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Extracellular vesicles for liquid biopsy in prostate cancer:
where are we and where are we headed?
VR Minciacchi1, A Zijlstra2, MA Rubin3,4,5 and D Di Vizio1,6,7

BACKGROUND: Extracellular vesicles (EVs) are a heterogeneous class of lipid bound particles shed by any cell in the body in
physiological and pathological conditions. EVs play critical functions in intercellular communication. EVs can actively travel in
intercellular matrices and eventually reach the circulation. They can also be released directly in biological fluids where they appear
to be stable. Because the molecular content of EVs reflects the composition of the cell of origin, they have recently emerged as a
promising source of biomarkers in a number of diseases. EV analysis is particularly attractive in cancer patients that frequently
present with increased numbers of circulating EVs.
METHODS: We sought to review the current literature on the molecular profile of prostate cancer-derived EVs in model systems
and patient biological fluids in an attempt to draw some practical and universal conclusions on the use of EVs as a tool for liquid
biopsy in clinical specimens.
RESULTS: We discuss advantages and limitations of EV-based liquid biopsy approaches summarizing salient studies on protein,
DNA and RNA. Several candidate biomarkers have been identified so far but these results are difficult to apply to the clinic.
However, the field is rapidly moving toward the implementation of novel tools to isolate cancer-specific EVs that are free of benign
EVs and extra-vesicular contaminants. This can be achieved by identifying markers that are exquisitely present in tumor cell-derived
EVs. An important contribution might also derive from a better understanding of EV types that may play specific functions in tumor
progression and that may be a source of cancer-specific markers.
CONCLUSIONS: EV analysis holds strong promises for the development of non-invasive biomarkers in patients with prostate
cancer. Implementation of modern methods for EV isolation and characterization will enable to interrogate circulating EVs in vivo.
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INTRODUCTION
Prostate cancer (PC) is the most common non-skin cancer in
males. Thanks to significant advances in the diagnosis and
treatment, the 10-year cancer-specific survival of PC patients
exceeds 98%1 enabling many men to live with, rather than die of
their disease. In spite of this, more than 180 000 new cases are
estimated in 2016 and over 26 000 men are expected to die of PC
in the same year.2 Consequently, PC remains the second leading
cause of cancer deaths in the United States. Among the key
clinical challenges are the inability to accurately distinguish low-
risk (indolent) from high-risk (aggressive) disease at the time of
diagnosis. In addition, the highly variable clinical course has
limited the capacity to predict the biological progression of the
disease. Within the existing risk stratification systems for PC,
histological grading using the Gleason score system3 remains one
of the best independent predictors of clinical outcome. This
system was recently modified based on new 2016 World Health
Organization PC reporting guidelines.4,5 The five proposed risk
groups (PGG1–PGG5) correspond to genomic groups with
increasing number of somatic copy number aberrations.6 Meta-
static PC exhibits a distinct signature with specific driving genomic
alterations that might provide personalized therapeutic targets.6

Indeed, different genomic signatures might characterize diverse
facets of the same lethal disease, and this molecular hetero-
geneity, along with potentially actionable molecular defects has
been identified not only in castration resistance (CR) disease but
also in naive PC.7 Identifying alterations that predict high-risk
disease, metastasis and/or CR would improve the management of
the patients and their long-term outcome.
Although fine-needle biopsies are the standard for PC diagnosis

and prognosis, their ability to identify high-risk disease is limited8

Moreover, their invasive nature causes significant morbidity.
Analysis of PSA in blood has long been used for early diagnosis
and for monitoring of biochemical recurrence, but is flawed
with a significant number of false positives.9 These limitations
drive ongoing attempts at developing minimally invasive
procedures to interrogate cancer-derived macromolecules in
circulating tumor cells (CTCs), cell-free DNA (cfDNA) and extra-
cellular vesicles (EVs).

Circulating tumor cells
Despite the intrinsic limitation that CTCs are rare,10 analysis
of CTCs has allowed a non-invasive, real-time molecular
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characterization of cancer in patients with metastatic disease11,12

and has successfully been used to predict response to Docetaxel
and Prednisone in patients with metastatic castration resistant
PC (mCRPC).13 Additionally, nuclear expression of the androgen
receptor variant V7 (AR-V7) in CTCs seems to report response to
taxanes.14 Recently, CTCs have been shown to be heterogeneous
and to present characteristics of neuroendocrine differentiation,
suggesting that broader criteria for definition and inclusion of
CTCs should be used.15

Cell-free DNA
Tumor-derived cfDNA is particularly attractive due to its abun-
dance in plasma. Profiling cfDNA by next-generation sequencing
has recently resulted in a strategy for monitoring tumor dynamics
and identifying genomic causes of resistance, suggesting a temporal
association between cfDNA profiles and clinical progression.16

Similar studies have enabled accurate estimations of absolute
androgen receptor (AR) copy number17 and such an analysis of
plasma AR in CRPC patients has identified primary resistance to
Abiraterone.17 These studies rely on sophisticated computational
tools to limit the possibility of missing circulating AR genomic
lesions caused by low input cfDNA, which is also contaminated
with benign cell-derived DNA.16,17 Mounting evidence indicates
that cfDNA is not the only source of extracellular DNA in plasma,
and that a portion of this DNA along with other cancer-derived
molecules is carried and protected in EVs.

Extracellular vesicles
EVs are lipid-enclosed particles released by all cellular organisms
and containing a repertoire of macromolecules (cargo) that is
reflective of the cell of origin. The EV cargo is stable because it is
protected from enzymatic degradation by a lipid membrane
envelope. EVs are extremely abundant (~1–3 × 1012 exosomes per
ml of plasma.18 Direct enumeration of tumor-derived EVs and/or
profiling of their molecular cargo in patient body fluids have been
shown to provide valuable information about the biology of the
tumor.19 While EV profiling offers significant advantages because
they contain a complex cargo (proteins, lipids, nucleic acids) that
could be interrogated simultaneously, discriminating cancer-
derived EVs from the non-cancer ones has been challenging.

EVs ARE HETEROGENEOUS
Various populations of EVs have been described.20,21 While
exosomes and ectosomes are the most frequently studied EVs,
biofluids contain highly heterogeneous EV populations, of variable
size and originating by diverse mechanisms (Figure 1). Impor-
tantly, different EV types exhibit distinct molecular and functional
characteristics.22,23 Also, benign cells produce various types of
EVs.24 Thus cancer-derived EVs float in a sea of physiologically
normal EVs and the use of EVs in liquid biopsies relies on
improving the methodologies to selectively purify single EV
populations based on their subcellular origin, size, cargo, and
donor cell type and status.

Size–nomenclature–biogenesis–origin
Exosomes. Exosomes are nanosized vesicles (50 to 4100 nm in
diameter)22 that originate from the fusion of multivesicular bodies
with the plasma membrane (PM),25 or bud directly off the PM26 as
recently reviewed.20,21 Any type of cell from any living organism
can shed exosomes.27 Prostate-specific EVs termed ‘prostasomes’
were originally described as exosome-like structures that are
released by normal prostate epithelial cells in the seminal fluid.28

Functionally, it is known that prostasomes mediate intercellular
communication between epithelial secretory cells and sperm cells.
More specifically, secretory cells seem to use this mechanism to

nurture sperm cells, thus increasing their motility.29 The term
prostasomes has often been used interchangeably with exosomes
due to their high cholesterol/phospholipids ratio and to a protein
pattern that suggests the origin of prostasomes from multi-
vesicular bodies. Tavoosidana et al.30 reported that detection of
prostasomes in peripheral blood is useful for early diagnosis and
prognosis in organ-confined PC. However, recent studies have
clarified that, unless these EVs are identified in the seminal fluid,
the term exosomes is more appropriate to describe them.31

Ectosomes. The term ectosomes indicates exquisitely EVs origi-
nating by direct budding and pinching off of the PM.32 These
vesicles are generally larger than exosomes (250–1000 nm) and
result from PM budding as a consequence of activation of
GTPases.32,33 Ectosomes are also frequently referred to as
‘microvesicles’ (MV). MV were originally described as platelet-
derived EVs with a functional role in coagulation34 but several new
types of bioactive vesicles derived from a variety of cells, including
tumor cells, have been described.

Large oncosomes. Large oncosomes (LO) are atypically large EVs
(1–10 μm diameter) that are released by tumor cells transitioning
from a mesenchymal to a more rapid, amoeboid motility mode,
which results in highly migratory, invasive, and metastatic
phenotypes.35–38 This process occurs in cells with active Akt1
and EGFR signaling,35 and can be induced by silencing of the actin
nucleator diaphanous-related formin 3 (DIAPH3).23 They do not
appear to be produced by benign cells.39 More recently, the
identification of similarly large EVs has been reported21,40,41 but it
is unclear whether they share similar functional or molecular
characteristics to the LO.

EVs AS A SOURCE OF BIOMARKERS IN PC
While a discrete portion of molecules is enriched or depleted in
EVs in comparison with the cancer cell of origin, suggesting a
finely regulated mechanism of export,42,43 the EV cargo largely
reflects the donor cell cargo. Because these molecules are
protected from degradation and can be measured in biological
fluids, they represent a valuable, non-invasive source of tumor-
derived markers, as demonstrated in a large number of neoplasms
(Table 1).44–49

Exosome
50 - >100 nm

MV 
250 - 1000 nm 

LO 
1 - 10 μμm 

Nucleic acids 

Proteins
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Figure 1. The cartoon represents two canonical mechanisms of EV
formation from multivesicular bodies (Exo) or direct budding from
the plasma membrane, as it is the case for ectosomes (MV and LO).
Notably, MV and LO can reach significantly larger dimensions
than Exo. EV, extracellular vesicles; LO, large oncosomes; MV,
microvesicles.
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Mass spectrometry
Protein profiling in plasma, serum and other biological fluids are
limited by an intrinsic high dynamic range, and by the fact that
most of the FDA-approved serum biomarkers are at least five
orders of magnitude lower than albumin or other abundant serum
proteins. For this reason, most of the preliminary studies on the
characterization of the protein cargo of PC-derived EVs have been
performed on EVs obtained from PC cell lines. This approach has
created an invaluable resource of potential biomarkers and has
circumvented the limitations deriving from a direct interrogation
of body fluids.
One of the first deep mass spectrometry (MS) analyses of EVs was

performed by the Llorente group50 in exosomes derived from PC
cells metastatic to the bone.51 In addition to several proteins with
extracellular functions, cytoskeleton formation and EV biogenesis,
the authors identified CD151 and CUB domain-containing protein 1
(CDCP1) in cancer-EVs but not in benign EVs. CD151 is a tetraspanin
family member involved in tumor progression,52,53 while CDCP1 is a
transmembrane glycoprotein identified as a metastasis-associated
protein,54 and expressed at high levels in human tumors.55,56

CDCP1 was also detected in EVs from invasive PC cells with
characteristics of epithelial to mesenchymal transition57 but not
from isogenic, less aggressive cells.58 Additionally, identification of
CDCP1 in urine samples by an antibody specific to the ectodomain
of the protein discriminated patients with high-risk versus low-risk
PC.58 These results demonstrate that cell-surface proteins can be
used to identify tumor-derived EVs and support the use of CDCP1-
positive EVs as circulating markers of PC. CDCP1 might also itself
prove to be a biomarker.
In order to improve reproducibility and sensitivity of protein

detection, Webber et al.59 applied a novel MS platform to
exosomes and donor DU145 PC cells. The resulting SOMAscan
platform uses a class of protein-binding reagents called SOMA-
mers (slow off-rate modified aptamers) that allows the detection
of a significant number of proteins and can handle a large number
of samples. Milk fat globule-EGF factor 8 (MFG-E8), Notch3,
disintegrin and metalloproteinase domain-containing protein
(ADAM9) were enriched in exosomes in comparison to the tumor
cells. Not only did this study contribute to the identification of
novel putative extracellular markers of PC, but it also led to the
discovery that proteins that are typically considered to be secreted
in a free form, are actually exported in EVs. The authors
further demonstrated by sucrose density gradient that the soluble
form of transforming growth factor β1 (TGF-β1) does not
co-isolate with exosome-bound TGF-β1 and they concluded that

this is the case also for granulocyte-colony stimulating factor,
vascular endothelial growth factor, and interleukin 8, confirming
the importance to analyze soluble molecules separately from
EV-bound molecules.
A MS approach was also employed by Hosseini-Beheshti et al.60

to profile exosome proteins from AR positive and negative PC cell
lines. A number of candidate biomarkers, including calsyntenin-1
(CLSTN1), growth differentiation factor 15 (GDF15), fatty acid
synthase (FASN) and clusterin (CLU) were identified in EVs from
these tumor cells but not from non-tumorigenic prostate epithelial
cells. Finally, Duijvesz et al.61 identified higher levels of pro-
grammed cell death 6-interacting protein (PDCD6IP/Alix), FASN,
CD9 and enolase 1 (ENO1) in exosomes derived from malignant
prostate cell versus benign cell lines.
The Jenster group performed MS on sera of mice with

androgen-naive or androgen resistant PC thus providing one of
the first evidences for in vivo significance of EVs as biomarkers in
this disease.19 They compared the sera profiles to the profiles of
exosomes and exosome-deprived supernatant of PC cells to test
whether the proteins released in the serum are likely to be
packaged in EVs. Strikingly, most of the proteins identified in
mouse sera and in PC cell-derived exosomes, including glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH), ENO1 and lactate
dehydrogenase B (LDHB), were found only in the exosome
fraction, and not in the exosome-depleted supernatant, suggest-
ing they are exported in EVs. Identification of TM256 by Øverbeye
et al.62 in urine exosomes discriminated PC patients (n= 16) from
controls (n= 15) with 94% sensitivity. The sensitivity reached 100%
when TM256 was analyzed in combination with the autophagy
inhibitor late endosomal/lysosomal adaptor, MAPK and MTOR
activator 1 (LAMTOR1). These proteins are candidate EV urinary
markers, and the validity of this discovery is supported by the
identification, in the same study, of well-known PC markers such
as PSA, prostate-specific membrane antigen (FOLH1/PMSA),
transglutaminase (TGM4) and transmembrane protease, serine 2
(TMPRSS).
Exosome proteins have also been interrogated for identification

of biomarkers of treatment response and particularly for early
detection of drug resistance. Kharaziha et al.63 provided evidence
that exosomes report acquisition of resistance to docetaxel. In
comparison with parental DU145 PC cells, which are sensitive to
docetaxel, DU145 cells that have acquired resistance to the
compound (Tax-Res) shed more abundant exosomes as measured
by NTA. Additionally, exosomes derived from Tax-Res cells carry a
different set of proteins while expressing similar levels of exosome
markers. Examples are the poly(A)-binding protein (PABP4),
Endophilin-A2 and the ATP-dependent drug efflux pumps
MDR-1 (or p-glycoprotein) and MDR-3, which were enriched in
the Tax-Res exosomes. These observations were further confirmed
in a small cohort of patients with CRPC.
Regarding the identification of canonical PC biomarkers in

exosomes, an analysis of the literature demonstrates that they
contain the mRNA product of the TMPRSS2-ERG fusion as well as
PSA.62 However, some studies report detection of PSA in
exosome-deprived supernatant rather than as true exosome
cargo.19,61 It would be interesting to investigate whether
EV-associated PSA has different function and provides different
information than soluble PSA. Additional potential markers are
δ-catenin, which was identified in EVs from PC3 cell media and in
urine samples of patients with PC,64 and survivin, which was
expressed at higher levels in circulating EVs from cancer patients
in comparison with healthy controls or patients with BPH.65

As mentioned before, EVs other than exosomes and MV exist.
One example is represented by LO, which are particularly large EVs
that have not been identified in normal prostate tissue, are
present at low levels in tissue of patients with low Gleason Score,
organ-confined cancer and at high levels in mCRPC.39 Caveolin-1
(Cav-1), which has been functionally implicated in PC

Table 1. Examples of commercially available kits for EVs isolation

Cancer type Biological fluid Correlation

GPC-1 Pancreatic Serum Early detection,
progression

TYRP2 Melanoma Plasma Tumor detection
VLA-4 Melanoma Plasma Tumor detection
HSP70 Melanoma Plasma Tumor detection
MET Melanoma,

NSCLC
Plasma Tumor detection,

progression
CD9 NSCLC Plasma Progression
CD81 NSCLC Plasma Progression
Tsg101 NSCLC Plasma Progression
EGFRvIII NSCLC,

Glioblastoma
Plasma,
cerebrospinal fluid

Tumor detection,
progression

CD151 NSCLC Plasma Progression
miR-21 Glioblastoma Cerebrospinal fluid Tumor detection

The majority of these kits lead to the isolation of a mixed extracellular
vesicles (EV) population.
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progression66–68 and has been suggested as a circulating marker
of metastatic PC by the Thompson group,69 emerged as a
promising LO-associated protein detectable in the circulation of
patients with metastatic disease but not in patients with organ-
confined PC.70 Importantly, Cav-1 expression was also identified in
exosomes, confirming the data from other groups.71 However,
flow cytometry experiments indicated that Cav-1-positive LO, but
not exosomes, are significantly increased in patients with
metastasis.70 One putative marker of LO is cytokeratin 18 (CK18),
a protein that is almost completely excluded from exosomes, as
demonstrated by gradient centrifugation.23 The presence of CK18-
positive EVs in human plasma was associated with cancer in a
small cohort of PC patients.23 Additional LO markers are HSPA5,
HSPD1, GAPDH and other functionally interesting proteins,
including membrane proteins and metabolic enzymes that seem
to be implicated in the biological functions of LO.23 Interrogating
larger cohorts of patients to validate clinical significance of these
markers is essential. Because of the tumor-specificity, differentiat-
ing LO from other EV types may increase the granularity of cancer-
specific signal. Given their large size, LO could also be easily
captured and analyzed by NGS, thus informing the genetic
composition of the tumor, risk of recurrence, and disease-free or
overall survival. Interestingly, the identification of very large
objects (sometimes as large as CTCs) positive for epithelial cell
adhesion molecule (EpCAM) and CK18 in the circulation of PC
patients was reported in 2010 by Coumans et al.72 and was
correlated with reduced survival. Unfortunately, the system
currently approved by the FDA uses particularly strict parameters
to define a CTC, therefore these abnormally large vesicular
structures, which could be LO, are discarded and not incorporated
in the analysis. Developing or repurposing microfluidic devices to
capture and analyze, specifically, tumor-derived LO, might clarify
the function and clinical significance of these vesicles.
In summary, several studies on protein cargo have identified

potential EV biomarkers. For most of these, it is unclear whether
they are specific to a given EV population (Figure 2). Confirming
these data in larger cohorts of patients, and determining whether
one or more of these markers are associated with specific EV
populations will provide significant advantages to the develop-
ment of EV-based non-invasive tools for personalized medicine.

Extracellular nucleic acids
A few reports on DNA, and several reports on RNA in EVs have
been recently published.73,74 The evidence that nucleic acids
travel protected in EVs offers generous opportunities to nominate
tumor type or disease-stage-specific variants or other genomic
alterations, as well as aberrant transcripts or noncoding RNAs in
EVs by massive parallel sequencing.

DNA. In 2011, Balaj et al.75 were the first to demonstrate that EVs
contain DNA. A few years later, the presence of double-stranded
DNA (dsDNA), reflecting the genomic DNA (gDNA) of the
originating cell, was reported and low-coverage whole-genome
sequencing demonstrated that the DNA contained in EVs spans all
chromosomes.73,74 However, single primer PCR was necessary to
detect specific DNA aberrations in plasma EVs. Thus, KRAS and P53
mutations, which typically occur in more than 90% of patients
with pancreatic cancer,76,77 were identified in exosomes from
pancreatic cancer cells,73 and BRAF and EGFR mutations were
identified in exosomes from melanoma and lung cancer cells.74

These seminal findings suggest that more sensitive methods for
discovery will improve detection of EVs in which the tumor-
derived DNA is highly concentrated. An interesting report from
Lázaro-Ibáñez et al. recently tested whether different populations
of EVs (exosomes, MV and apoptotic bodies) contain extracellular
gDNA with different profiles, and PC-specific mutations.78 Addi-
tional studies are needed to understand the functional

distribution of extracellular DNA in different EV populations that
might accommodate different amounts ad types of DNA.
In order to render this effort clinically applicable, it will be

essential to test the presence of frequent mutations in specific
clinical groups, standardizing the methods and preserving the EV
cargo. For example, because genomic alterations of the phos-
phoinositide 3-kinase (PI3K) axis, which includes PTEN mutations
and deletions, have been identified in tumor tissues from 50% of
patients with CRPC by whole-exome and RNA seq,79 this group of
patients could be an ideal target to measure PTEN copy number as
a EV-based circulating DNA assays. Collaborations with other fields
will also help standardization of EV profiling. For example, it is still
unclear what the best way to preserve EVs is and perhaps some
insights can be derived from the CTC community. Similarly, the
cfDNA field might inspire future development of EV assays, since
they have established the computational pipelines to analyze
highly fragmented plasma DNA. It is important to note that the
size of DNA fragments in LO is significantly larger than in other
types of EVs (unpublished observations), supporting further
investigations in those EVs. We speculate that specific selection
of these vesicles might improve designing the approach to detect
tumor signal in complex biofluids, thus allowing to monitor the
tumor genomic make up by liquid biopsy.

RNA. Donovan et al. recently developed an assay that reports a
patient score (EXO106) based on mRNA levels of PC antigen 3
(PCA-3), ETS-related gene (ERG) and SAM pointed domain-
containing Ets transcription factor (SPDEF) in urine-derived
exosomes.80 In receiver operating characteristic (ROC) analysis,
the EXO106 score predicted both PC and high-grade disease
(Gleason score 7 or higher) with an area under the curve (AUC) of
0.764. Importantly, EXO106 showed its usefulness in the diagnosis
of high-grade PC in patients in ‘grey zone’ serum PSA levels
(42 and o10 ng ml− 1). In a follow-up study, the gene expression
assay score of PCA-3, ERG and SPDEF assayed in urine exosomes
(ExoDx Prostate IntelliScore) outperformed standard of care
values. This combination resulted to be more predictive in
discriminating PC patients with ⩾GS7 from GS6 or with
negative biopsy results (AUC 0.73) in multiple cohorts obtained
from different sites. The addition of the ExoDx Prostate
IntelliScore seems also to prove useful in identifying patients
who are eligible to biopsy among the ones with elevated PSA
levels.81 Nilsson et al. had previously examined PSA, PCA-3 and
TMPRSS:ERG mRNA levels in urine-derived exosomes and demon-
strated a correlation between these transcripts and high Gleason

Candidate EV biomarkers for PC 

Proteins: 
CD151 
CDCP1
MFG-E8
Notch3
ADAM9
CLSTN1
GDF15 
FASN
CLU 
CYP17
PDCD6IP/Alix
CD9 
ENO1
PSMA

GAPDH
LDHB 
TM256
LAMTOR1
PSA
FOLH1/PMSA
TGM4
Endophilin-A2
MDR-1 and 3
δ-catenin 
Survivin
Cav-1
CK18 

mRNA: 
PCA-3  
ERG
SPDEF
PSA
TMPRSS:ERG

miRNA: 
miR-438-5p
miR-34a
miR-1290
miR-375

Figure 2. Summary of candidate PC biomarkers (protein and nucleic
acids) identified in EVs for which it is not clear if they are specific for
given EV populations. EV, extracellular vesicles; PC, prostate cancer.
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score as well as poor response to androgen deprivation therapy.82

Even if on a small sample size, the results of this study are
remarkable and support investigations of the prognostic role of
exosome-enclosed mRNA in larger cohorts of patients. Additional
studies from Dijkstra et al. and Hendriks et al. have tested the
suitability of using urine-derived exosomes for PC diagnosis.
However, while the first study suggests the clinical usefulness of
urine-derived exosomes, the second proposes whole urine as
substrate for biomarkers analysis.83,84 Of note, both studies
highlight the positive effect of digital rectal examination prior
urine sampling since it seems to increase material recovering.
In addition to identifying known PC biomarkers, recent studies

have attempted to perform extensive, unbiased screenings
through array-based approaches to identify novel PC RNA
biomarkers (Figure 2). These studies focus particularly on miRNAs,
which are stable in human biological fluids because resistant to
ribonuclease degradation.85 Korzeniewski et al. reported three
miRNAs (miR-483-5p, miR-1275, miR-1290) as the most abundant
miRNAs released from PC cells.86 When tested in urine samples,
miR-483-5p alone as well as in combination with the other two
miRNAs, was able to significantly differentiate PC patients with
biopsy-proven tumor mass from patients with microscopic
tumor. However, PSA was a better disease predictor, and overall,
these miRNAs failed to show advantages over conventional
methods. Corcoran et al.87 examined the potential use of
exosomal miR-34a as a predictive biomarker of response to
docetaxel. Among the miRNAs whose levels correlated with
disease progression (miR-598, miR-34a, miR-146a, miR-148a),
miR-34a showed the highest clinical relevance based on in silico
analysis of publicly available datasets. α-synuclein and solute
carrier family 7 member 5 (SLC7A5), which are two common
targets of these four miRNAs, also correlated with prognosis in
CRPC patients. These results collectively suggest that analyses of
EV-bound miRNA might be more useful than analyses of whole
miRNA fraction in biofluids (obtained without purifying EVs).
However, comparative studies are necessary to make this
conclusion.
A large-scale screening was performed by Huang et al.,88 who

reported that miR-1290 and miR-375 can be used as prognostic
markers of CRPC. Rather than using array-based approach, RNA
sequencing with short RNA libraries was conducted in 23 patients
with CRPC to identify survival-related miRNAs in plasma exo-
somes. We believe this is the first RNA sequencing screening
performed on plasma EVs in CRPC. Candidate miRNAs were further
validated for their prognostic values using PCR in 100 patients.
Plasma exosomal miR-1290 and miR-375 were chosen as the two
most promising prognostic biomarkers. Interestingly, while
miR-375 upregulation in tumor tissues correlated with PC
progression,89 miR-1290 was not significantly upregulated in
PC tissues.90 This is an interesting result suggesting that EV
analyses could allow identification of cancer-derived molecules in
biological fluids even if their levels are not increased in tumor
tissue. Last but not least, little is known about the potential for use
of exosomal long noncoding RNAs (lncRNA) as circulating
diagnostic markers for PC. Isin et al. tested the feasibility of using
lncRNA-p21 for the detection of PC. Urine lncRNA-p21 was
expressed at significantly higher levels in PC (n= 30) than in
BPH (n= 49) and the specificity of the test was increased to 94%
when lncRNA-p21 was examined together with PSA.91

CAN EVs PRODUCE HIGH YIELD OF BIOMARKERS IN VIVO?
Modern methods for EV isolation and characterization
A major challenge in profiling circulating EVs is that differential
centrifugation is still the gold standard and one of the most
frequently used methods for EV isolation.92 While effective, the
methodology is cumbersome, it requires large amount of starting

material, and it is not suitable for high-throughput assays nor does
it provide individual particle analysis. Luckily the field is advancing
rapidly. Multiple alternative approaches have been recently
developed for both purification and analysis of EVs
(Figure 3). Unfortunately, most of these methods have not been
standardized, which makes cross-assay comparisons difficult. It has
also prevented the literature from defining specifically what EV
population is studied by different investigators. Several kits are
commercially available for EV isolation (Table 2). However, these
kits tend to precipitate a mixture of EV populations and
result in EVs of low purity (EVs are precipitated along with extra-
vesicular material). Moreover, most of these methods employ
buffers that digest the EV membranes, thus impairing the recovery
of intact particles for qualitative and quantitative analyses. While
these considerations would support the use of differential
centrifugation, a few reports indicate even that methodology is
imperfect, as it may favor the formation of particle clumps,
interfering with amenable downstream single vesicle
characterization.
For the above reasons, several recent studies have focused on

developing novel approaches to purify EVs in a more rapid and
sensitive manner (Figure 3). One example is the micro-nuclear
magnetic resonance (μNMR) system, in which EVs are bound to
antibody-coated miniaturized nanoparticles and become super-
paramagnetic.93 Antibody-coated photosensitizer-beads that
allow amplification of signal by a luminescent proximity homo-
geneous assay (ExoScreen) have also been employed.94 Recently,
a tool that combines magneto and enzymatic detection of signals
has been developed (iMEX). In this case EVs are first captured
using magnetic beads then combined with a HRP enzyme that
allows electrochemical detection.95 As novel detection tools, a
time-resolved fluorescence immunoassay (TR-FIA) has recently
detected, with high sensitivity, CD9 and CD63-positive exosomes
in urine samples from patients with PC.96 Welton et al. recently
proposed the application of ready-made chromatography col-
umns for the study of plasma. CD9-positive fractions were thus
efficiently separated from albumin.97 This system relies on
antibodies and on specificity of EV markers such as EGFRvIII,
CD147 and CD9, or EpCAM and CD24. Label-free approaches, to
overcome this problem, include nano-plasmonic sensors (nPLEX).
This high throughput system can monitor the nPLEX local
refractive index, which shifts when EVs bind to a specific
sensor.98 It allows elution and recovery of intact EVs, permitting
downstream profiling of their cargo. A chip-based approach was
also recently employed to analyze EVs in a small cohort of patients
with PC. This assay based on electrochemical characterization of
EVs detected increased levels of EpCAM and PSMA in patients
compared to controls starting from a 25 μl of plasma.99 An
aqueous two-phase system was recently proposed for EV isolation
from plasma of patients with PC (n= 82). Also, in this study, PSMA-
positive EVs were associated with high-risk PC and higher risk of
biochemical failure.100 Flow cytometric analysis of EVs has made
significant advances. In particular, the use of microflow technol-
ogies (Apogeeflow.com) has enabled the direct analysis of EVs of
various sizes.101–103 The recent inclusion of standardization,
particles has been particularly important for achieving consistent
detection and characterization of each EV population. The
inclusion of fluorescent detection with small and wide-angle
scatter enables microflow technologies to interrogate each
particle with fluorescent antibodies, thereby bringing the advan-
tages of traditional flow cytometry to the analysis of EVs.

CONCLUSION
The EV field is developing rapidly to try to better understand the
biology and significance of the cargo with raising opportunities to
use EV as biomarkers. Keys to success will be the miniaturization of
the assays as well as standardization of EV purification and analysis
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systems. These recent developments hold high potentials for
applicability of EV profile to clinical settings if validated in larger
cohorts of patients. Indeed, preliminary investigations in different
tumors like glioblastoma, colorectal cancer and ovarian cancer
demonstrate that these techniques can discriminate patients from
controls, and also identify patients that respond to therapy from
the ones who do not.
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