A NOTE ON MEAN CURVATURE, MASLOV CLASS AND
SYMPLECTIC AREA OF LAGRANGIAN IMMERSIONS

KA1 CIELIEBAK AND EDWARD GOLDSTEIN

In this note we prove a simple relation between the mean
curvature form, symplectic area, and the Maslov class of a
Lagrangian immersion in a Kahler-Einstein manifold. An im-
mediate consequence is that in Kahler-Einstein manifolds with
positive scalar curvature, minimal Lagrangian immersions are
monotone.

1. Introduction

Let (M, w) be a Kéhler-Einstein manifold whose Ricci curvature is a multiple
of the metric by a real number A. In particular, the Kéhler form w and the

first Chern class ¢1 (M) are related by ¢1(M) = % (see Section 3). Let L
be an immersed Lagrangian submanifold of M. Let H be the trace of the
second fundamental form of L (the mean curvature vector field of L). Thus
H is a section of the normal bundle to L in M and we have a corresponding
1-form oy, := igw on L, called the mean curvature form of L. Consider a
smooth map F : ¥ — M from a compact oriented surface > to M whose
(possibly empty) boundary 0F := F(9X) is contained in L. Let u(F) be the
Maslov class of F' (see Section 2) and w(F) := [y, F*w its symplectic area.
The goal of this note is to prove the following simple relation between these
quantities:

(1) AW (F) = mp(F) = o,(OF).

This relation was given in [Mor] for C" and in [Ars| for Calabi-Yau mani-
folds. Dazord [Daz]| showed that the differential of the mean curvature form
is the Ricci form restricted to L, so in the Kéahler-Einstein case oy, is closed
(see Section 3). Y.-G. Oh [Oh2] investigated the symplectic area in the case
that the mean curvature form is exact.

Lagrangian submanifolds for which p(F) = aw(F") on all disks F', for some
a > 0, are called monotone in the symplectic geometry literature, cf. [Oh1].
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An immediate consequence of (1) is that in K&hler-Einstein manifolds with
positive scalar curvature (i.e. A > 0), minimal (i.e. o;, = 0) Lagrangian
immersions are monotone.

In view of the exact sequence in cohomology (with real coefficients)

1)

HY(M) — HY(L) = H*(M,L) — H*(M),

formula (1) can be rephrased as
Mw] = 7 = o, € H*(M, L).

Note that the class A|w]—mp is equivariant under symplectomorphisms of M.
It follows that if the map H'(M) — H*'(L) is trivial, then the cohomology
class of the mean curvature form o is equivariant under symplectomor-
phisms of M. This generalizes Oh’s observation [Oh2] that the cohomology
class is invariant under Hamiltonian deformations.

Acknowledgement. We thank the anonymous referee for pointing out
the generalization (3) of formula (1).

2. Maslov class

We first recall a definition of the Maslov index that is suitable for our pur-
poses. Let V be a Hermitian vector space of complex dimension n. Let
A9V be the (one-dimensional) space of holomorphic (n,0)-forms on V
and set
K2(V) = A0V g A0y,
Let L be a Lagrangian subspace of V. We can associate to L an element
k(L) in AV of unit length which restricts to a real volume form on L.
This element is unique up to sign and therefore defines a unique element of
unit length
k% (L) := K(L) @ w(L) € K*(V).
Thus we get a map «? from the Grassmanian Gry,e (V) of Lagrangian planes
to the unit circle in K?(V). This map induces a homomorphism 2 of
fundamental groups
K21 (Griag (V) — Z.
To understand the map x2, let L be a Lagrangian subspace and let vy, ..., v,
be an orthonormal basis for L. For 0 < ¢ < 1 consider the subspace

L; = span{vy, ..., vn_1,e v, }.
This loop {L;} is the standard generator of 7| (Gr1ag(V)). The induced ele-
ments in A9V are related by k(L) = e ™ k(L), so 2(Ls) = e~ 2" k2(L)

and x2({L;}) = —1. Thus we see that the homomorphism 2 is related to
the Maslov index  (as defined, e.g., in [AuLa]) by

K2 = —p: 71 (Griag(V)) — Z.
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Now let (M,w) be a symplectic manifold of dimension 2n. Pick an almost
complex structure J on M such that w(-,J-) defines a Riemannian metric
and let K (M) := AOT*M be the canonical bundle of M, i.e., the bundle
of (n,0)-forms on M. Note that ¢;(K(M)) = —c;(M). Let K?(M) :=
K (M) ® K (M) be the square of the canonical bundle.

Let L be an immersed Lagrangian submanifold of M. For any point [ € L
there is an element of unit length k(1) of K (M) over [, unique up to sign,
which restricts to a real volume form on the tangent space T;L. The squares
of these elements give rise to a section of unit length

k3 L — K*(M).

Note that if L is oriented, then /-c% is the square of the unit length section
kL : L — K(M) defined by picking the volume forms x(l)|r positive with
respect to the orientation.

Now let F' : 3 — M be a smooth map from a compact oriented surface
to M with boundary 0F = F(0X) on L. To define the Maslov class p(F),
assume first that ¥ is connected and 9% is nonempty. Then H?(X;Z) = 0,
hence the pullback F*K (M) to X is a trivial bundle and we can pick a unit
length section kp of KX(M) over ¥. Now on the boundary 0F we also have
the section K% defined above. We can uniquely write

K2 = ek,
for a function e/ : 9% — S to the unit circle. We define the Maslov class
w(F') as minus its winding number,
u(F) == [ ao.
21 Jor
If ¥ is closed replace some point of ¥ by a new boundary circle 9% which
gets mapped under F' to a point x € M. Pick a unit length element «, of
K (M) at x and a unit length section xp of K (M) over ¥ (which is possible
since ¥ now has nonempty boundary). Now write x2 = ewn% over 9% and
define p(F) := 5—; S5 d0 as above. For disconnected ¥ define p(F) as the
sum over all connected components.

This definition is independent of the choice of kr and defines a map
w: Ho(M,L;Z) — Z.
To see this, first note that any other unit length section £’ of K(M) over
F is related to s by a multiple ¢'? : ¥ — S1. So on F(9%) we have 2 =
87.’9,(/4,}7)2 with ¢ = e=2%i? . 93 — S'. By Stokes’ theorem, this implies
Jopd0" = [, df. Next suppose that F' and F’ have the same boundary
OF = OF" =: v and [F Uy —F'| = 0 € Hy(M;Z). Then the pullback of
K(M) to [F'Uy —F"] is a trivial bundle and there is a unit length section
of K(M) over [F U, —F']. If we take the restriction of £ to F as kp and
the restriction of # to F' as /. we get €’ = ¢ and hence u(F) = u(F").
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In particular, if [F] = 0 € Ho(M,L;Z) we find an F' : ¥ — L with
OF = OF' = v and [FU,—F'] =0 € Hy(M;Z), and thus u(F) = pu(F') = 0.
This shows that u(F) depends only on [F] € Hao(M, L; 7).

In view of the discussion above, our definition of p agrees with the usual
definition of the Maslov class, cf. [AuLa].

3. Proof

Now assume that (M,w) is Kéhler with complex structure J and Kéhler
metric (-,-) = w(-,J-). We denote by V the Levi-Civita connection, as well
as the induced connections on K (M) and K?(M). Let us briefly review the
geometry of K (M), following the notations in [Bes|, pp. 81-82. Any lo-
cal non-vanishing section x of K (M) over an open subset U of M defines a
(complex valued) connection one form 7 on U by Vk = n® k. The curvature
of K (M) is defined to be Ry := —dn; it is a global closed imaginary valued
(1,1)-form on M. By [Bes], Prop. 2.45, the Ricci tensor Ric of M is a sym-
metric bilinear form of type (1,1); the associated 2-form p(-,-) := Ric(J-,")
is called the Ricci form of M. By [Bes], Prop. 2.96, the Ricci form satisfies

p=1iRg.

If follows (cf. [Bes], Prop. 2.75) that the first Chern class ¢; (M) is repre-
sented by -2% Note that in the Kahler-Einstein case, p = \w.

Now let L be an immersed Lagrangian submanifold of M and let K% be
the canonical section of K?(M) over L as above. The section x7 defines a
connection 1-form ny, for K?(M) over L by the condition V&% = n ® k7.
Since m% has constant length 1, nz is an imaginary valued 1-form on L. Let
oy, = tgw be the mean curvature form of L as in Section 1. The following
fact goes back to [Oh2], Prop. 2.2:

(2) ng, = 2ioy,.

Here the factor 2 is due to the fact that 77, is a connection 1-form for K2(M)
rather than K (M). In particular, since dn;, = —2Rp = 2ip, this formula
implies doy, = p|r, so in the Kahler-Einstein case oy, is closed.

For the convenience of the reader, we recall the proof of formula (2)
from [Gol] (where, however, the formula is stated with the wrong sign).
Pick a point [ € L and let ey, ..., e, be a local orthonormal frame tangent
to L. Orient L locally by this frame. Then xr(ej,...,e,) = 1, and hence
for every local vector field v tangent to L,

0= fu(/ﬁL(el,...,en)) = (Vykp)(e1,...,en) + ZHL(el,...,Vvej, ey En).
j=1
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Since the complex structure J is parallel (see [KoNo], Ch. IX Thm. 4.3),
the j-th term in the last sum equals

i(Vyej, Jej) = i(Ve,v, Jej) = —iv, JVe,e5) = iw(v, Ve, e5).

Summing over j and inserting H = 2?21 Ve,ej, we find

Vokp(er,...,en) =1 ) w(Vee;,v) =iw(H,v) =iop(v).

n
j=1
Now formula (2) follows from Vk? = n, ® k7 via

nr = 2Vkgp(el, ..., en) = 2ioy.

Now let F' : 3 — M be a smooth map from a compact oriented surface
with boundary on L. We will prove the following identity in any Kahler
manifold:

(3) p(F) = mu(F) = or(9F).

Note that in general the form o need not be closed on L. Tt is closed in
the Kéhler-Einstein case, in which p = Aw and (3) implies formula (1) in
the introduction.

To prove identity (3), assume that every connected component of ¥ has
nonempty boundary (closed components are treated similary, see Section 2).
Define the section kp of K(M) over F' as in Section 2. Let ng be the
connection 1-form along F' defined by Vﬁ% =nr® HQF. By the discussion
in the beginning of this section, dnr = 2iF™*p. Stokes’ theorem implies

29(F) = | —inr.

Recall from Section 2 that along JF we have /-c% = ewf@% for a function

e? . 9¥. — S1, and the Maslov class is given by

1
u(F) = o /BF do.

The connection 1-forms nr and 7y, are related by
nL =nr +1db

on OF. Combining the equations above and formula (2), we find

—3 —1 do
oo = [ = [ | S o)~ ().
oF or or
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