence of LPOs such that

(i) The set of labels of each 1po,, is a subset of T'.

(ii) 1po,, is prefix of Ipo,, , 1,
(iii) for each n there is a token flow function x of Ipo,, = (Vy,, <n, l,,) with

316

(IN) In(v',x) = Pre(a) for everyv' € V) with 1,,(v")

= q,
(OUT) Out(v', x) < Post(a) for everyv' € VO with ,,(v') =

a.

Then for each n € N there is a token flow function x,, of Ipo,, satisfying (IN) and
(OUT), such that x = lim,,_,, T, is a region of the set X of all sequentializations of
prefixes of some 1po,,.

Proof. Choose the token flow functions x,, inductively as follows:

— Let z; be an arbitrary token flow function of lpo, satisfying (IN) and (OUT).
— Choose a token flow function x,,11 of Ipo,, ; satisfying (IN) and (OUT) such
that m is maximal with z,,11|<, = Zp|<,,-

We first show that the sequence of functions (z,,),,cn converges pointwise, i.e. on every
edge. For this, we fix £ € N and show that there is n(k) € N such that Vn,m >
n(k) : Tn|<, = Tm|<,. That means that the sequence (z,),cn becomes stationary
on every lpo,.. This can be seen as follows: The set of all token flow functions of lpo,,
fulfilling (IN) and (OUT) is finite, since there are only finitely many arcs and the
value of such a token flow function on an arc is bounded through (IN) and (OUT) by
max(max{Pre(a) | a € T}, max{Post(a) | a € T'}). The functions y,, = =, |, are
token flow function of Ipo,, fulfilling (IN) and (OUT) for each n > k. Assume that
Yi 7 Yi+1 and y; = y; for k <4 < j. Then 241 = x|, is a token flow function of
Ipo, ,; fulfilling (IN) and (OUT) with z;1|<, = y; = ;i = =i|<, . This contradicts
the choice of x;11 since ziy1|<, = Yi+1 # ¥i = Ti|<,. Thus, y,, can change only
finitely often.

Thus, x is well-defined. Assuming z,, = 0 on every edge not in <,,, we get that x
is a token flow function of X. To see this, let Ipo = (V, <,1),lpo’ = (V/,</,l') € X
andv € V9 and o' € (V')? with [(v) = I'(v"), Ipo be sequentialization of a prefix of
Ipo,, and Ipo’ be sequentialization a prefix of 1po,,,. Then, since all z,, fulfill (IN):

Ing,po(v,z) = nlglgofnlpoo(v,xn)

T pre(i(v))

— nh_)n;o Inypeo (0,)

=) lim Inypeo (V' 20) = Ingpory (v,).

Observe here that z,, |, is a token flow function of Ipo, for n > k. Then z fulfills
(Tff), i.e. is a token flow function. Finally we get that x is even a region: Let lpo =
(V,<,l) € X be a prefix of a sequentialization of Ipo,. It follows for v € V, since all
x, fulfill (OUT):

Outyp,0 (v,) = lim Outy,o (v, 2,,)

(ouUT)
< lim Outy,po (v, 7,) < Post(l(v)).
n—00 k

That means x fulfills (R), i.e. is a region of X. O

317

For each maximal subset X C L there is a sequence (Ipo,,)nexy C X satisfying
the properties stated in Lemma 2 and fulfilling the preconditions of Lemma 3 with
Pre(l(v)) = W((p,{(v))) and Post(a) = W((l(v),p)) by construction. By Lemma 3
there is an appropriate region for each such X, Moreover, BPOs in different such sets
X have disjoint node sets. Therefore we can construct a searched region r(p) as the
union of all regions of such sets X.

3.5 Relationship to Other Definitions of Regions

In this section we establish the relationship between regions of LPO-specifications and
other definitions of regions. For this one has to distinguish between regions of lan-
guages and regions of graphs. Whereas in the case of languages it is required that the
synthesized p/t-net produces the given language, in the case of graphs it is required
that state-graph of the synthesized p/t-net and the given graph are isomorphic, what
is a substantial stronger requirement. The regions presented in this paper are language
based, since we distinguish different executions by LPOs with disjoint node sets (no
matter whether they have a common prefix or not). Another definition of regions which
is based on languages and allows the specification of concurrent events is that for trace
languages. Therefore, we exemplarily compare our definition of regions to that one for
trace languages as presented in [17].

We recall the definition of trace semantics of a p/t-net as given in [17]. A (gener-
alized) concurrency alphabet is a pair (A, I'), where A is a finite alphabet, and I C
(N4)F x N4 is an independence relation. For a concurrency alphabet (A, I) we denote
p ~1 p if there are py, po € (N and u,v,u’,v" € N4, such that p = p;uvpy and
P = pru'v'ps, u+v=1u 4+ and (p1,u +v) € I, == (~1)*, and [p]; = {p |
p=rp'}. L C (N is called consistent (w.r.t. (A, I)),ifVp € L : [p]; C L. A trace
language (w.r.t. (A, 1)) is a triple (L, A, I'), where L is consistent (w.r.t. (A, I)).

For a trace language T'r = (L, A, I), a region of T'r is a functionr : LU A —
N U (N x N) satisfying the following conditions for p € L, a € A and u € N:

(TR1) r(p) € Nand r(a) = (Pre,(a), Post,(a)) € N x N
(TR2) If pu € Lthenr(p) > >, . 4 u(a)Pre.(a), and
(TR3) If pu = p' then r(p’) = r(p) + >_,c 4 u(a)(Post,(a) — Pre,(a)).

The set of all regions is denoted by R7,. We can now associate a p/t-net (N, mg) to
Tr with N = (Rp,, A, F,W) via W(r,a) = Pre,(a), W(a,r) = Post,(a) and
mo(r) = r(0), where O denotes the empty step sequence.

A trace language T'r = (L, A, I) is called PN trace language, if the following ax-
ioms are satisfied: (PN1) L # (0, PN2)pu € L= p € L,(PN3) pu € L = (p,u) € I
and PN4) p € L = (Vr € Ry, @ 1v(p) > > ,caw(a)Preq(a) = pu € L). If a
trace language I'r = (L, A, I) satisfies (PN1) - (PN4), then the associated p/t-net can
be shown to have L as its set of step sequences. On the other hand, the trace language
of a given p/t-net always fulfills (PN1) - (PN4) (see [17]).

To each LPO-specification it can associated a trace language in a natural way:

Definition 16 (Trace language, of an LPO-specification). Let L represent an LPO-
specification. Define the trace language (L, A, I') associated to L' as follows: L is the

318

set of all step sequences of step-linearizations of LPOs in L', A = 11, (W) and
(p,u) € I <= pu € L.

Obviously such L is consistent.

Lemma 4. Let L' represent an LPO-specification and let r be a region of L'. Let further
(L, A, 1) be the trace language associated to L'. Define ry, : LU A — NU (N x N)
by r1.(0) = Post,(vo), 7r.(a) = (Pre.(a),Post,(a)) and ri,(uy ... u,) = 71(0) +
> D aea tila)(Posty(a) — Prep(a)). Thenry, is a region of (L, A, T).

Proof. We first show (TR2), i.e. that for p € L and u € N*:

(x) pueL=rn(p) > Z u(a)Pre,(a).
acA

Let Ipo € L’ such that pu is the step sequence of a step-linearization of lpo. Denote
p = uj...uy. Since Ipo is enabled w.r.t. the p/t-net (N, my.), N, = (P, T, F,W),
associated to L', it holds for the place p, corresponding to the region r and each cut C'
of Ipo:

(**) mL’(pr) + Z r)) W(pr; > Z W (pT7

veVAv<C vel

Choose S C V with |C| =wand [{v | v < C}| = us + ... + u, and remember that
W((pr,1(v))) = Pre,(v) and W ((I(v), p,)) = Post,(v). Then (xx) translates to ().

This implies moreover r1,(p) € N for p € L. Since obviously r1,(0) € N and
r(a) € N x Nfora € A, we deduce (TR1).

Finally, we show (TR3). For pu = p’ it holds by definition that r1(p") = r.(p) +
> aca t(a)(Post.(a) — Pre,(a)). To show this equation for the general case, it is
enough to show p =; p' = rr(p) = rr(p'). It is even enough to consider the case
p~yp,ie p=pvwpsand p’ = p1v'w ps withv+w = v 4w’ and (p1,v+w) € 1.
The statement follows then from } . , (v+w)(a)(Post,(a) —Pre.(a)) = >, 4 (v'+
w')(a)(Post,(a) — Pre,(a)). 0

Lemma 5. Let L' represent an LPO-specification and (L, A, I) be the trace language
associated to L'. Let further r : LU A — N U (N x N) be a region of (L, A, I).
Then there is a region 1’ of L’ satisfying Post, (vg) = r(0), Pre,(a) = Pre,.(a) and
Post,(a)) < Post,(a).

Proof. Tt is enough to show that for each lpo = (V, <,l) € L’ there is a token flow
function z fulfilling In(v’,z) = Pre,(a) and Out(v’, x) < Post,(a) for every v' €
V0. Then analogously as in the proof of Theorem 3 the statement follows.

Assume there is Ipo = (V, <,l) € L’ such that there is no token flow function x
satisfying (IIN) and (OUT). Then, by an argumentation in our paper [18] (Lemma
7), there is a cut C' of Ipo for which r(0) + > _ Post,.(v) — > - Pre.(v) —
> vec Pre(v) < 0. This contradicts (TR2) for the step sequence of an adequate step
linearization of Ipo. O

319
4 Conclusion

As already mentioned in the introduction, we consider the presented results as a step to-
wards solving the p/t-net synthesis problem from non-sequential specifications. To this
end, the problem and the results must be transformed in two ways. First, it is necessary
to represent the possibly infinite set of all regions of an LPO-specification by a finite
subset. By this, a finite p/t-net could be assigned to an LPO-specification L with the
same behavior as the (possibly infinite) p/t-net associated to L. Second, one needs a
finite representation of LPO-specifications. When these problems are solved, finally an
effective test of L = £po(N’, m()) for the marked p/t-net (N’, m(,) associated to L has
to be developed. We are currently working on these topics and have already found par-
tial solutions. These are not presented in detail due to lack of space. Instead, we shortly
give some hints in this subsection.

Concerning the finite representation of LPO-specifications let us first consider the
case, where simply the LPO-specification L is finite. Then, of course, the associated
p/t-net cannot have an infinite behavior, i.e. it’s marking graph cannot contain cycles
(see the LPO-specifications from Figure 2 as an example). That means, in a finite rep-
resentation of an infinite LPO-specification, the LPOs of a representation are only con-
sidered as prefixes of runs of the searched p/t-net, and one has additionally to specify
desired cycles. This could be done for example by specifying cut-off events of LPOs. If
no desired cycles are specified, it is nevertheless possible to detect such regions (places
of the associated p/t-net) which prohibit cycles (which are, loosely spoken, those with
initial marking different to the final marking of some sub-LPO).

Concerning finite representations of p/t-nets corresponding to LPO-specifications
L, it is well known (see e.g. [24]) that there are p/t-nets with an infinite set of places
which cannot be represented by p/t-nets with a finite set of places (see also the example
below). That means we need a further characterization of LPO-specifications equaling
the partial language of executions of p/t-nets with finite set of places. However, if L is
finite then also the set of states (represented by L) is finite. In this case one can construct
a p/t-net with finite set of places having L as the partial language of its executions.
Observe moreover that for the synthesis of elementary nets from LPO-specifications
there are only finitely many possible regions.

Example 8. Consider the marked p/t-net N = (P, T, F, W, my) defined by T’ = {a, b},
P={p,|neN},W((a,pn)) =n+1and W((py,b)) = n,and mo(p,) = n— 1 for
n € N. After one occurrence of a, the concurrent step 2b is enabled. Then each further
occurrence of a enables transition b exactly once, since for increasing n the places p,,
more and more restrict the behavior. This is the reason, why P cannot be replaced by
a finite subset, say P, = {p1,...,px} for some k& € N. Namely, in this case after
each k occurrences of a the transition b would be enabled twice (not only once). In
fact, the places p,, “converge” to the place p with W ((a,p)) = 1, W((p,b)) = 1 and
mo(p) = 1. This place can be added to P without further restricting the behavior. On the
other side, since b is not enabled in the initial marking, P can also not be equivalently
replaced by the place set P’ = {p} only containing p, since w.r.t. P’ the transition b is
enabled in the initial marking. The problem is the increasing number of initial tokens
in p,, for increasing n. If this number would be bounded (that means m(p) < k for

320

a fixed k € N), each occurrence of a (from the beginning) would enable transition b
exactly once. The same behavior could be achieved by the finite place set P’ = {q}
with W ((a,q)) = 1, W((g,b)) = 1 and mo(g) = 0, i.e. in this case there would be a
finite representation.

When considering finite LPO-specifications L with some representation £po(L), there
is moreover the following effective test of L = £po(N’, my) for the marked p/t-net
(N’,my,) associated to L. In fact it must be shown that LPOs not in L are no executions
of (N’,my). For this, first compute a finite set of regions representing the set of all
regions. Then test the following LPOs to satisfy the token flow property w.r.t. all these
regions: All LPOs constructed from minimal LPOs of maximal length in £po(L) by
deleting some edge, and all LPOs not in £po(L) constructed from minimal LPOs in
£po(L) by adding a unique maximal node with some label. Each LPO not in L is
also no execution of (N’, m() if and only if none of these LPOs fulfills the token flow
property w.r.t. all of the finite many regions.

References

1. W.M.P. van der Aalst, A.K.A. de Medeiros and A.J.M.M. Weijters. Genetic Process Mining.
LNCS 3536, pages 48-69, 2005.
2. W.M.P. van der Aalst, T. Weijters and L. Maruster. Workflow Mining: Discovering Process
Models from Event Logs. IEEE Trans. Knowl. Data Eng. 16/9, pages 1128-1142, 2004.
E. Badouel and P. Darondeau. Theory of Regions. LNCS 1491, pages 529-586, 1998.
4. J. Cortadella, M. Kishinevsky, L. Lavagno and A. Yakovlev. Deriving Petri Nets for Finite
Transition Systems. IEEE Trans. Computers 47/8, pages 859-882, 1998.
P. Darondeau. Unbounded Petri Net Synthesis. LNCS 3098, pages 413-438, 2004.
6. J. Desel and W. Reisig. The Synthesis Problem of Petri Nets. Acta Inf. 33/4, pages 297-315,
1996.
7. A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures. Part I: Basic Notions and the
Representation Problem. Acta Inf. 27/4, pages 315-342, 1989.
8. A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures. Part 1I: State Spaces of Con-
current Systems. Acta Inf. 27/4, pages 343-368, 1989.
9. J. Esparza and K. Heljanko Implementing LTL Model Checking with Net Unfoldings. LNCS
2057, pages 37-56, 2001.
10. L.R. Ford, Jr. and D.R. Fulkerson. Maximal Flow Through a Network. Canadian Journal of
Mathematics 8, pp. 399-404, 1955.
11. A. Goldberg and S. Rao. Beyond the Flow Decomposition Barrier. Journal of the ACM 45/5,
pp- 783-797, 1998.
12. U. Goltz and W. Reisig. The Non-Sequential Behaviour of Petri Nets. Information and
Control, 57(2-3), pp. 125-147, 1983.
13. U. Goltz and W. Reisig. Processes of Place/Transition Nets. LNCS 154, pp. 264-277, 1983.
14. J. Grabowski. On Partial Languages. Fundamenta Informaticae IV.2, pp. 428-498, 1981.
15. D. Harel, H. Kugler and A. Pnueli. Synthesis Revisited: Generating Statechart Models from
Scenario-Based Requirements. LNCS 3393, pages 309-324, 2005.
16. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using LSCs and
the Play-Engine Springer, 2003.
17. P.W. Hoogers and H.C.M. Kleijn and P.S. Thiagarajan. A trace semantics for Petri nets.
Information and Computation 117/1, pp. 98—114, 1995.

et

e

18

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

321

G. Juhds and R. Lorenz and J. Desel. Can I execute my scenario in your net? LNCS 3536,
pp- 289-308, 2005.

A.V. Karzanov. Determining the Maximal Flow in a Network by the Method of Preflows.
Soviet Math. Doc. 15, pp. 434437, 1974.

A. Kiehn. On the Interrelationship between Synchronized and Non-Synchronized Behavior
of Petri Nets. Journal Inf. Process. Cybern. EIK 24, pp. 3 — 18, 1988.

J. Klose and H. Wittke. An Automata Based Interpretation of Live Sequence Charts. LNCS
2031, pages 512-527, 2001.

M. Lettrari and J. Klose. Scenario-Based Monitoring and lesting of Real-Time UML Models.
LNCS 2185, pages 317-328, 2001.

N. Mansurov. Automatic synthesis of SDL from MSC and its applications in forward and
reverse engineering. Comput. Lang. 27/1, pages 115-136, 2001.

M. Mukund. Petri Nets and Step Transition Systems. Int. J. Found. Comput. Sci. 3/4, pages
443-478, 1992.

M. Nielsen, G. Rozenberg and P.S. Thiagarajan. Elementary Transition Systems. Theor.
Comput. Sci. 96/1, pages 3-33, 1992.

M. Nielsen, G. Rozenberg and P.S. Thiagarajan. Transition systems, event structures and
unfoldings. Information and Computation 118/2, pages 191-207, 1995.

V. Pratt. Modelling Concurrency with Partial Orders. Int. Journal of Parallel Programming
15, pp. 33-71, 1986.

A. Roychoudhury, P.S. Thiagarajan, T. Tran and V.A. Zvereva. Automatic Generation of Pro-
tocol Converters from Scenario-Based Specifications. Proceedings of the 25th IEEE Real-
Time Systems Symposium (RTSS 2004), pages 447-458, 2004.

W. Vogler. Modular Construction and Partial Order Semantics of Petri Nets. LNCS 625,
1992.

