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Abstract

Recently a spatial version of Neveu’s (1992) continuous-state branching process was constructed by
Fleischmann and Sturm (2004). This superprocess with infinite mean branching behaves quite differently
from usual supercritical spatial branching processes. In fact, at macroscopic scales, the mass renormalized to
a (random) probability measure is concentrated in a single space point which randomly fluctuates according
to the underlying symmetric stable motion process.
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1. Introduction and statement of results

1.1. Motivation

Superprocesses (spatial measure-valued branching processes) are constructed and studied
usually under the assumption of finite moments, at least of order one. Recently, Fleischmann
and Sturm [14] constructed a super-a-stable motion X in R0 < a <2, super-Brownian if
o = 2) with a branching mechanism of infinite mean. This process has partly strange properties
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compared with the ones of usual superprocesses. For instance, in the case of a Brownian
migration also (i.e. if « = 2), mass propagates instantaneously in space, that is, it is present
everywhere in space at fixed times ([14, Proposition 15]). Or, for all @ and in all dimensions, X;
is absolutely continuous at fixed times ¢ (see Fleischmann and Mytnik [13]).

If one drops the space coordinate in the model, that is, if one passes to the total mass process
t — X, := X,;(R?%), one gets a continuous-state branching process with branching mechanism
u — oulogu, with o > 0 a fixed constant. In 1992 this process was introduced by Neveu in the
preprint [ 19], and further studied by Bertoin and Le Gall [1]. Neveu indicated that for every fixed
(deterministic) initial state X > O there exists an exponentially distributed random variable V
with mean 1/ X 0. SO that

e %logX, — —logV as., (1)
t1oo

see [14, Appendix] for a detailed proof. (Similar Galton—Watson results occurred earlier, for
instance, in Grey [16].)

Coming back to the spatial generalization X of X, so far it has not been understood, how
the total mass X, spreads out macroscopically in space as t 1 oo. Clearly, for supercritical
super-c-stable motions of finite mean one expects after a spatial a-rescaling the total mass
normalized by its mean to get a profile described by the a-stable density function. See, for
instance, Watanabe [21], Fleischmann [10], and Biggins [2] (a more detailed discussion follows
after Theorem 1 below). But it was not at all clear whether under the much stronger production
of an infinite mean branching certain spatial “intermittency” effects occur. Recall that X, has a
stable distribution where its index e~¢" converges to 0 as r 4 oo. In particular, X; cannot be
normalized by its mean. The present paper was motivated by this open problem concerning the
large scale behavior of X.

1.2. Preliminaries: Notation

Before we describe the model in more detail, we need to introduce some notation. The o-field
of Borel subsets of R? is denoted by B3, the ring of all bounded sets in 13 by b3, and that of
all Lebesgue continuity sets in b3 by b3y, that is, B € b3 belongs to b5, if and only if with
respect to the Lebesgue measure £ on R? we have £(d B) = 0. The distance between x € R? and
B € B is denoted by |x — B|. Let 1 stand for the indicator function of a set B, and B¢ for the
complement of B.

We denote by C; = (R?) the class of continuous functions x > ¢(x) on R? which possess
a finite limit as |x| 1 co. We write ¢ € C’l(z) = 61(2) (R?) if ¢ € C has derivatives up to order
2 which belong to ;. Additional superscripts “+4” and “++" indicate the subspaces of all non-
negative functions and all functions which have a positive infimum, respectively. The supremum

norm is denoted by || - ||co-
If E denotes a Polish space, we write D(R, E) for the Skorohod space of all E-valued cadlag
paths.

For 0 < o < 2, let S* denote the semigroup associated with the d-dimensional fractional
Laplacian Ay == —(—A)%/2, that is,

Sp(x) = /R P —Me(dy, 1>0,9¢€ AR (2)

where p“ is the continuous transition density function of the related symmetric «-stable motion
£ = (& :t >0} in RY with cadlag paths.
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We write M for the cone of all finite measures on R?, equipped with the topology of weak
convergence. The integral of a function ¢ with respect to a measure p € My is written as u(g).
We set 1 .= u/u(1) for the normalized measure of © € My \ {0}.

As usual, we write f; ~ gy ast 1 oo, if f;/g; — 1 ast 1 oo. Equality in law is denoted by

L . L
=, and convergence in law by =.
1.3. Super-a-stable motion X with Neveu’s branching mechanism

The super-a-stable motion X with Neveu’s branching mechanism is a (time-homogeneous)
Markov process with paths in D(R., M), described via its Laplace transition functional

E{e¥@ | X =p} =en@lD 120 peqi, ue M, 3)
where u = u[¢] is the unique mild solution to the function-valued Cauchy problem

d
au, = Aqu; —ou;logu; on (0, 00) with ugy = ¢ 4)

(see [14, Theorems 1 and 2]).
1.4. Large scale localization

Recall that the “highly supercritical” process X has infinite expectation. So what method can
be used to attack the open problem of large scale behavior in space?

The most general method for obtaining limit theorems for “classical” supercritical, i.e. non-
spatial supercritical branching processes, was proposed by Seneta [20]. Let Z be a supercritical
(discrete time) Galton—Watson process and f its offspring generating function. This function has
an inverse g, whose n-th iterate we shall denote by g,. Clearly, for every s € [g, 1], where ¢
is the extinction probability of Z, the sequence x,(s) = (gn (s))%", n > 1, is a non-negative
martingale and, consequently, X, (s) = lim,_ o X, (s) exists a.s. This property of the inverse
of the generating function (or of a Laplace transform in more general “classical” situations) was
also used in [16] and [19]. But in the present spatial case the method described fails. In fact, to
get a martingale analogous to that used to prove (1), one would need to solve the log—Laplace
equation (4) backwards, which in particular would require strong additional conditions on ¢,
which are not at all obvious.

In order to circumvent the difficulties arising from infinite moments, we consider the
randomly normalized measures )A(, = X; /)_(, = X;/X;(1). Clearly, they reflect the spatial
structure of X; as well. More precisely, for k > 0 we introduce the following rescaled
processes X®:

x®B) =X k'*B), t>0,Be¢B. (5)
The following localization theorem is our main result.

Theorem 1 (Large Scale Localization). Fix Xo = u € Mg\ {0}. Let the (symmetric) a-stable
motion & in RY start from the origin.

(a) (Fd.d. convergence): For each finite collection of time points 0 <t} < --- < ty,
o (k) o) _£
(%P, %] )m<5§,l,...,agln).
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(b) (Convergence on path space): If additionally a = 2, then, in law on DR, My),

sy L
X )k:>35.
oo

Consequently, if X is normalized by its total masses, speeded up time by a factor k, and
contracted in space by k!/%, then the whole mass will finally be concentrated in a single
random point, which fluctuates in macroscopic time according to the a-stable process &. In
particular,

X,(rl/“B)m:iZagl (B), B ebBy. ©6)

Such limit behavior is not at all typical for supercritical spatial branching processes.
For example, Watanabe [21] has shown the following local limit theorem for a supercritical
branching Brownian motion Y in R4 with finite variance and starting from Yy = §p:

e~ 4142y, (B) T—>(2n)d/2€(B)W, a.s., B € by, (7
1100

where « is the Malthusian parameter of the corresponding total mass process Y (non-spatial
branching process) and where W is given by

e Y, — W, as. (8)

ttoo

For supercritical spatially homogeneous branching particle systems Y in R¢ in discrete
time, with second moment assumptions, and starting from a homogeneous Poisson point field,
Fleischmann [10] has derived a law of large numbers and a central limit theorem. This is based
on the following global limit theorem for the process starting from a single ancestor:

e~ Y, (t'’B) pos ®(B)W, as., B € bBy, 9)

where @ is the standard Gaussian measure on R?.

Biggins [2] has proven a variant of (7) for supercritical branching random walks in discrete
time under less restrictive conditions. From his result immediately a relation as (9) follows.
Using Biggins’ method one can verify that statements as in (7) and (9) are true for supercritical
(2,d, B)-superprocesses Y (that is, measure-valued branching processes in RY with Brownian
migration and continuous-state branching of index 1 4 ). From (8) and (9) we conclude that

Y, (t'?B) o ®(B), as., B € bBy, (10)

on the set of non-extinction. However, opposed to such deterministic limit, for our X process the
random §-measure 8¢, occurs, where &; is distributed according to @ (in the present case o = 2).

Remark 2 (Non-tightness for « < 2). The restriction to the Brownian case « = 2 for
convergence on path space [Theorem 1(b)] first of all comes from the fact that our tightness
proof for marginals fails in the o« < 2 case (see Section 4.4). But perhaps surprisingly, in the
non-Brownian case tightness does actually not hold. This will be shown by Birkner and Blath in
the forthcoming paper [4] using lookdown constructions.
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1.5. Approach

Next we want to explain a bit our approach to the proof of Theorem 1. An essential tool will be
some moment calculations. Clearly, the normalized processes X® have moments of all orders.
But how can they be computed? Surprisingly, they satisfy relatively simple formulas. We will
state them for only the first two moments, although our method of proof actually allows us to
establish all of them. The following result is the key of our approach to the large scale behavior
of X.

Proposition 3 (First Two Moments). Fix Xo = u € Mg\ {0}. Then, for 0 < t1 < t and
+
o1, 92 €C,

EX; (¢1) = A(S¢1) (11)

and

E (£ nRue)

3l
_ [0 06O 1 (54 (S¥ 015,y ¢2)) ds + e O fi(S% 9 )A(SE o). (12)

Remark 4 (Moments Involving Indicator Functions). Moment formulae (11) and (12) remain
valid for functions ¢; = 1p;, B; € bBy, i = 1, 2. In fact, for each compact (or open bounded)
B € B, there are compactly supported functions ¢" € C1+ such that 1 > ¢" | 1p (or
0 < ¢" 1 1p, respectively) asn 1 oo (see, for instance, Kallenberg [18, A6.1]). <

Remark 5 (Fleming—Viot Super-Brownian Motion). Note that in the case @ = 2 the moment
formulas of Proposition 3 coincide with those of the Fleming—Viot super-Brownian motion, see,
for instance, Etheridge [9, Proposition 2.27], although the processes are essentially different.
(Recall the instantaneous propagation of mass instead of the compact support property, and the
absolute continuity of states instead of singularity in dimensions d > 2). Note also that for the
Fleming—Viot super-Brownian motion one has also a large scale localization property as in our
Theorem 1, see Dawson and Hochberg [7, Theorem 8.1]. The above-mentioned coexistence of
moment formulas suggests now using our method of proof of Theorem 1 to get the corresponding
Fleming—Viot superprocess result under weaker assumptions as in [7]. ¢

Here is our first consequence of the moment formulae. Recall that p® denotes the «-stable
transition kernel and ¢ the Lebesgue measure.

Corollary 6 (Long-term Behavior of Moments). For each Xo = n € Mg\ {0} and ¢; € Cl‘L such
that £(p;) < oo, i =1,2,

lim 1/“EX, (1) = p{ (0)£(¢) (13)
t1oo
and
A A w .
Jim tI*E (X,w])Xt(goz)) =} (0) / 0”@ ((S¢p1)(S2 ) ds < oo, (14)
0

(A formula for pf (0) is given in (A10) in Appendix A.)
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From the asymptotics of the mean of X, (¢) together with Markov’s inequality one can easily
infer that for every ¢ > Oand ¢ € C,

l%m 17*=¢X,(¢) = 0 in probability. (15)
1100

Remark 7 (Open Problem: Local Limit Theorem). Is it true that r4/¢ X ¢ () converges as t 1 oo
in some sense?

There is also the following consequence of the moment formulae.

Corollary 8 (Localization at All Smaller Scales). Suppose Xo = n € My \ {0}. Consider a
scaling function o : (0, 00) — (0, 00) with

o, 100 and o, =o' ast?t . (16)

Then for every open B € bBy and € € (0, 1),

VAN )
(—) P(X(0iB) > 1) — p{(O)(B), an
Oy ttoo
and
P(X,(U,B) > e> ~ P(X,(U,B) > 1 —s) ast 4 oo, (18)

Relation (17) gives the asymptotics of the probability that the whole mass of our rescaled
process at time ¢ is in the set o; B. Relation (18) means, roughly speaking, that if the whole
normalized mass in o; B is not very small then it is very large.

Recall that Theorem 1 in the reformulation (6) says that the total mass X, concentrates
asymptotically as t 1 oo in one point of the rescaled space (the scale ¢!/ is related to the
migration index). But Corollary 8 shows that this property remains valid for all smaller scales
converging to infinity.

Recall also that for the state X, at time r > 0 of Neveu’s continuous-state branching process
there is the following cluster representation:

X =>"0", (19)

i>1

where 19,(1) > 19,(2) > ... are the atoms of a Poisson point field m;, say, on (0, o) with intensity
measure

me 9!

o —1—e9

A(dx) = —F(l — e_gt)x dx (20)
(cf. [1]).
Proposition 9 (Localization in the Main Cluster). We have the following convergence in
probability:

X

BN an
ﬁt( ) 1100

This reminds us of a result of Darling [5] saying that the sum of i.i.d. random variables with
slowly varying tails behaves as the maximal element. Our X, is stable of index e~¢’, and thus
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does not have slowly varying tails for finite + > 0, but the index goes to 0 as ¢ 1 oo, which
explains the similar effect described in the former proposition.

Since l?t(l) is asymptotically equivalent to the whole mass X;, we can now reformulate
Corollary 8 as follows: Statement (17) gives the asymptotic probability that 19,(1) locates in the

set oy B, whereas (18) says that the subpopulation 19,(1) has no time to diffuse into a large subset
of RY.

Remark 10 (Localization in the Relative Largest Cluster). It is easy to generalize Proposition 9

to
S 1
XZ _ Z ﬁt( )
15’;" ol k=1 22)
19[( ) tfoo

But in the case k > 1 we do not have a spatial interpretation.

Remark 11 (Intermittency). Note that foreachn > 1 and B € b3, of positive Lebesgue measure
we have

~ n+1 n n
logE <td/“X,(B)> logE (td/“X,(B))

0. (23)
n+1 n 1100

In the case of homogeneous random fields, such a property of moments is known as intermittency,
see Girtner and Molchanov [15]. Indeed, as shown in [15], it is enough to verify it forn = 1,
and this follows here from Corollary 6.

It is noteworthy that for our X model a large scale localization in a single island occurs which
randomly fluctuates in macroscopic time, and moreover this is proven by using only the first two
moments.

Remark 12 (Open Problem: Infinite Measure States). It would be interesting to construct X
starting from the Lebesgue measure Xy = ¢, and to study its large scale behavior. Although in
this case the normalization X r = X/ X, would not be possible since X, = o0, one still expects
some intermittency effects, i.e. the relative localization of masses in remote locations.

The rest of this paper is laid out as follows. In Section 2 we recall in Lemma 13 some known
properties of the Cauchy problem (4) and prove with Lemmas 14 and 16 two technical results
about its solutions. The proofs of Proposition 3 as well as of Corollaries 6 and 8 will be provided
in Section 3. The final section is devoted to the proof of Theorem 1. In an appendix we collect
some remarks on stable distributions and prove Proposition 9.

2. Related log-Laplace equation

An essential step in our procedure is to establish a log—Laplace product formula (Lemma 14)
and a small e-asymptotics of log—Laplace functions (Lemma 16).

2.1. Basic setting

A continuous-state branching process with branching mechanism u +— g(u) is a time-
homogeneous Markov process, whose Laplace transition functional can be characterized as
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follows. For every A > 0,

E le_”—(’ ‘ Xo = m} — Ml >, 24)
where u = u|A] solves

d_ _ L

Eu, = —g(u;) on (0,00) with ugy = A. (25)

Actually, we restrict our consideration to Neveu’s special case
g(u) =oulogu, u=>0, (26)
(for the fixed o > 0). Then necessarily,

iig[n] = A7, 27)
which demonstrates that for every t > 0 ﬁxed,_)_( ; has a stable distribution with index e~ ¢! < 1.
In particular, in this case the random variable X, is non-zero and finite with probability one.

Next we rewrite log—Laplace equation (4) in integral form:

t
up = S’y —f Sis (glug))ds, >0, (28)
0
where we used notation (26). The following result is taken from [14, Theorem 1].

Lemma 13 (Well-posedness of the Log—Laplace Equation). For ¢ € Cl+ t there is a unique
(pointwise) solution ul¢] to Eq. (28), and

min{ ir;Rfd p(x), 1} < uilp] < max: sup ¢(x), 1} . (29)
xe

xeRd

Moreover, if ¢ € Cl(z) | then us[@] solves the related function-valued Cauchy problem as in

(4). Further, if ¢, € Cl++ pointwise satisfy ¢, | ¢ € C1+ asn 1 oo, then pointwise ulg,| | ulg]
holds, and the limit function u[g] is a solution to Eq. (28), satisfies (29), and is independent of
the choice of the approximating sequence {@,},>1.

From now on, for ¢ € C1+ fixed, under u[¢] we mean the solution to (28), which can be
obtained as such a limit of some u[¢,].

Note that u[¢] is non-decreasing in ¢, which follows from the log—Laplace property as in (3).
This gives

ilinf o] < ulp] <alsupgl, @ €C. (30)
Thus, by (27),
limufpl =1, el (31)
t1oo
Hence, u[1] = 1 is attractive in the set of all solutions {u[¢] : ¢ € C1+ +}.
From the expression (27) for u[A] one can easily infer that u;[A0] = u;[1]u,[0] for all positive

constants A and 6. In the following lemma we generalize this identity for the solutions u[¢] to
Eq. (28).
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Lemma 14 (Log—Laplace Product Formula). Fort > 0, A > 0, and ¢ € C,
urlrgl = u 2l ulgl. (32)
Of course, u,[1](x) = i,[1], x € R4,

Proof of Lemma 14. Let us first assume that ¢ € Cl(z)++. Then, by Lemma 13, u[¢] is the
unique solution to the Cauchy problem (4). Clearly,

0
g(ﬁr[}\]ut[fﬂ]) = us[M(Aqu o] — g(uil@D) — ulgplg (u[1]). (33)
Therefore, in view of i, [A]Aqus[@] = Ay (us[A]us[@]), and

guloDu Ml +uile] g [A]) = gu[@lus[1]), (34)

we conclude, that u[@]u[A] solves the Cauchy problem (4) with initial condition A¢. Uniqueness

of the solution to (4) gives the proof of (32) in the case ¢ € Cl(z)++. To finish the proof,

c C1(2)++

approximate ¢ € CfL monotonously from above by appropriate ¢, and use

Lemma 13. O

2.2. A distributional relation

Using log-Laplace product formula (32) one can establish a simple connection in law between
the random variables X, (¢) and X,. Indeed, for ¢, A, ¢, as in Lemma 14,

uuddgl) = ardrlpn(udel) = u(l)atmat((mm[w]))(em)

= (1) i (M@l ) (35)
Hence, from these equalities and the Laplace transition functional (3) we conclude that

E [e—)»Xr(QD)‘ XO — ,LL] —E {e—)tet)_(t

- . R ot
Xo=nm} with 6, = (2 leD)".
This means that
L. ory —
X, (9) = (aGu o)) X, 120,9eCt (36)

Now we show one possible application of this equality in law. From (36) it follows that for
every ¢ € CF,

e ®Elog X,(p) = ¢ ?Elog X, + log (fi(u[¢])) . 37

Since X,(cgp) = cX;(¢), for any constant ¢, we may assume without loss of generality that
l¢llo < 1. Then X,(¢) < X, and, consequently,

e %'E |log X, — log X, (¢)| = —log (2 (u/[¢))) - (38)
Thus,

e ?E [log X; —log X;(9)| — 0 ifand onlyif [(ule]) —> 1. (39)
t1oo t1oo
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On the other hand, by Proposition A1 in Appendix A,

Ele™log X, — (—log V)|’ 20 >0 (40)
with V from (1). Combining (39) and (40), we obtain the following result.

Proposition 15 (Equivalent Formulations). Consider ¢ € C1+ . Then condition ((u;[¢]) — 1 as
t 1 oo is necessary and sufficient for the convergence

E |e7% log X;(p) — (—log V)| = 0. (41)

Clearly, one expects the convergence j1(u;[¢]) — 1 to hold for all non-vanishing ¢ € Cl+ .
[Recall that for ¢ € C1+ * this is clear from the attractiveness of u[1] = 1 as expressed in (31).]
Then, comparing with (1), the proposition would say, roughly speaking, that on a logarithmic
scale, X;(¢) behaves just as X ¢. Since this statement is not very informative, we do not insist on
settling the statement fi(u;[¢]) — 1 and follow instead another route.

2.3. Small e-asymptotics
A crucial step in our development is the following perturbation result.

Lemma 16 (Small e-asymptotics). Let ¢ € CI(ZH'+ with ||¢llec < 1. Then for fixed t > 0,
2

P t
wi[l +epl=1+ee98% — ?e—gf f 0™ 8% (S%)2ds + O (e
0

ase | 0.

Proof. Fix 0 < ¢ < 1. We define the function v = v[ep] := u[l + e¢p] — 1 > 0, which is the
unique solution to the Cauchy problem

d
Ev, = Aqvr —o(1 + vy) log(l + v¢) on (0, 00) with vo4 = €@ 42)

(note that v — (1 4+ v)log(1 + v) is locally Lipschitz on R ). It follows that the function
f — w;, = wy[ep] = €% v, solves the equation

—w; = Aqw, — 0e% (1 +e % w,)log(l +e % w,) +ow, withwy: = &g,

dt
which in integral form reads
1
w, = eS%p — / 0S% ¢ (e (1 + e wy) log(l + e~ wy) — wy) ds. 43)
0
Hence,
r
v lep] = e S%p — e f 0e%* S%_ (1 4 vg) log(1 + vs) — vy) ds. (44)
0
Using Taylor expansion for log(1 + x), we getfor0 < x < 1,
(14 x)log(1 + x) =x+iﬂxk (45)
= kk—1) '
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From this identity it follows that for0 < x < 1,

x? X3 x?
x+ o= < (+nlogll+x) <x+ = (46)

Moreover, by (29),
0 <vlep] <ellglloo < e. 47

Applying these bounds to the right hand side of (44), we have

—ot pt
vleg] > ee @ S% — = . /O 0e® S v2ds (48)
and
—ot qu e ! s Qo 2 e”? ' S Qo 3
vlepl <ee”9 ST g — 5 /0 0e?’ S vids + c fo 0e?’ S vids. (49)
Note next that from (44),
v lep] < ee79"SYg. (50)

Combining (48) and (50) gives the following lower bound
e~ o
2

1t
vlep] > ee™9 5% — e’ f 0™ SY (S%p)*ds. (51)
0

Comparing (51) with the claim in Lemma 16, we infer that it remains to find a suitable upper
bound for v;[e¢]. Applying estimates (51) and (50) to the first and second integrals on the right
hand side of (49), respectively, we obtain
vlep] < ee™9 S
—ot t s 2
- 82/ 0e” S (S;’Qp - E/ Qe_QrS;"_r(Sf‘ga)zdr) ds
2 0 2 Jo
e ¢
6

_|_

t
e /0 0e? S (8%p)3ds
e ¢!
2

1
= ge9'S%p — & / 0e™% S (8%p)%ds + O(e3e™9"). (52)
0

This finishes the proof.  [J

Remark 17 (Series Expansion). It is easy to see that we can expand u,[1 4 €¢] in a power series

wll+eplx) = 1+ Y Hi(t, x)e', (53)
i=1

where H; are some functions which can be expressed in terms of the semigroup S and the initial
condition ¢. Such an expansion (but at ¢ = 0 instead of ¢ = 1) was proposed by Wild [22] to
produce a series solution to Boltzmann’s equation. Wild’s method (at ¢ = 0) was also used
in Etheridge [8] to prove extinction/persistence criteria for critical continuous super-Brownian
motion.
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3. Asymptotics for moments

Here we derive the needed moment formulae (Proposition 3) and study their asymptotic
properties (Corollaries 6 and 8).

3.1. Moment formulae (proof of Proposition 3)

First we will show that formulae (11) and (12) hold for ¢1 = ¢ =: ¢ € C1(2)++ and
1 = tp = t > 0. Recall that without loss of generality we may assume that ||¢|~ < 1. By
(36), for every € > 0,

X, +eXi(@) Z (A1 +eo)) " X,. (54)

Taking first the logarithm on both sides and then expectations, we obtain

Elog (X; + ¢X:(¢)) = Elog X; + €% log (ii(u;[1 + e¢])) . (55)
Therefore,
Elog (1+2%,(p)) = ¢ log (1 [1 +ew)) . (56)

Evidently, )A(, (@) < llellse < 1. Hepce, from the Taylor expansion log(1+x) = x —x2/2—|— 0 (x3)
as x | 0, and the boundedness of X;(¢), it follows that

N N 2 N 2
E log (1 teX, (ga)) — ¢EX,(¢) — %E (X, (<p)) + 0@ ase 0. (57)

By Lemma 16,

e log ((u[1 + egl)) = e log (1 + f(us[1 +ep] — 1))
ot
= o [i(v,[e0]) — e? (A(uilegD)’ + O (th (/l(vz[sso]))3)
2

. es [t ge—o!
—eincsio) =5 [ oo (S, (5500) s -

((S29)” + 0.

Combining with (56) and (57), we conclude that
2

A ~ 2 !
e (EXi(p) — uSf9)) = 5 [E (%)) - fo 0c™?" 1 (S, (S9)?) ds
- (ﬁ(S;“ga))z] + 0. (58)

Dividing by ¢ and letting ¢ | 0, we obtain (11) in the case ¢ € C}(Z)++. Therefore,
2

. 2 t
%[E(Xf«o)) - [ e (s (st s - (a<sf‘so>)2]=0(e3>. (59)
0

Dividing now by & and letting again & |, 0, we arrive at (12) in the case 91 = ¢ = ¢ € CI(ZHJr
andty =1 =1t > 0.
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The case of possibly different g1, ¢, € Cl(z)  follows by polarization. To extend to ¢y, @2 €

CIJr , approximate monotonously from above by functions in Cl(z) **, and use Lemma 13 as well

as monotone and bounded convergence. This completes the proof of expectation formula (11).

Finally, second moment formula (12) in the case t; < t follows by using the Markov property
and (11). 0O

3.2. Long-term behavior of moments (proof of Corollary 6)

Take 1, @1, @2 as in Corollary 6. By polarization, we may assume that g1 = ¢ =: ¢. We will
again additionally suppose that ||¢||-c < 1. Recall the following scaling property of the stable
density function: For every k > 0,

p%(x) = k¥p% (k'/*x), t>0,x € R (60)

Using this identity with k = =1, we have

Sty =4 / o (77 = ) ey (61)
R4

In view of p‘f(t_l/“(y —x)) — pj(0) ast 1 oo, we obtain

(ST ) = / f pi (17170 = ) @R ()dy —> i O)£(9). (62)
R4 JRA ttoo

Combining this relation with the expectation formula (11) gives (13).
Using the same arguments one can show that for every fixed s > 0,

(I (S50 ) — i) €((579)7) < O (o). (63)

Here we used || Sy ¢|loc < 1. Hence, by dominated convergence, for every fixed so > 0,
S0 S0
lim 1 / 0e % i (Sf‘_s(S;"go)2> ds = p?(0) / 005 ((S;"ga)2> ds. (64)
1100 0 0

Applying again || S{¢ |l < 1, we arrive at the bound

t t
f 0e ™01 (S, (S29)?) ds < u(S79) f ge™%ds, 1 > so. 65)
s 50

0

Therefore, by (62),
t
lim sup 14/ / 0e™% [ (S?_S<S§‘ sﬂ)2> ds < p§(0)(p)e 9%, (66)
oo S0
Since (64) and (66) are valid for any so > 0, we can combine them and let sg 1 oo to get
t o0
Jim /7 /0 0e % p (Sf‘_s(sgga)z) ds = p%(0) fo 005 ((S;"ga)2> ds. 67)

Together with the second moment formula (12), the proof of Corollary 6 is complete. [
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3.3. Localization at all scales (proof of Corollary 8)

Fix u, o, B, ¢ as in Corollary 8.

1° [Expectation asymptotics]. For t > 0, let there be given open B, € b3y with B, C B, and
such that £(B;) 1 £(B) as t 1 oo. For the moment, fix s > 0. Then, for ¢t > s, from (11) (and
Remark 4) and (61),

EX (oB)z(L)d f / pf (1 = 97012 = 1) fudx)dz (68)
t—s (Ot Dy (t—s)l/o‘ 5, Jra 1 t .

Using assumption (16) one can easily infer that

f pf (¢ =971z = 1)) o) —> pi(O), z € B. (69)
R4 oo
Therefore, setting
VAN
¢ = (—) . t>0, (70)
Ot
we obtain
c'EX,_(01By) 2P OB, s =0. (71)
1100

2° [Second moment asymptotics]. Our next purpose is to prove the convergence
N 2
B (X(01B)) — p{OL(B). (72)

Since X (0 B) < 1, by (71) it suffices to show that the limit inferior as ¢ 1 oo of a suitable lower
estimate of the left hand side in claim (72) equals the right hand side of (72).

Fix 5o > 0. Choose a number R = R(e, so) such that f|y|<R p?(y)dy > 1 —¢foralls < sp.
Define B; := {y € B : |y — dB| > R/o;}. Trivially, oy B; := {y € o:B : |y — d(0;:B)| > R},
since ;0B = d(o; B). Then, for every x € o, B;,

S;xl(f,B(x) = /

P (y = x)dy = f Py —x)dy = 1 —e. (73)
o B

|ly—x|<R

In fact, the first inequality holds, since {y : |y — x| < R} € o;B for x € o, B;. Hence, for t > s,

t S0
f 0e™ %1 (S,“_S<S§‘ 1@3)2) ds > (1 —¢)? / 0e™ % L(S;_ 16,8,)ds. (74)
0 0
By (71) and (11), we conclude that for every s < s,

ct[1(S;—s 1o, B,) —> P (0)4(B). (75)
t1oo

By dominated convergence,

S0
& f 0™ (S 1q,,)ds pross Py (0E(B)(1 — ). (76)
0
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Combining (76) and (74), we arrive at

1
liminf c, / 0e ™01 (S1, (S5 10,p)?) ds = (1 = )P (O)E(B)(1 — %),
0

t1oo
Letting € |, 0 and 5o 1 oo, as well as using the second moment formula (12), we get (72).

3° [Verifying (17)]. On the basis of (71) in the case B = B and (72) wefind e > & | Oast 1 oo
so that

~ ~ 2 ~
el (EXt (0,B) —E (X, (cr,B)) ) —0 (EX, (crtB)> . 77
Now, since )A(, (o¢B) <1,

E(%B) < (- e)E[%(0B): X0 B) <1 -]

+E{X,(G,B);X,(G,B) > 1—8[]. (78)

Rearranging gives

E{% 0 B): XiB) < 1—e| <& (EX,(O,B) —E <X,(G¢B)>2> . (79)
Hence, by (77),

E [X,(U,B); R, (0,B) < 1— gt} —o (EX,(U,B)) as 1 4 0. (80)
Againby 1 > X;(0;B),

P(f(,(a,B) - 1- 8,> > E {}A(t(GIB); R,(0,B) > 1 — g,} . 81)
Combining (81), (80) and (71) (in the case B; = B) gives

liminf ¢, (%) > 1) = pOL(B). (82)
On the other hand, from Markov’s inequality,

P(ff,(a,B) > 1 —g,> < (1 —e)"'EX.(0,B). (83)
Therefore, again by (71),

lin; sup ¢, P (Xt (6,B) > 1 — e,) < p?(0)¢(B). (84)

100

Combining (82) and (84), we arrive at (17) with ¢ replaced by ¢; [which was chosen for (77)].
Clearly, from ¢; < ¢ we get

liminf ¢, (RieiB) > 1—¢) = p O)¢(B). (85)
rToo
On the other hand,

P(X,(a,B) > 1 —8) - P(X,(arB) > 1 —e,) —|—P<1 —e <X, (0,B) <1 —e,) . (86)
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By Markov’s inequality,

P (1 — e <X, (0,B) < 1— g,) <(—-e7'E {5(,(0,3); R,(0;B) <1 — 8,} .
Inserting into (86), from (80), (71) and (84) we get

lim sup ¢, P (5([ (0,B) > 1 — g) < p?(0)¢(B). 87)

t1oo
Taking this together with (85), the proof of (17) is finished.
4° [Verifying (18)]. Using Markov’s inequality, we have

P (f(,(atB) € le 1 — et]> —P (f(t(a,B) (1 — f(,(atB)) > (1 — et)>

1 1 v v 2
<ell—e)” (EX,(G,B) _E (X,(a,B)) ) . (88)
Recalling (77) we conclude
lim sup ¢, P (f(,(atB) € le 1 — e,]) —0. (89)
t1oo
But
P (5(, (6,B) > e) /P (fct (0,B) € [e.1 — s])
: =14 - , (90)
P(X,(G,B) > l—E) /P (X,(G,B) > l—8>

and (18) follows from (89) and (17). This completes the proof of Corollary 8. [J
4. Large scale localization (proof of Theorem 1)

We start with the convergence of finite-dimensional distributions (Section 4.1). Compact
containment is provided in Section 4.2, and tightness of marginals in the Brownian case in
Section 4.3. The proof of Theorem 1 is then completed at the end of Section 4.3. That our
tightness proof fails in the non-Brownian case is explained in Section 4.4.

4.1. Convergence of finite-dimensional marginals

To prepare for the proof of convergence of finite-dimensional distributions, we first derive the
following simple result.

Lemma 18 (0-1-Valued Limits). For k,n > 1, consider [0, 1]-valued random variables mwy ;,
1 <i < n, such that

lim En; ;(1 —m;) =0, 1<i<n. 1)
ktoo

Moreover, suppose

n
lim E b ists, s en) €{0, 1Y n > 1. 92
leI; g”k,z exists, (& &) €{0,1}",n > (92)
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Then for eachn > 1 and as k 1 oo, the random vectors ©y = (7wy 1, ..., Tk.n) converge in law
to some random vector T , of 0-1-valued random variables satisfying

n
P(ro = &) = ,}%?CEH#T"(I — ), e =(e1,.... ) € {0, 1}". (93)
i=1

Proof. First we prove that condition (91) implies that for each n > 1 there exist 1 > & | 0 as
k 1 oo, such that

n n
P (ﬂ {1 = m' = < 6k}) =E[ [0 =) +o(D), (94)
i=1 i=1
e € {0, 1}". To do this, note that after a change w3 ; — 1 — my; for some i € {1,...,n} and

k > 1, we get a sequence of vectors ; which also satisfies (91) and (92). Thus, for the proof of
(94) without loss of generality we may assume that € = 0. Then the left hand side of (94) can be
written as and afterwards obviously estimated by

P (ﬂ mei >1— 5k}> <1 =80 "E] [mri =E] [7xi +o(D). (95)

On the other hand,

n n n
P( {JTk,iZI—Sk}> ZE{HNk,i;ﬂ{ﬂk,i 21—5k}}
i=1 i=1

i i=1
n n n
zEl_[T[k,i _E:nﬂk,i;U{nk,i<1_8k}}- (96)
i=1 i=1 i=1

Choose now 8¢ € (0, 1] such that > 7_; Emy ;i (1 — g i) < 6]% for all k. Then by Markov’s
inequality the second term in (96) is bounded from above by J;. Thus, for (96) we get the lower
estimate E[['_, 7x.; + o(1), too; altogether these give (94).

To verify the claim on the existence of a limiting random variable 7 ., it suffices to show that
foreachn > 1 and ¢ € {0, 1}",

n
lim P C—eil < &) = ists, 97
lim (Dl{lnk,l &il < k}) pe  exists (97)

and
> pe=1 (98)
&

Since the 7y ; are [0, 1]-valued, we can rewrite |7 ; — &;| < & as rrkl;s" (1 = mx,i)® < 6. Then,
by using (94), instead of (97) it is enough to verify that for each e € {0, 1}",

n

. 1—¢; &: .

lim E Sl —m ) = ts. 99

lim ,an’l (1 — 7 1) = pe exists (99)
But here again without loss of generality we can take ¢ = 0, and then (99) follows

from assumption (92). To finish the proof, it remains to show (98). However, by dominated
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convergence, from (99),

n
; 1—¢ -
D_pe=JimE} []m ;" —mn® =1, (100)
€ e =1
since the sum under the expectation sign is identical to 1. This finishes the proof. O

To get the convergence of finite-dimensional distributions it is enough to prove convergence in
law of finite vectors as m; = (X,(]k)(Bl) X(k)(Bz), e X,(f)(Bn)), where By, ..., B, are open
(bounded) parallelepipeds in R and0=:tg <t < -+ < ty.

Lemma 19 (F.d.d. Convergence). We have the following convergence in law on R’} :

L
N (55,1 (B1), ..., 8, (Bn)> . (101)
k1 oo
Proof. It is easy to see that
f p (7 x — )(dx) — pl(z), z € R (102)
R4 1100
Proceeding as in the proof of (71) and (72), but using (102) instead of (69), we get
A A 2
limEX,(t'/“B)) = lim E (X,(t”“BD) :/ p$ (2)dz. (103)
1100 t1oo B,
Hence,
lim EX () (1-%P®n) =0, 1<i<n (104)
o0

We claim that for eachn > 1,

]}iTrgloEile(k)(B ) =S% (15,82 (1p,...(1p,_, 5% 15,)...)) (0), (105)

where 7; == 1; — ;1,1 < j < n. Since the right hand side obviously equals E]_[?:1 Sg[i(B,-),
then with Lemma 18 the proof of Lemma 19 will be finished. In order to verify (105), note that
the indicator function 1 g, of the parallelepiped B; can be monotonously approximated from both
sides by compactly supported continuous functions (recall Remark 4). Therefore, it suffices to
demonstrate that

Jim E]‘[x<k><¢,) =82 (¢15% (¢2.. @u1SE@n)...)) (O), n =1, (106)

where @1, ..., ¢; < 1 are compactly supported functions in C'1+ .
Recall from expectation formula (11) that

X o0 = i (St 0f?) = i (S )) — Sy p1(0), (107)

where we used the abbreviation w(k) = @(k—1/2.), and

S =S¢ o® (ke (108)
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which follows from scaling (60). Similarly, by second moment formula (12),

kty

R . X )
EX[ (o)X (g2) = o(1) + fo e~ 1 ((S;’;_s/kw;’;k«mS;’/Hfzgoz)) )ds (109)

as k 1 oo, where the o(1)-term is bounded by 1.
Because of (107), for the proof of (106) we may assume that n > 2. Then, by the Markov
property and (109), the expectation on the left hand side of (106) can be written as

kty—1 R N (k)
- k k
/0 ee”E ( [[ X )(%‘)) X, ((531_1—s/k(53/k9”n—1S?/k+rn¢n)> )ds

1<i<n-2
(110)
except an o(1)-term, bounded by 1. It is well known that
‘qu)—(pH — 0 asin,weCI‘L. (111)
0
Therefore,
o o o (k) o o (k)
(S o kS 0n1 Ym0 — (82 @amiS2g)) | —>0. (112)
00 k100
Inserting into (110), instead of (106) we need to show that
kT, s ~ (k) - (k) o o (k)
f o ®E( ] XPwn) XY, ((S (@n-15%90)) ) ds
0 1<i<n—2
— S¢ (@152 (92 (@n—15% @n) ...)) (O), 1= 2. (113)

koo

But this can easily seen by induction on n. This finishes the proof. [
4.2. Compact containment

As a preparation of the tightness proof we establish the following result (here we do not yet
need the additional assumption o = 2).

Lemma 20 (Compact Containment Condition). To all ¢ € (0,1] and T > 0, there exists a
relatively compact set K, v C My such that

inf P (}2}") € Ker forallt < T) >1—¢. (114)
>

Proof. Recall (see [18, A7.5]) that a subset K of M is relatively compact if and only if

sup v(RY) < oo and  inf sup v(BS) = 0. (115)

vek BebB ek

Since X ,(k) (R?) = 1, to prove lemma it is enough to show that

lim supP [ sup X®(4,) > ¢ ) =0, (116)
ntoo = t<T
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where 4, == {x € R? : |x| > n}. Let r, denote a function in the domain of A, such that
rp(x) < 1forall x, and r,(x) = 01if |x| < n — 1, as well as r,(x) = 1 if |x| > n. For every
k > 0 define a function r,(,k) (x) := ry(k~1/x). It is not difficult to see that

P sup )A(,(k)(An) >¢e| <P|{ sup X,(r,gk)) > €
t<T 1<kT

1
<P sup (X,(r,gk)) - / Xs(Aar,g">)ds> >
t<kT 0 2

KT . .
+P(/0 X, <|Aar,§ >|) ds > 5). (117)

Using Proposition 3, one can easily verify that
t
> X, (r®) —/ X (Agryds, >0, (118)
0

1s a martingale with deterministic initial position ,&(r,gk)). Hence, applying the well-known Doob
inequality to the first probability expression on the right hand side of (117), we obtain

1
P sup (X,(r,g")) - / Xs(Aar,g">)ds> > 2
t<kT 0 2

2 R . kT . .
<-E X (rR) — / X;(Agr®)ds
0

2 R kT R
== (EXkT(r,gk)) —|—E/ X, <|Aar,5’<>|) ds) . (119)
0

For the other probability expression, by Markov’s inequality,

kT . e ) kT .
P (/ %, (|Aar,§’<)|) ds > 5) < —E/ %, <|Adr,(lk)|> ds. (120)
0 & 0

Exploiting expectation formula (11) for the right hand terms of (119) and (120), we have

. 2 kT
P (sup X0 A > e) <= (ﬂ(s,?fré")) + / i (541267 1) ds) . (121)
0

(<T €
Obviously, ﬂ(S,‘;‘Tr,S")) = [1(S%r,) — 0 asn 1 oo. Further, from the self-similarity of A, it
follows that
Agr® (x) = k71 Agr, (k™12 x). (122)
Consequently, S| Agry”| = k™'S%,|Agry| and
T

kT
/ i (ngar,gkn) ds = / A (5% Agral) dz. (123)
0 0

By Fleischmann and Mytnik [12, Corollary A6], this integral converges to zero as n 1 0o. So we
have shown that the right hand side of (121) is independent of k and goes to O as n 1 oco. Thus,
the proof of the lemma is finished. [
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4.3. Tightness of marginals in the Brownian case

Another prerequisite for tightness in the case « = 2 is the following lemma.

Lemma 21 (Tightness of Marginals for o = 2). Suppose o« = 2. For each ¢ € C1(2)++, the family
(X® (@) : k > 0} is tight in law on DRy, Ry.).

Proof. In this proof we first of all work with general « € (0, 2], since in Section 4.4 we want to
explain why our method of proving Lemma 21 does not work in the case o < 2.

Fix ¢ € (P71 with ¢ < 1, and T > 1. Since X (¢) < [|¢lloo < 1, by Theorem 15.2 of
Billingsley [3] it suffices to check the following condition:

For ¢, n > 0, there exists a§ € (0, 1) and a ky > O such that

P (e, @ ze) <0 kzk. (124)
Here the modulus wf( ®(p )(5) is defined by

w;((S) = iltlf()lilflgxn wy ([ti—1, 1)) with wy(]) = 35?5 |xs — x¢] (125)
where t refers to any decomposition of [0, 7] by means of 0 =: 1y < 1] < --- < t, := T with

the property thatt; —t;_1 > 6, 1 <i < n. Obviously,

[T/51+1
I X(k)()(S)— } < U [wf((k)((p)([i& (i+1)5))28]- (126)
i=0
Hence,
[T/51+1 .
P (@) ze) <2 Y P(Osup %50 - X @) = ) (127)
i=0 <t<
Now, for each i,
X(k) X(k) < i8+r5((k) A d
isgr (@) = X ;57 (p)| = s (Aqe)ds

16+t

k k S
‘ X%, (0) = X5 (9) - f X® (Aqp)ds|.
ié

(128)

Clearly,
is+t
sup / X§k)(Aa<p)ds
0<t=<s1Jié

Then, for § < &/4||Aq@|lcos

<é[Agplloc as. (129)

k o (k €
P( sup |5, () - X9 (0] = 5)
0<r<§
i5+t
<P| sup
0<tr<$

A k ~
X%, (0) — X5 (@) — [5 X (Aap)ds| =
l

) : (130)

™
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Butt — X® (p) — X l((];) (p)— fi?ﬂ X s(k) (Aq@)ds 1s a martingale, and hence by the well-known

iP5+t

Doob inequality,
) 4
e\ ~4 5 (k o (k b
=(3) ® (Xéim«u) e [ @) (130
1

=

i85+t
X9 (9) — P (p) - f5 RO (A g)ds
l

&~ >

P sup
0<t<é
)

Since (a + b)* < (2a% + 2b%)% < 8a* + 8b*, the whole expression (131) can be estimated from
above by

4
— o (k o (k
ce 4(E (X050 = 20 @) +54||Aa<p||io), (132)

where we used (129), and c is a certain (later changing) constant. From the f.d.d. convergence
(Lemma 19) and dominated convergence it follows that

. . 4
,}g‘OE (Xgim () - Xy (<ﬂ)> =E (p(&i+1s) — <P(§i&))4 : (133)

Thus, there is a kg > O such that

E(%Y,,0 - 20@) <2 (pErmm — 0@, k= k. (134)
The latter moment can actually be computed:

E (1) — 0 (o)’

= 5% (850" — 40550° + 607S50% — 497850 + ¢*) (0). (135)

Since S has generator A, for 8 > 0 one can find o) = §po(B) > O such that
|
Applying this repeatedly to (135), we get

E (¢p(&it1)s) — ¢(§i8))4

Ag@t — 40 Aq@® 4 60> Agg? — 40> Ao (0) + 485 (137)

SEp) — @) — 8Aqp’ HOO <Bs, 0<8<dyl1<j<4 (136)

<855

[note that (1 —4 4+ 6 — 4 + 1)¢* = 0]. Now we use our assumption « = 2, since in this case
Aq@® — 49 Aq @ + 6% Ag@? — 403 Agp = 0. Consequently,

E (pEais) — 9(Eis)* < 488 (138)

(Of course, in the present Brownian case o = 2, it is well known that this moment is even of
order 52.) Then from (127), (130)—(132), and (134),

P (W, =€) = cTo™ e (Bo + 8% = cTe™ (B + %), (139)

Choosing now g and ¢ sufficiently small, the latter probability expression can be made smaller
than n, as required for (124). This finishes the proof. O
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Completion of the proof of Theorem 1. Part (a) was provided by Lemma 19. Since {©

() g € It

is a family of continuous functions on My that separates points, Lemmas 20

and 21 together with Jakubowski’s criterion (see Theorem 3.1 of [17]) yield that in the case

a =2the X® are tight in law in D(R4, M), giving also part (b). O

4.4. Failure of our method in non-Brownian situations

Our method of proving tightness of marginals does not work if ¢ < 2. In fact, similarly to

(133), we have for even g > 2,

lim E (XE),,0) = X3 @) = E (00 — 0 )"

Pros
( )( —p)! 8¢~ ’)(0).
By (136),

Also, as in (135),
E (¢(Ei+11s) — 9(Eis))T =8 (SE¥) (0) + 0(8),

where

Y= Z( )( —0) Aagp? ™.

Now, since a < 2,

q
E (¢ +1)s) — @(Sza) (Z

Jj=0

Vo) - (y — X)] dy

Aaw(x)=/Rd [w(y)—cp(X)— Tty —x |y —xdte

see, for instance, Dawson and Gorostiza [6, p. 245]. Hence,

— —n\/ q—J N/ |
Y(x) = /Rd _E_ (j)( @)’ (x) (w ) —o (x)>

[i( ) (—6) (1)~ f(x)} =)

Lty —x]? |y — x|dte

But Vo= = (¢ — j)p?7/~1V¢. Therefore,

Jj=0 j=0

g—1
Z(})( —0)) () Vgt~ = ¢~ 1(V¢>Z(J)( /(g —-j=0.

(140)

(141)

(142)

(143)

(144)

(145)

(146)
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On the other hand,
q_l . . .
(q.) (=0) @) (77 0) =97 ()
j=0 N/
q—1 q . . q—1 q .
= ( ) (=) ()77 (y) — ¢ (x) Z ( ) (—1)/
=0 \J =0 \J
= (]) (=) ()!™ (y) + 9T (x) = ((y) — ()7 (147)
=0

Inserting both into (145) gives

(p(y) — p(x))?
wi Iy -t =0 (149

V(x) =

which in general is different from O for any choice of an even ¢. Hence, (142) is not of a smaller
order than § as 6 | O [as opposed to (138)]. Thus, for « < 2 our method of proof cannot lead to
(124).
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Appendix A

In this section we will recall some facts about stable distributions and prove results on the
total mass process X.

A.l. On stable distributions

First of all we want to relate non-negative stable random variables to exponentially distributed
ones. For this purpose, for fixedm > 0and 0 < y < 1, let ;,Z > (0 denote a random variable
with Laplace transform

Ee ™ — exp{—mAY), A >0, (A1)

In the stable case ¥ < 1, write ¢,, for the density function corresponding to ¢,,. Moreover, let
nm be independent of ¢, and exponentially distributed with mean 1/m. Then

P(n > AL)) = Ee*on, (A2)
thus, from (A1),

P((n/¢m)? > AY) =exp{—mAY}, A >0. (A3)
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Consequently,

Y
(ﬂ> . (Ad)

&m
(This method was proposed by Williams in [23]; using this trick he obtained a representation of

stable distribution as a convolution of gamma distributions.)
Obviously, the Laplace transforms (A1) are continuous in y. That is, y, — y asn 1 oo in

(0, 1] implies the convergence in law " :£> ¢y . On the other hand, y | 0 leads only to the limit
law e 780 + (1 — e ™™)8x of ¢ . But under logarithmic scaling in this case

L
y log ¢ = —log nm, (A5)
y{0

which follows from (A4).
As another consequence of (A4) we express all moments of negative order of the random
variable ¢;. Indeed, (A4) and the independence of ¢, and 7| give

Ef{E¢,) ™ =En”, r>0. (A6)
Hence, using the well-known formula En), = I'(1 +r)/m",r > 0, we get

I'd+r/y)
ra+r)’
where I denotes the Gamma function.
Recall the symmetric «-stable transition density functions p* occurring in (2). We want to
calculate the quantity p} (0) (which occurs in Corollary 6). For a < 2, from subordination (see,
e.g., Fleischmann and Girtner [11]),

E@) " =m™"" >0, (A7)

a/2

pY(x) = /O pZ(x)g;’ " (s)ds (A8)

(recall that qf‘ /2 is the density function of the random variable {,a/ 2 with index y = /2, and p?
the heat kernel). Therefore,

P (0) = (4m)™/? fo s™2g7 2 (9)ds = (4m)~PEEH ™, (A9)

and (A7) gives

)—d/z I'l+d/a)
I'(14+d/2)

(which is trivially true also for o = 2).

Another possible application of (A4) is the calculation of E(log {,31/ Y*forn =0,1,.... Infact,
taking the logarithm on both sides of (A4), we have

p%(0) = (dr (A10)

L
y logny — y log & =log np. (A11)
Therefore,
Y\n 1 n
E(logn —log )" = —E(logn,)", n=0,1,.... (A12)

yn
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Using this relation we can express E(log )" via moments E(log n; Y withi < n and E(og nm)"
for every natural n. An alternative method was proposed by Zolotarev [24, Section 3.6]. He has
shown that the n-th logarithmic moment of the stable random variable ¢ can be calculated
as a value of the Bell polynomial C, (u1, ..., u,), where u; = c;y~" with ¢; some absolute
constants.

A.2. Localization in the main cluster (proof of Proposition 9)

From the cluster representation (19) we have

PO, <) = P(x ([y, 00)) = 0) = e (1)

_ _ m —(e™)
= exp|: T e_Qt)y , y>0. (A13)
Substituting y = exp[e®z] gives
—ot (1) _ m -z
P (e " log®, "’ < z) = exp [—me ] , zZ€R, (A14)
and hence
lim P (e—Qf logoM < z) — exp[—me~?], zeR. (A15)
1100

Comparing with Neveu’s limit theorem (1) we see that €9 log 19,(1) and e~ log X, have the
same limiting distribution.

(@)
Next we want to deal with % for all i > 2. Clearly, forx > y > 0,

(1) M) S WL e
P(l?t de?ﬁl Edy) =e MV mx dx

)\‘; ([y’ -x)) e_k[([)7’x)) me et

—1—e7?
(i —2)! (1 —co)” dy.  (Al6)

Hence, for0 <z <1,
19(1') m2e—2Qt
Pl1-<z] = .
gV (i =22 (1 —e0)

* Sieeme [T e
x/ e M (y,00) y—l—e / My, x)x~ 7 " dxdy.
0

y/z
But by (20),
_ n —(e70) _ —(e‘@’)]
b ) = T | xe], (A17)
giving

[e’e) 5 .
/ A2 [y, x) a7 dx
y/z

m i—2 o0 __(a—o0t _(a—0O1 i—2 —1—e—01
:<F1 —Qt) / [y =T )] T
( — € ) v/z
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(e7@h

! m T e /Z (1—-1)'*d
_ -1 T
o \T(1—c0)) 7 )

1 =2 sl = (1 =€)yl
= — m yi=De ( k ) (ALB)
e ¢ \ I'(1 —e~9) i—1

Inserting this yields

@) i .—ot
9 Q
P~ <2) = ;o e
0, (i — D1 —e0r)
) [1 -(1- Z‘B'Qt)y_l] f T i gy, (A19)
0

Now the latter integral equals

1 my C) ; —ot —ot
(i—1e™¢ (e7¢h)
€X —_—— d
e ¢ /o p[ r(—eon |’ ot )

F’ 1 —e¢ I —e @
(i-e )/ eyl = LU Ty (A20)
mie—o! mte—e!

Putting this into (A19) gives

50 i
Pl > :<l—z(e )) , 0<z<l. (A21)
5@

Finally, substituting z = exp[—ye®’] we arrive at

()
19 .
P (e—é” log ﬁ ) =(1—e)", y=0,i>2,1>0 (A22)

t

D
By the way, this means that the distribution of e~¢’ log 50 1s independent(!) of ¢ and equals the

law of the maximum of i — 1 i.i.d. standard exponentlally distributed random variables. From
(A22),for0 < e <11,

) (1) PR el
0 v (™)
Pl > i =P (e %log - <log L =(1- <£> . (A23)
S = 72 50 . 7
t t

Since Zfizi_z <1,

Y (1 00 9@ 00 —ory\ i—1
X, — v, € NG
P(v z ) 2P <Z9(1> ) =2 (1 -() ) | (A2
t

But each summand tends to zero as ¢ 1 0o and is dominated by

(e—gt) 1 — —ot 1 1
exp [—(i -1 (%) :| < exp |:_§i1—2e PG )] < exp [_Eil/zi]
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for all sufficiently large ¢ (for i > 2 and the fixed ). Then

% —o0 p
YL

0 (A25)

follows by dominated convergence, and the proof of Proposition 9 is finished. [J
A.3. More on Neveu’s branching process
Consider X with Xg = m > 0. Recall that in the notation of (A1),

X; é é‘r);; with Yy = C_Qt, t > 0. (A26)

Then, from (AS) we get the following weak form of Neveu’s limit theorem (1):
ot o L . c
e log X, ? —logV with V=n,,. (A27)
t1oo
Besides (1), the following statement holds.

Proposition A1 (Convergence in Moments of all Positive Orders). For every m,r > 0,

Ele™log X, — (—log V)|’ o 0. (A28)

Proof. Fix m > 0. Rewriting (A11) as y log " + log n, £ y log n1, from (A26) it follows that
for some constant ¢,

e "?"Ellog X;|” < ¢ (E|y log ¢y +lognm| + Ellognml")
= ¢, (OBl log m|” + Ellog ul") . (A29)

Thus, the function ¢ > e "?"E|log )_(,lr is bounded on R, for each » > 0. This means that
the family {(e™"9" log X;)" : > 0} is uniformly integrable, for each r > 0. This together with
Neveu’s limit theorem (1) gives (A28), finishing the proof. [
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