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Abstract

We study the effective action for the integrable λ-deformation of the Gk1 × Gk2/Gk1+k2 coset CFTs. 
For unequal levels theses models do not fall into the general discussion of λ-deformations of CFTs corre-
sponding to symmetric spaces and have many attractive features. We show that the perturbation is driven 
by parafermion bilinears and we revisit the derivation of their algebra. We uncover a non-trivial symmetry 
of these models parametric space, which has not encountered before in the literature. Using field theoretical 
methods and the effective action we compute the exact in the deformation parameter β-function and ex-
plicitly demonstrate the existence of a fixed point in the IR corresponding to the Gk1−k2 × Gk2/Gk1 coset 
CFTs. The same result is verified using gravitational methods for G = SU(2). We examine various limiting 
cases previously considered in the literature and found agreement.
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1. Introduction

Perturbing a conformal field theory (CFT) while maintaining integrability, especially to all 
perturbative orders, usually proves quiet challenging. In this paper we consider the Gk1 ×
Gk2/Gk1+k2 coset CFTs, where G is a semi-simple group and the levels k1, k2 are generically 
different. Then we perturb these CFTs using bilinears of operators with conformal dimension

�k1,k2 = 1 − cG

2(k1 + k2) + cG

, (1.1)

where cG is the quadratic Casimir in the adjoint representation of G. These models were exten-
sively studied in the past [1–5], mostly for G = SU(2). In particular, it has been argued based 
on thermodynamic Bethe ansatz (TBA) considerations and on perturbative computations when 
one of the levels is much larger than the other one, that there is an integrable flow from the 
Gk1 ×Gk2/Gk1+k2 coset CFTs, in the UV, to the Gk1−k2 ×Gk2/Gk1 coset CFTs in the IR. More-
over, it was also argued that these models have interesting limits when one or both levels are 
taken to infinity.

In the present work we make considerable progress along the above research line by con-
structing an effective action for these models valid to all orders in the perturbation parameter. 
The latter will be alternatively called deformation parameter, emphasizing the non-trivial depen-
dence the action will have on it. This effective action will be nothing but that the λ-deformed 
coset Gk1 ×Gk2/Gk1+k2 coset which will be used to explicitly prove the previous properties and 
more. The construction will follow the rules of the usual (integrable) λ-deformations for current 
algebras Gk [6] and for Gk/Hk (symmetric) coset CFTs [6,7], appropriately generalized to take 
into account the presence of two different levels [8]. As is the case for all λ-deformed type ac-
tions [6,9,12,10,11] the resulting action will be valid for large levels but exact in the deformation 
parameter.

The structure of this work is as follows. In section 2, we explicitly construct the effective 
action for the λ-deformed Gk1 × Gk2/Gk1+k2 coset CFTs. Then we show that they possess the 
non-trivial symmetry (2.17) in their parametric space (λ, k1, k2) and prove their classical inte-
grability by rewriting their equations of motion in the Lax form (2.26). In section 3, we study 
various limits when the levels k1 and/or k2 are taken to infinity and we make connection with 
related statements in the literature [3–5]. In addition, we discover a new limit which is the non-
Abelian transformation of the λ-deformed WZW model for a group G. In section 4, we compute 
the exact β-function in the deformation parameter (4.9) and the IR fixed point, which has been 
argued to exist previously. In addition, we study its various properties and limits. For unequal 
levels, this β-function is not what one obtains for the λ-deformed coset models for symmetric 
spaces. This is explained by the non-Abelian nature of the parafermionic algebra (4.17) for the 
Gk1 × Gk2/Gk1+k2 coset CFTs whose derivation is revisited in the Appendix A but originally 
derived in [13].

2. The effective action and its integrability

The effective action will be constructed by following the rules in [6] as extended for the coset 
models in question in [8]. Hence, we consider a sum of WZW actions for the group elements 
g1, g2 ∈ G, at different levels k1 and k2 and add to them the principal chiral model (PCM) action 
for the coset G × G/G with some overall coupling constant κ2. Subsequently one gauges the 
subgroup G acting vectorially on g1 and g2, and from the left on the group elements on the coset 
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PCM. In order to make the action gauge invariant, we introduce gauge fields A1± and A2± in 
the Lie algebras of the group G × G. Since the gauge group’s action is free on the PCM group 
elements, we can fix them to unity. After this gauge fixing the contribution of the PCM is simply

−2κ2

π

∫
d2σ Tr (B+B−) , B± = 1

2
(A1± − A2±) ,

where the minus relative sign between the gauge fields is simply due to the fact that the coset 
generators correspond to the difference of the generators of the two groups in G × G and the 
subgroup to their sum. Then the total action is

Sk,κ2(g,A1,2±) =
2∑

i=1

{
Ski

(gi) + ki

π

∫
d2σ Tr

(
Ai−∂+gig

−1
i − Ai+g−1

i ∂−gi

+ Ai−giAi+g−1
i − Ai+Ai−

)} − k
λ−1 − 1

π

∫
d2σ Tr (B+B−) ,

(2.1)

where the WZW action for a group G is

Sk(g) = k

2π

∫
d2σ Tr(∂+g−1∂−g) + k

12π

∫
Tr(g−1dg)3

and we found it convenient to introduce the parameters

λ = k

k + 2κ2 , k = k1 + k2 , si = ki

k
, i = 1,2 . (2.2)

We note that the gauge freedom should be completely fixed by choosing additional dimG-pa-
rameters in the groups elements g1 and g2, therefore leaving dimG group parameters in total. 
These will be the background coordinates in the σ -model action to be derived. This gauge fixing 
has to be done on a case by case basis, depending on the specific parametrization of the group 
elements.

Next we find the equations of motion for the above action. Varying (2.1) with respect to the 
Ai±’s, we find the following constraints

s1D+g1 g−1
1 = 1

2
(λ−1 − 1)B+ , s2D+g2 g−1

2 = −1

2
(λ−1 − 1)B+ (2.3)

and

s1g
−1
1 D−g1 = −1

2
(λ−1 − 1)B− , s2g

−1
2 D−g2 = 1

2
(λ−1 − 1)B− . (2.4)

Note that from these it follows that

s1D+g1 g−1
1 + s2D+g2 g−1

2 = 0 , s1g
−1
1 D−g1 + s2g

−1
2 D−g2 = 0 , (2.5)

implying, that the gauge invariant subgroup current for the left and the right chiralities vanishes 
on-shell, as it should. Returning to the equations of motion, varying the action with respect to 
group elements g1 and g2 results into

D−(D+gig
−1
i ) = Fi+− , i = 1,2 , (2.6)

where

Fi+− = ∂+Ai− − ∂−Ai+ − [Ai+,Ai−] , i = 1,2 .
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Equivalently, these can be written as

D+(g−1
i D−gi) = Fi+− , i = 1,2 . (2.7)

The covariant derivatives are defined according to the group element contained in the object on 
which they act. For example, D±g1 = ∂±g1 − [A1±, g1]. Next we define

J a+ = −i Tr(ta∂+gg−1) , J a− = −i Tr(tag
−1∂−g) , Dab = Tr(tagtbg

−1) , (2.8)

where ta’s are Hermitian representation matrices obeying [ta, tb] = ifabctc, for real structure 
constants fabc. We choose the normalization such that Tr(tatb) = δab . In what follows these 
quantities will have an extra index 1 or 2 depending on whether the group element g1 or g2 has 
been used.

In order to obtain the desired σ -model action we should integrate out the gauge fields which 
appear non-dynamically in the system of equations (2.3) and (2.4). After some algebraic manip-
ulations we find that

A1+ = i
−1
21

(
(1 − λ)(s1J1+ + s2J2+) − 4s1s2λ(D2 − I)J1+

)
,

A2+ = i
−1
12

(
(1 − λ)(s1J1+ + s2J2+) − 4s1s2λ(D1 − I)J2+

) (2.9)

and

A1− = −i
−T
12

(
(1 − λ)(s1J1− + s2J2−) − 4s1s2λ(DT

2 − I)J1−
)
,

A2− = −i
−T
21

(
(1 − λ)(s1J1− + s2J2−) − 4s1s2λ(DT

1 − I)J2−
)
,

(2.10)

where


12 = 4λs1s2(D1 − I)(D2 − I) + (λ − 1)
(
s1D1 + s2D2 − I)

)
, (2.11)

with 
21 following by interchanging the indices 1 and 2. Substituting these expressions into 
(2.1) results into the σ -model action

Sk,λ(g1, g2) = Sk1(g1) + Sk2(g2)

+ k

π

∫
d2σ

{
s1J1+
−T

12

(
(1 − λ)(s1J1− + s2J2−) − 4s1s2λ(DT

2 − I)J1−
)

+ s2J2+
−T
21

(
(1 − λ)(s1J1− + s2J2−) − 4s1s2λ(DT

1 − I)J2−
)}

.

(2.12)

For λ → 0, the action has obviously a smooth limit given by

SCFT = Sk1(g1) + Sk2(g2)

+ 1

π

∫
d2σ(k1J1+ + k2J2+)(kI− k1D

T
1 − k2D

T
2 )−1(k1J1− + k2J2−) ,

(2.13)

which is the σ -model action corresponding to the Gk1 × Gk2/Gk1+k2 coset CFTs.
It is very important to recognize the operator that drives the theory away from the CFT point. 

To do so we should compute the O(λ) correction to the SCFT. Apparently, this computation 
cannot be performed very easily using (2.12). Instead one may use (2.1). We easily see that 
for λ = 0, we have that 
12 = 
21 and A1± = A2±. Expanding the gauge fields as A1,2± =
A

(0)
± + λA

(1)
1,2± + . . . and using this in (2.5), leads to

Sk,λ(g1, g2) = SCFT(g1, g2) + 4λ
k

s1s2

∫
d2σ Tr

(
D

(0)
+ g1g

−1
1 g−1

2 D
(0)
− g2

) + · · · , (2.14)

π
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where the superscript in the covariant derivative implies that the leading order expression for the 
gauge fields A(0)

± has been used, as the A(1)
± drops out completely to linear order in λ. We may 

interpret this expression if we first rewrite it in a more suggestive form. We define

�+ = 1

2
(s1D

(0)
+ g1g

−1
1 − s2D

(0)
+ g2g

−1
2 ) ,

�− = −1

2
(s1g

−1
1 D

(0)
− g1 − s2g

−1
2 D

(0
− g2) .

(2.15)

Then we easily see that, upon using (2.5) for λ = 0, the above perturbative expansion becomes

Sk,λ(g1, g2) = SCFT(g1, g2) + 4λ
k

π

∫
d2σ Tr

(
�+�−

) + · · · . (2.16)

It has been shown quite generally [13,14] that, by including Wilson lines, �+ and �− as 
defined above, are chiral and anti-chiral, respectively and become the classical non-Abelian 
parafermions [14]. Due to the Wilson lines these are non-local objects and they have non-
trivial monodromy properties. The Wilson lines attached to them drop out due to the fact that 
they appear within a trace so that the perturbation is eventually local as it should be. This 
parafermion bilinear drives the model away from the conformal point and presumably is the 
classical representation of the operator driving the perturbation away from the CFT point in 
[3–5]. The parafermions have fractional conformal dimension given by (1.1), so that the pertur-
bation is relevant. Hence we expect that the β-function for λ that we shall later compute, will 
be linear for small λ.1 The situation is similar to the one encountered for the λ-deformation 
of the SU(2)/U(1) coset CFT constructed in [6], where in that case a bilinear in the Abelian 
parafermions of [13] was driving the deformation.

2.1. A non-trivial symmetry

Similar to the case of the λ-deformed models [6] and its generalizations in [11] and in [9], the 
action (2.12) has a non-trivial symmetry. Namely, it is invariant under the transformation

gi �→ g−1
i , ki �→ −ki , i = 1,2 ,

λ �→ 1 − (s1 − s2)
2λ

(s1 − s2)2 − (1 − 8s1s2)λ
.

(2.17)

Unlike previous works, this transformation acts non-trivially on the deformation parameter λ, 
instead of simply inverting it.2 Nevertheless, this symmetry shares the Z2 property, i.e. when it 
is performed twice we get the identity. To prove the invariance of (2.12) under (2.17) we use the 
transformations

Diab �→ Diba , J a
i+ �→ −Diba J b

i+ , J a
i− �→ −DiabJ

b
i− , i = 1,2 , (2.18)

and also note that the Wess–Zumino terms are separately invariant. Then we work out the trans-
formation of 
12 defined in (2.11), finding that


12 �→ 4s1s2

(s1 − s2)2 − (1 − 8s1s2)λ
DT

1 
12 DT
2 (2.19)

1 Parafermion bilinears dressed with other fields driving exactly marginal deformations in σ -models corresponding to 
exact CFTs have been used in [15].

2 When k1 = k2 the transformation simply inverts λ.
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and similarly for 
21. Using the above it is a long but straightforward computation to prove that 
the combined sum of the kinetic terms of the WZW models along with the interacting pieces are 
invariant under (2.17).

The symmetry (2.17) has two fixed points for the parameter λ which are given by

λ = 1 , λf = 1

1 − 8s1s2
. (2.20)

Such fixed points require special attention. Recall that, for the actions corresponding to the λ-
and related deformations, the analog of (2.17) involves λ �→ 1/λ and the fixed points of the 
transformation are λ = ±1. Then, a zoom in procedure for the group element around the identity 
has been performed and shown to correspond to the non-Abelian T-dual of the σ -model for PCM 
[6] (for λ → 1) and the corresponding pseudodual chiral model [16] (for λ → −1). In the case 
at hand taking λ = 1, leads to the G/G × G/G coset CFT, which is a topological model. This 
issue and the associated zoom in limit will be examined in detail later in the paper. We were not 
able to take a limit associated with the λ = λf symmetry fixed point.

2.2. Integrability

We shall prove that the model is classically integrable by recasting its equation of motion into 
a Lax pair. First we substitute (2.3) and (2.4) into (2.6) and (2.7) finding that

4λs1∂+A1− − (1 − λ + 4s1λ)∂−A1+ + (1 − λ)∂−A2+ ,

= (1 − λ + 4s1λ)[A1+,A1−] − (1 − λ)[A2+,A1−] ,

(1 − λ + 4s1λ)∂+A1− − 4s1λ∂−A1+ − (1 − λ)∂+A2− ,

= (1 − λ + s1λ)[A1+,A1−] − (1 − λ)[A1+,A2−]

(2.21)

and then

4λs2∂+A2− − (1 − λ + 4s2λ)∂−A2+ + (1 − λ)∂−A1+
= (1 − λ + 4s2λ)[A2+,A2−] − (1 − λ)[A1+,A2−] ,

(1 − λ + 4s2λ)∂+A2− − 4s2λ∂−A2+ − (1 − λ)∂+A1−
= (1 − λ + s2λ)[A2+,A2−] − (1 − λ)[A2+,A1−] .

(2.22)

Not all the above equations are independent, since the sums of the two equations in (2.21) and 
the sum of those in (2.22) are the same and given by

∂+A1− + ∂−A1+ − ∂+A2− − ∂−A2+ + [A1+,A2−] − [A2+,A1−] = 0 .

This fact is related to the existence of the constraint (2.5). It is convenient to define the combina-
tions for the gauge fields

A± = 1

2
(A1± + A2±) , B± = 1

2
(A1± − A2±) . (2.23)

Then after some algebraic manipulations the three independent equations in (2.21) and (2.22)
can be can be recast as

∂±B∓ = [A±,B∓] ± α[B+,B−] ,

∂+A− − ∂−A+ = [A+,A−] + β[B+,B−] ,
(2.24)

with coefficients given by
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α = − (s1 − s2)(1 − λ)

1 − (1 − 8s1s2)λ
, β = 1 + λ − 2(1 − 4s1s2)λ

2

λ(1 − (1 − 8s1s2)λ)
. (2.25)

Then the Lax form follows as

L± =A± + ζ±B± , ζ± = z±1
√

α2 + β + α ,

∂+L− − ∂+L+ = [L+,L−] ,
(2.26)

where z ∈ C is the spectral parameter. Note that for the case of equal level k1 = k2, the parameter 
α = 0 and β = 1/λ. Then the result for the Lax pair found for the λ-deformations of coset CFTs 
corresponding to symmetric spaces [7] follows.

3. Various limits of the effective action

The action (2.12) admits three different limits involving the parameters (λ, k1, k2) as well as 
the group elements g1,2.

3.1. Non-Abelian T-dual of the WZW model for Gk1

We shall take one of the levels, say k2, to infinity and similarly we zoom in for the group 
element g2, around the identity. Specifically, consider the limit

g2 = I+ ik1
v

k2
, k2 → ∞ , (3.1)

where k1 was inserted simply for convenience since that simplifies the final result and v = vat
a . 

When this limit is taken into the action (2.12) one obtains

Sk1(g1, v) = Sk1(g1) + k1

π

∫
d2σ (J1+ + ∂+v)(I+ f − DT

1 )−1(J1− + ∂−v) , (3.2)

where the matrix elements are

fab = fabcv
c , (3.3)

and we also recall that we should gauge fix dimG parameters among those in g1 and the v’s. 
This action is independent of λ and in fact it is nothing but the non-Abelian of the WZW model 
for Gk1 [17].3 This kind of non-Abelian T-duality is distinct from that on a PCM for G. The 
action (3.2) is canonically equivalent to the WZW action for G [18]. As such the metric and 
antisymmetric tensor one reads from it, when supplemented with the dilaton field

e−2� = det(I+ f − DT
1 ) ,

solve the corresponding one-loop β-function equations. This will be verified below by showing 
that in the limit k2 → ∞ the β-function for the deformation parameter λ vanishes. In [3–5]
this limit was argued to correspond to the WZW model based on TBA considerations. This is 
consistence with our findings since the WZW model action for G is canonically equivalent to 
(3.2) as mentioned above.

3 One way to see that, is to first realize from (2.9) and (2.10) that in the limit (3.1) we have that A1± = A2± . Then, 
one easily sees that in (2.1) the last term vanishes while the rest of the terms form, after carefully taken the limit and 
some algebraic manipulations, the starting point for performing a non-Abelian transformation on the WZW model for 
Gk with the result given by (3.2).
1
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The result (3.2) of this limiting procedure is not totally surprising. It has been known that 
the action (2.13) corresponding to the Gk1 × Gk2/Gk1+k2 coset CFTs, in the limit k2 → ∞
corresponds to the non-Abelian T-dual action (3.2), found in [19]. In the regime (3.1) the same 
result is obtained for any value of λ �= 1 in the deformed action (2.12) as well. One may wonder 
what is different in the case of the λ-deformations [6], where a limit analogous to (3.1), but in 
addition with λ approaching unity, led to the non-Abelian T-dual of the PCM for G with respect 
to the left symmetry action it. The essential difference is that one has to take both levels to infinity, 
i.e. k1 → ∞, as well in order to obtain the non-Abelian T-dual of the PCM for G × G/G. This 
is explicitly shown below.

3.2. The non-Abelian T-dual of G × G/G PCM

Consider now a limit involving both levels sent to infinity and both groups elements expanded 
around unity. Specifically we let

gi = I+ 2i
vi

ki

, λ = 1 − 2
κ2

k
, ki → ∞ , i = 1,2 . (3.4)

Then, we obtain from (2.12) that

Sκ2(v) = 2

π

∫
d2σ ∂+v1�

−1
21

(
κ2(∂−v1 + ∂−v2) + 4f2∂−v1

) + (1 ↔ 2) , (3.5)

where

�21 = κ2(f1 + f2) + 4f2f1 ,

with �12 given by interchanging the indices 1 and 2 and the fi ’s defined as in (3.3) by replacing 
the v’s with the vi’s accordingly. This is the non-Abelian T-dual of the PCM for the coset space 
G × G/G. In order to see that consider taking the limit (3.4) in the action (2.1). After some 
algebraic manipulations one finds the appropriate action, but before integrating out the gauge 
fields. In [3–5], this limit was argued to correspond to the PCM model based on a TBA analysis. 
This is in consistence with our finding since the PCM action and its non-Abelian T-dual (3.5) are 
canonically equivalent [20,21].

3.3. A non-Abelian type T-dual of the λ-deformed σ -models

Finally we consider the case where the limit (3.1) is also taken but simultaneously λ ap-
proaches unity. The level k1 still remains finite. Specifically, let us consider the limit

g2 = I+ i
k1

k2
v , λ = 1 − k1

k2
κ2 , k2 → ∞ . (3.6)

When this is taken in (2.12), we find the result

Sk1,κ
2(g1, v) = Sk1(g1) + k1

π

∫
d2σ

[
J1+�−1(J1− + ∂−v + 4κ−2f J1−)

+ ∂+v�̃−1(J1− + ∂−v + 4κ−2(I− DT
1 )∂−v

]
,

(3.7)

where

� = I+ f − DT + 4κ−2f (I− DT ) , �̃ = I+ f − DT + 4κ−2(I− DT )f .
1 1 1 1
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Note that (3.7) reduces to (3.2) for κ → ∞. The reason is that, this limit effectively moves the 
parameter λ away from unity so that the limit (3.6) reduces to that in (3.1).

The limit (3.6) suggests that the above result corresponds to some kind of non-Abelian T-dual 
limit. However, the construction has some notable differences as compared with the traditional 
non-Abelian T-duality transformation. Indeed, considering the limit (3.6) in the action (2.1) be-
fore the gauged fields are integrated out we obtain that

Sk1,κ
2(g1,A±) = Sk1(g1) + k1

π

∫
d2σ Tr

(
A1−∂+g1g

−1
1 − A1+g−1

1 ∂−g1

+ A1−g1A1+g−1
1 − A1+A1− − ivF2+−

) − k1κ
2

π

∫
d2σ Tr

(
B+B−

)
.

(3.8)

Integrating out the Ai±’s we obtain of course (3.7). However, integrating out the Lagrange mul-
tiplier term v forces the gauge field A2± to be a pure gauge. Choosing A2± = 0, we remain with 
the action

Sk1,λ(g1,A±) = Sk1(g1) + k1

π

∫
d2σ Tr

(
A1−∂+g1g

−1
1 − A1+g−1

1 ∂−g1

+ A1−g1A1+g−1
1 − λ−1

0 A1+A1−
)
,

(3.9)

where λ−1
0 = 1 + κ2

4 . This is nothing but the action, before integrating out the remaining non-
propagating fields A1±’s, for the usual λ-deformed σ -models [6]. Since non-Abelian T-duality 
is generally speaking a canonical transformation this equivalence will show up in the RG flow 
equation for κ2 (equivalently λ0) that we shall compute in the next section.

Finally, we note that by performing the traditional non-Abelian T-duality transformation to the 
action for λ-deformation for the global invariance having a vector action on the group element, 
the result is (3.7).

4. Renormalization group flows

The scope of this section is to compute the β-function of the coupling constant λ. We shall use 
a method developed in the present context in [22] and in [23]. To proceed we need to determine 
a specific background solution and evaluate its quantum fluctuations. The equations of motion 
are given by (2.24). In addition we fix the residual gauge through the covariant gauge fixing 
condition

∂+A− + ∂−A+ = 0 . (4.1)

At first we specify a particular background solution by parameterizing the group elements as

gi = eσμ�iμ , i = 1,2 , μ = +,− , (4.2)

where the �iμ’s, are constant commuting elements in the Lie algebra of the group G. Next, we 
set A± = 0 so that we project to the coset G × G/G. Then, we evaluate the gauge fields B± on 
this background

B± = ± λ

1 − λ
(s1�1± − s2�2±) , (4.3)

which satisfy the equations of motion (2.24) and the gauge fixing (4.1).
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The Lagrangian density for this background is easily found to be

L(0) = − k1

2π
�1+�1− − k2

2π
�2+�2−

− k1 + k2

π

λ

1 − λ
(s1�1+ − s2�2+) (s1�1− − s2�2−) .

(4.4)

Next we vary the equations of motion (2.24) and the gauge fixing condition (4.1) obtaining that

⎛
⎜⎜⎝

∂− + αB̃− −αB̃+ 0 −B̃+
−αB̃− ∂+ + αB̃+ −B̃− 0
−βB̃− βB̃+ −∂− ∂+

0 0 ∂− ∂+

⎞
⎟⎟⎠

⎛
⎜⎜⎝

δB+
δB−
δA+
δA−

⎞
⎟⎟⎠ = 0 , (4.5)

with 
(
B̃±

)
ab

= ifabc Bc± and α, β where defined in (2.25). To evaluate the one-loop effective 

Lagrangian, we Wick rotate to Euclidean space and then we integrate out the fluctuations in the 
Gaussian path integral. The result in momentum space reads

−Leff
E = L(0) +

μ∫
d2p

(2π)2 ln detD−1/2 , d2p = dp1dp2 , (4.6)

where μ is a cutoff scale and

D =

⎛
⎜⎜⎝

p− + αB̃− −αB̃+ 0 −B̃+
−αB̃− p+ + αB̃+ −B̃− 0
−βB̃− βB̃+ −p− p+

0 0 p− p+

⎞
⎟⎟⎠ . (4.7)

Working along the lines of [22,23], after some algebra we obtain

−Leff
E = L(0) − cG

π

(
α2 + β

) λ2

(1 − λ)2 (s1�1+ − s2�2+) (s1�1− − s2�2−) lnμ. (4.8)

The one-loop β-function is derived by demanding that the effective action in independent of the 
cutoff scale μ. To leading order in the large level expansion we obtain that

βλ = dλ

d lnμ2 = −cGλ(1 − λ−1
1 λ)(1 − λ−1

2 λ)(1 − λ−1
3 λ)

2(k1 + k2)(1 − λ−1
f λ)2

, (4.9)

where

λ1 = 1

s2 − 3s1
, λ2 = 1

s1 − 3s2
, λ3 = 1

(s1 − s2)2 . (4.10)

The β-function is symmetric in exchanging k1 with k2 and it is invariant under the symmetry 
(2.17), under which the points (4.10) map to each other as

λ1 �→ λ2 , λ2 �→ λ1 , λ3 �→ 0 . (4.11)
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Properties of the β-function

1. The β-function (4.9) has four fixed points at λ = (0, λ1,2,3), where λ1,2,3 were defined in 
(4.10). Near λ = 0 we obtain the Gk1 × Gk2/Gk1+k2 coset CFTs perturbed by a parafermion 
bilinear, as in (2.16). This is in agreement with the behavior of the β-function for small λ
given by

βλ 
 − cGλ

2(k1 + k2)
+O(λ2) . (4.12)

Hence, the operator driving the perturbation is relevant and has scaling dimension

� = 2 − cG

k1 + k2
. (4.13)

This is in agreement with (1.1) for large k1 and k2.
To analyze the fixed points λ1 and λ2 we choose without loss of generality that k1 > k2. 
We find that at λ = λ1 the action (2.12) becomes that in (2.13) with the replacement k1 �→
k1 − k2, k �→ k1 and for the group element g2 �→ g1g2. Hence,

λ = λ1 : Gk1−k2 × Gk2

Gk1

, (4.14)

which is a unitary coset CFT. As we have taken k1 > k2, the fixed point λ1 is negative and 
there is an RG flow from the UV fixed point at λ = 0, towards the IR fixed point at λ = λ1. 
Obviously, the central charges at the ends of the flow are in agreement with the c-theorem of 
[24]. The β-function for λ near λ1 reads

βλ 
 cG(λ − λ1)

2(k1 − k2)
+O(λ − λ1)

2 . (4.15)

Hence, the operator driving the perturbation has anomalous dimension cG

k1−k2
. The β-function 

starts positive which is in line with λ = λ1 being the IR fixed point.
For λ = λ2 one similarly finds the theory (4.14) but with k1 and k2 interchanged. How-
ever, this corresponds to a non-unitary coset CFT and is not of interest. Regarding the point 
λ = λ3, it is always bigger than one, which is a singular point of the action, and so it is 
continuously disconnected from the RG flow initiating at λ = 0.

2. When k1 = k2, the β-function (4.9) drastically simplifies to the standard expression for sym-
metric spaces found with different methods in [25,26] and [22]

βλ = −cGλ

4k1
. (4.16)

The complexity of (4.9) when k1 �= k2 is explained by the Dirac-bracket algebra of the op-
erator driving the perturbation. The parafermionic algebra (A.8) (see Appendix A for details 
of the derivation), was found in [13]

{�a±(σ ),�b±(σ ′)}D.B. = ± δabδ
′
σσ ′

2(k1 + k2)
− k1 − k2

4(k1 + k2)2 fabc�
c±(σ )δσσ ′

± 1

4(k1 + k2)
faecfbrc�

e±(σ )�r±(σ ′)εσσ ′ ,

(4.17)

where δσσ ′ = δ(σ − σ ′) is the usual δ-function and εσσ ′ = ε(σ − σ ′) is the antisymmetric 
step function, so that ε′ ′ = 2δσσ ′ . In addition
σσ
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�+ = s1(D+g1g
−1
1 + A1+ − A1−) , �− = −s1(g

−1
1 D−g1 + A1+ − A1−) .

A comment is in order regarding the expansion around λ = 0. At that point the above expres-
sion of �’s coincides with (2.15) and so the perturbation (2.16) is a bilinear of parafermions 
that satisfy the algebra (4.17).
The appearance of the second term in (4.17) for k1 �= k2, resembles the analogue formula for 
general coset spaces Gk/Hk [14]

{�α±(σ ),�
β
±(σ ′)}D.B. = ±2

k
δαβδ′

σσ ′ + 2

k
fαβγ �

γ
±(σ )δσσ ′

± 1

k
fαγ cfβδc�

γ
±(σ )�δ±(σ ′)εσσ ′ ,

�+ = D+gg−1 + A+ − A− , �− = −g−1D−g − A+ + A− ,

(4.18)

where the Greek and Latin indices correspond to generators in the coset and subgroup re-
spectively. For symmetric spaces, the second term drops out since then fαβγ = 0, alike (4.17)
for k1 = k2, and the β-function is given by (4.16).

3. The β-function possesses two interesting expansions around the fixed points of the symmetry 
λ = 1 and λ = λf = (1 − 8s1s2)

−1, when k1,2 � 1 uncorrelated with |k1 − k2| = n, where n
is a finite number. In particular:
• Expanding near λ = 1, we obtain the β-function of the PCM for the overall coupling κ2

dκ2

d lnμ2 = cG

4
, λ = 1 − 2κ2

k1 + k2
, k1,2 � 1 . (4.19)

The action corresponding to this limit was derived in (3.5) and is the non-Abelian T-dual 
of the PCM for G ×G/G. The β-function for κ2 is the same as that for the corresponding 
PCM, since the two models are related by a canonical transformation.

• Around λ = λf , we obtain the β-function of the non-critical WZW with n being the 
coupling of the WZ term [27]

dκ2

d lnμ2 = cG

4

(
1 − n2κ−4

)
, λ 
 λf + 2κ2

k1 + k2
, k1,2 � 1 . (4.20)

Unlike the previous case we were unable to show that this limit is also realized at the 
action level by taking an appropriate limit in (2.12).

The above results are in align with the predictions in [3–5] using TBA techniques.
4. An interesting variation of the above limiting expansion around λ = 1 is to consider one of 

the levels going to infinity whereas keeping the other one finite, i.e. k2 � 1, while keeping 
k1 finite. We find that

dκ2

d lnμ2 = 2cG

k1

(
κ2 + 4

κ2 + 8

)2

, λ 
 1 − k1

k2
κ2 , k2 � 1 . (4.21)

After the replacement λ−1
0 = 1 + κ2

4 (we use λ0 instead of λ to avoid confusion) this can 
equivalently expressed as the β-function for the λ-deformed model at level k1 found in [25]

dλ0

d lnμ2 = − cGλ2
0

2k1(1 + λ0)2 . (4.22)

This limit when taken at the level of the action gave (3.7).
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As previously noted in section 3.3, the action (3.7) is the non-abelian T-dual of the λ-de-
formed model at level k1. Therefore the models have the same β-function as they are related 
by a canonical transformation.

5. It would be important to derive the β-function (4.9) using gravitational methods. We were 
able to do so for the case with G = SU(2). In particular, we used the background correspond-
ing to the SU(2)k1 ×SU(2)k2/SU(2)k1+k2 λ-deformed model found in [8]. This background 
has zero antisymmetric tensor and metric and dilaton given by

ds2 = 2(k1 + k2)

(1 − λ)


(
�ααdα2

0 + �ββdβ2
0 + �γγ dγ 2

+ 2�αβdα0dβ0 + 2�αγ dα0dγ + 2�βγ dβ0dγ
)

,

e−2� = 
, 
 = (1 − α2
0)(1 − β2

0 ) − γ 2 ,

(4.23)

with

�αα = (1 + r)−2Z−1
(
Z2 −

(
Z2 − (1 − λ)2(1 + r−1)2

)
β2

0

)
,

�ββ = (1 + r−1)−2Z−1
(
Z2 −

(
Z2 − (1 − λ)2(1 + r)2

)
α2

0

)
,

�γγ = (1 − λ)2Z−1 ,

�αβ = (1 − λ)2Z−1α0β0 + r(1 + r)−2Zγ ,

�αγ = −r−1(1 − λ)2Z−1β0 , �βγ = −r(1 − λ)2Z−1α0 ,

(4.24)

and

r = k2

k1
, Z = 8λ + (1 − λ)r−1(1 + r)2 .

To compute the corresponding β-function we employ the background field expansion 
[28–30]

dgμν

d lnμ2 = Rμν + ∇μξν + ∇νξμ , (4.25)

where ξμ is a vector corresponding to possible diffeomorphisms along the RG flow. The 
result of the computation is precisely the β-function (4.9) with cG = 4 (appropriate for the 
quadratic Casimir in the adjoint representation of SU(2)) and ξμ = ∂μ�.

6. It was shown in [8] that the above target space (4.23) can be embedded in type-IIB super-
gravity. In particular, the metric and the dilaton are supported by a three-form F3, given in 
(A.9) and (A.10) of [8], with an overall real coefficient labelled by μ (not be confused with 
the cutoff scale in the RG flow equations above)

μ2 = − 32s1s2

(1 − λ)(1 − λ−1
f λ)

βλ . (4.26)

We remark that this is invariant under the symmetry (2.17). Initiating an RG flow from λ = 0, 
regularity of the solution and the positivity of μ2 retain λ ∈ [0, 1) and disregard for k1 > k2

the domain λ ∈ [λ1, 0] since then μ2 < 0.
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5. Outlook

In this work we investigated λ-deformations of the Gk1 ×Gk2/Gk1+k2 coset CFTs, based on a 
semi-simple group G and characterized also by two different levels k1, k2. These models, whose 
action is (2.12), have some very attractive features. They are invariant under the non-trivial sym-
metry (2.17) and prove to be classically integrable, as their equations of motion can be written 
in the Lax form (2.26). It will be interesting to prove integrability in the strong sense, as it was 
done for the λ-deformations of WZW models in [31]. This requires a generalization of the Mail-
let brackets [32] but now in the presence of terms containing the antisymmetric step function 
εσσ ′ . We have computed the exact β-function in (4.9) and shown that it possesses a non-trivial 
fixed point, unlike the symmetric case with k1 = k2. Hence, there is a smooth RG flow from the 
Gk1 × Gk2/Gk1+k2 coset CFTs in the UV to Gk1−k2 × Gk2/Gk1 coset CFTs in the IR. The flow 
is driven by parafermion bilinears (2.16), whose conformal dimension is given in (1.1). These 
satisfy the parafermionic algebra (4.17) whose structure explains the difference between the case 
of equal and unequal levels. In that respect the models constructed here have certain similarities 
with the left-right asymmetric λ- deformations of WZW models perturbed by current bilinears 
having two different levels and which also possess a non-trivial IR fixed point [11,12].

Our models possess various interesting limits when one or both levels k1 and k1, k2 are taken 
to infinity. These are in resonance with finding of previous works which used thermodynamic 
Bethe ansatz techniques. They can be embedded in type-IIB SUGRA, when G = SU(2) as it was 
shown in [8]. There are several open directions which need to be further pursued. In particular, 
it would be very interesting to derive the β-function (4.9) when k1 �= k2 using CFT techniques 
from the OPEs for the parafermions �±, obeying the algebra (4.17). In fact this may be pursued 
λ-deformed general coset spaces Gk/Hk and the analogous parafermionic algebra (4.18). Given 
the experience with λ-deformations of WZW models we expect that the symmetry (2.17) and 
some perturbative information should be enough to reevaluate the exact β-function (4.9) and 
moreover compute the anomalous dimension of operators.

Appendix A. The parafermionic algebra

The purpose of this appendix is to revisit the parafermionic algebra for the Gk1 ×Gk2/Gk1+k2

coset CFTs, originally found in [13]. In our case the coset parafermions are given by

�± = 1

2
(s1J1± − s2J2±) , (A.1)

where J a
i± satisfy a set of commuting current algebras [33]

{J a
i±,J b

i±} = 2

ki

(
fabcJ c

i±δσσ ′ ± δabδ
′
σσ ′

)
, i = 1,2 ,

Ji+ = D+gig
−1
i + Ai+ − Ai− , Ji− = −g−1

i D−gi − Ai+ + Ai− .

(A.2)

Next we restrict ourselves to the coset Gk1 × Gk2/Gk1+k2 , by enforcing the constraints on the 
subgroup

H± = 1

2
(s1J1± + s2J2±) ≈ 0 , (A.3)

or equivalently through (2.5) and (A.2), in terms of gauge fields

s1(A1+ − A1−) + s2(A2+ − A2−) ≈ 0 . (A.4)
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These constraints turn out to be second class as the matrix of their Poisson brackets

Cab±± = {Ha±,Hb±} ≈ ± δabδ
′
σσ ′

2(k1 + k2)
, (A.5)

is invertible with(
Cab±±

)−1 ≈ ±(k1 + k2)δabεσσ ′ , (A.6)

where εσσ ′ was defined after (4.17). Equipped with the above we can evaluate the non-vanishing 
Dirac brackets for (A.1) throughout the general definition

{�a±,�b±}D.B. = {�a±,�b±} − {�a±,Hc±}
(
Ccd±±

)−1 {Hd±,�b±} , (A.7)

and after some algebra we obtain

{�a±(σ ),�b±(σ ′)}D.B. = ± δabδ
′
σσ ′

2(k1 + k2)
− k1 − k2

4(k1 + k2)2 fabc�
c±(σ )δσσ ′

± 1

4(k1 + k2)
faecfbrc�

e±(σ )�r±(σ ′)εσσ ′ ,

(A.8)

where

�+ = s1(D+g1g
−1
1 + A1+ − A1−) , �− = −s1(g

−1
1 D−g1 + A1+ − A1−) .

Finally we note that our result (A.8) is in agreement with the findings of [13].
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