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effects for the use of 68Ge/68Ga phantoms in determining 18F PET recovery
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Purpose: Avoiding measurement variability from 18F phantom preparation by using 68Ge/68Ga

phantoms for the determination of 18F recovery curves (RC) in clinical quality assurance measure-

ments and for PET/CT site qualification in multicentre clinical trials.

Methods: RCs were obtained from PET/CT measurements of seven differently sized phantom

spheres filled either with 18F or with 68Ga. RCs for the respective other isotope were then

determined by two different methods: In the first method, images were convolved with positron

range transconvolution functions derived from positron annihilation distributions found in liter-

ature. This method generated recasted images matching images using the respective other iso-

tope. In the second method, the PET/CT system’s isotope independent (intrinsic) point spread

function was determined from said phantom measurements and convolved with numerical rep-

resentations simulating hot spheres filled with the respective other isotope. These simulations

included the isotope specific positron annihilation distributions. Recovered activity concentra-

tions were compared between recasted images, simulated images, and the originally acquired

images.

Results: 18F and 68Ga recovery was successfully determined from image acquisitions of the respec-

tive opposite isotope as well as from the simulations. 68Ga RCs derived from 18F data had a normal-

ized root-mean-square deviation (NRMSD) from real 68Ga measurements of 0.019% when using the

first method and of 0.008% when using the second method. 18F RCs derived from 68Ga data had a

NRMSD from real 18F measurements of 0.036% when using the first method and of 0.038% when

using the second method.

Conclusions: Applying the principles of transconvolution, 18F RCs can be recalculated from 68Ga

phantom measurements with excellent accuracy. The maximal additionally introduced error was

below 0.4% of the error currently accepted for RCs in the site qualification of multicentre clinical tri-

als by the EARL program of the European Association of Nuclear Medicine (EANM). Therefore,

our methods legitimately allow for the use of long-lived solid state 68Ge/68Ga phantoms instead of

manually prepared 18F phantoms to characterize comparability of 18F measurements across different

imaging sites or of longitudinal 18F measurements at a single PET/CT system. © 2017 The Authors.

Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists

in Medicine. [https://doi.org/10.1002/mp.12330]
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1. INTRODUCTION

Positron emission tomography in combination with computed

tomography (PET/CT) is a quantitative clinical imaging

modality. Quantifiability of PET/CT, however, suffers from

the finite spatial resolution and accordant sampling in the

image matrix causing the partial volume effect (PVE) – the

spill in and spill out of PET signal to and from adjacent

image elements that causes blurring.1,2

The PVE of different PET/CT systems is typically deter-

mined by phantom measurements: Recovered activity con-

centrations are typically measured at the center of differently

sized hot spheres to compile so called recovery curves (RCs).

RC measurements are part of quality assurance (QA) proce-

dures,3–5 and they constitute an essential element to

characterize comparability between different PET/CT sys-

tems, e.g., within multicenter clinical trials.6

Compared to a 18F filled phantom, which necessitates

manual preparation prior to its use, reproducibility of

repeated measurements and radiation protection of the per-

forming staff is improved when using a long-lived solid state
68Ge/68Ga phantom (radioactive half-life 270.95 days).7

However, most clinical images are acquired with 18F-Fluor-

deoxyglucose (FDG) fluoride anion (18F�) and their RCs

cannot be directly compared with those from 68Ga measure-

ments. 18F emits its positron (b+) with an average energy of

249.8 keV and up to an endpoint energy of 633.5 keV.8

68Ga, the daughter nuclide of 68Ge, emits b+ on average with

836.02 keV and with an endpoint energy of 1899.1 keV.9

The different isotope energies lead to different source-centred

3761 Med. Phys. 44 (7), July 2017 0094-2405/2017/44(7)/3761/6

© 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on
behalf of American Association of Physicists in Medicine. This is an open

access article under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-
commercial and no modifications or adaptations are made.

3761

https://doi.org/10.1002/mp.12330
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


radial positron annihilation distributions,10,11 here referred to

as positron range functions (PRFs). In PET, the image blur

and its consequent PVE will therefore depend on the very iso-

tope used for data acquisition.12

Similar to a transconvolution (TC) function (TCF), that

conveys images acquired on different PET/CT systems into

each other,13 a positron range transconvolution function

(PRTF) can be determined, that conveys 18F measurements

into 68Ge measurements (PRTFF?Ga), or vice versa

(PRTFGa?F). Akin to Wiener filtering,14 the PET/CT sys-

tem’s intrinsic PSF (psf0) acts hereby as a spatial filter against

image noise amplification. As described previously, psf0 is

directly determinable from the same phantom acquisitions as

the RCs,15 while necessary PRF models are available from

measurements16 or from computer simulations.10,11,17

The PRTFGa?F can then to be applied on 68Ge/68Ga phan-

tom measurements intended for cross-calibrating18 different

PET/CT systems in multicenter clinical trials doing 18F imaging.

Aim of the current work was to prove the feasibility of

acquiring 18F RCs from 68Ga phantom measurements and

vice versa. To this end two strategies were pursued: First,

images of hot spheres acquired either with 18F or with 68Ga

were transconvolved into images as they would have been

acquired with the respective other isotope. Second, 18F and
68Ga RCs were simulated with the PET/CT system’s psf0 and

literature derived PRFs. Both, the determination of recovery

and of psf0, were performed on data from the same set of

phantom spheres.

1.A. Background and theory

In a given homogenous material, blur from b+ emitters is

solely a function of its positron energy distribution. The anni-

hilation photon’s noncollinearity is isotope independent.19

Thus, knowing a b+ emitter’s energy spectrum, PRF models

can be calculated from Monte Carlo (MC) simulations. In

this work, the MC derived model provided by J. Cal-

Gonz�alez et al.11 was used with its specific parameters for
18F and 68Ga PRFs. Contrary with others, this model incorpo-

rates a maximal positron range r0, preventing unphysical sig-

nal contribution of remote image volume elements (voxels).

Disregarding image noise, a 18F PET/CT image imgF of

an object (obj) can be mathematically described by the fol-

lowing Eq.,20

imgF ¼ obj � prfF � psf0 (1)

where � denotes convolution. The same holds true for a 68Ga

PET/CT image imgGa:

imgGa ¼ obj � prfGa � psf0 (2)

psf0 can be deconvolved from PSFs measured either with 18F

or 68Ga (psfF and psfGa) or estimated directly from a phantom

image.15

psf0 ¼ psfF � prf�1
F (3)

psf0 ¼ psfGa � prf
�1
Ga (4)

According to the convolution theorem, the combined

Eqs. (1) and (2) can also be rewritten in Fourier space Ffg
to arrive at calculated images of a given isotope:

F imgGa;calc from F

� �

¼ F imgFð Þ �
F prfGað Þ

F prfFð Þ
(5)

F imgF;calc from Ga

� �

¼ F imgGað Þ �
F prfFð Þ

F prfGað Þ
(6)

The quotients of the two PRFs represents PRTFF?Ga in

Eq. (5) and PRTFGa?F in Eq. (6), and they act similar to the

TCF in an earlier work.13,21 The main difference here is, that

Eqs. (5) and (6) convey between 18F and 68Ga measurements

acquired on the same PET/CT system, instead conveying

between measurements of the same isotope acquired on dif-

ferent PET/CT systems.

The larger positron spread of 68Ga compared to 18F sup-

presses high spatial noise in imgGa;calc from F . By contrast,

F prfGað Þ drops to naught before F prfFð Þ does (cf. Fig. 1);

Eq. (6) will therefore enhance high spatial frequencies, i.e.,

noise, in imgF;calc from Ga. By applying a post hoc low-pass fil-

ter with a cut-off frequency fc, unwanted noise amplification

is avoided without compromising quantification in the final

filtered image ~imgF;calc from Ga.

This can be shown by examining the corresponding modu-

lation transfer function (MTF) MTF0 in Fourier space:

MTF0 � F psf0f gj j (7)

The spatial frequency where MTF0 drops below image

noise constitutes the cut-off frequency fc for post-hoc filter-

ing. Here, a 16 pole Butterworth filter with fc = 0.25 mm�1

was chosen for its maximally flat pass-band and its steep

monotonic gain decay in the spatial frequency domain

(MTFBW). Applying the Butterworth filter leads to a filtered

calculated image:

Fð ~imgF;calc from GaÞ ¼ FðimgF;calc from GaÞ �MTFBW (8)
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FIG. 1. Modulation transfer of the examined functions plotted as gain in dB.

The measured MTF0 is depicted with � standard deviation (green dots). The

shown MTF0 was taken from 68Ga data in Ref.15 For clarity, MTF0 from
18F

measurements is not shown.

Medical Physics, 44 (7), July 2017

3762 Prenosil et al.: Use of 68Ge to determine 18F PET recovery 3762



Figure 1 shows the modulation transfer in decibel (dB) of

PRFs, of the Butterworth filter, of PRTFs without filtering,

of the PRTF with Butterworth filtering (PRTFGa?F(BW))

and of the radial MTF0 component. No filter is necessary for

the TC of 18F images into 68Ga images. It is only used when

recasting 68Ga images into 18F images with PRTFGa?F(BW).

2. MATERIAL AND METHODS

2.A. Measurements of recovery curves and point
spread functions

Phantom images of seven hot spheres of different diame-

ter and their respective numerical representations were

acquired as described previously.15 The spheres were filled

once with 18F and once with 68Ga (200–400 kBq ml�1).

Individual sphere images were recorded on a Biograph mCT

128 True-V (Siemens Medical Solutions USA, Knoxville,

TN, USA) in time of flight mode (TOF) and reconstructed

with filtered back projection into a matrix of 512 9 512

elements using a slice thickness of 1 mm (axial cover-

age 22.2 cm) in 222 slices. Voxel size was 1.59 mm 9

1.59 mm 9 1 mm. A post-reconstruction Gaussian filter with

a full width half maximum (FWHM) of 2 mm was applied.

RCs were determined by measuring the activity concentration

in the sphere images at the voxel with the highest intensity.

The obtained values were then divided by the expected activ-

ity concentration and plotted against sphere diameter.

Numerical representations of the seven hot phantom

spheres were calculated at a four times higher resolution than

the acquired PET/CT images, and were subsequently Fourier-

resampled to the same image matrix as the PET/CT images.

Afterward, psf0 was individually determined from every

sphere for convolution with the respective numerical representa-

tion of said sphere filled with the opposite isotope. This

approach countered possible nonlinear imaging,15 in case a PSF

not just defines an imaging system but also depends on the

diameter of the imaged sphere. The “MTF fit” method15 was

used to establish psf0. From these individually determined psf0s

it could be shown, that MTF0 fell near zero after 0.25 mm�1.

This value became the subsequently applied fc (Fig. 1).

Data analysis and all numerical calculations were per-

formed on a HP Z620 Workstation (Palo Alto, CA, USA)

running Microsoft Windows 7 as the operating system.

Image calculations were run on a multiparadigm Java frame-

work, developed in-house.

2.B. Statistical analysis

For comparing two RCs, RCa and RCb, their normalized

root-mean-square deviation (NRMSD) was calculated in %

as follows:

NRMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i RCa ið Þ � RCb ið Þð Þ2

nspheres

s

� 100 %½ � (9)

The number of spheres nspheres in this work was seven.

3. RESULTS

3.A. Simulation of positron energy effects on
recovery

In order to understand the influence of the isotope’s dif-

ferent positron ranges onto recovery, numerical representa-

tion of spheres (obj) were convolved with PRFs to simulate

hot spheres with their individual positron reach (objF and

objGa).

objF ¼ obj � prfF (10)

objGa ¼ obj � prfGa (11)

Plotting RCs from simulated objF and objGa (Fig. 2)

reveals that the positron induced spread from 18F has no

effect on the recovery of activity concentration from spherical

objects in the chosen size range. By contrast, a drop was

observed in the simulated 68Ga RC around the 1 ml sphere,

i.e., for objects with Ø <12.4 mm.

Convolving the same data with an additional simulated

Gaussian three dimensional PSF with 6 mm full width at half

maximum (FWHM) produced differences between the two

isotopes already at the 4 ml sphere. In this case, 68Ga experi-

enced a sharp drop in recovery for spheres with a volume

<2 ml (Fig. 2, dotted lines). The RC from obj convolved with

the Gaussian PSF was, by any practical means, congruent

with the RC from objF convolved with the Gaussian PSF

(Data not shown).

Solid lines in Fig. 2 show RCs acquired from 18F and
68Ga measurements of single hot spheres of different diame-

ters (imgF and imgGa). Note that the two measured curves

show a distinct displacement, even though the same set of

spheres and identical acquisition parameters were used for

both isotopes. The difference necessitates normalization fac-

tors as followed in Section 3.B which does not impede the

method.
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FIG. 2. RCs of seven spheres measured with 18F (blue) and 68Ga spheres
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black and grey lines represent convolution with an additional simulated Gaus-

sian PSF with 6 mm FWHM. Recovery is normalized to the true activity

concentration in the spheres. Black numbers below the curves indicate sphere
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3.B. Recovery curves from real transconvolved
measurements

To test the eligibility of PRTFF?Ga to convey
18F measure-

ments into 68Ga measurements we convolved the imaged 18F

spheres with PRTFF?Ga according to Eq. (6), arriving at

imgGa;calc from F . All measurements were normalized to the

recovery of their largest 16 ml spheres. To do so for 18F mea-

surements, said normalization factor was 1.073. For 68Ga

measurements the normalization factor was 1.177. The nor-

malization factors seem to stem from the measurement set-

up’s deviating calibrations for the different isotopes (cf.

Discussion). Figure 3(a) depicts resultant RCs and their con-

gruence with the measured 68Ga curves from Fig. 2. NRMSD

between those two was 0.019%.

The convolution of PRTFGa?F(BW) [Eq. (8)] with the

imaged 68Ga spheres gave. Their recovery is also shown

together with the measured 18F recovery in Fig. 3(a).

NRMSD between those two RCs was 0.036%.

3.C. Recovery curves from numerical
representations of phantom spheres

To test, if a PET/CT systems psf0 can be used as substitute

for real phantom measurements with a particular isotope,

psf0;Ga determined directly from the 68Ga phantom images of

Ref. [15] was convolved with objF . The radial FWHM of

psf0;Ga was 4.9 � 0.1 mm. The thereof determined RC had a

NRMSD of 0.008% from the imgGa RC. Next, psf0;F deter-

mined from 18F phantom measurements was convolved with

objGa. The radial FWHM of psf0;F was 4.8 � 0.2 mm. The

hereof determined RC had a NRMSD of 0.038% from the

imgGa RC. Simulated normalized RCs are shown in

Fig. 3(b).

4. DISCUSSION

Two strategies were applied to generate RCs of a particular

PET isotope from data acquired with a different isotope. The

first strategy transconvolved real PET/CT images of single

spheres into images of the opposite isotope. The second strat-

egy used the PET/CT system’s intrinsic psf0 to simulate

sphere images of the two different isotopes. Both strategies

were able to convey normalized RCs for an isotope based on

measurements using the respective other isotope. Only the

factor mending the displacement between the two curves

needed to be established with the respective isotopes.

Gaussian filters as applied in Fig. 2 are widely used in

clinical routine. The simulation of accordant RCs showed,

that positron energy effects need to be considered when

imaging structures smaller than 15 mm.

From

F prfFð Þ nð Þ ! 1; n\nc (12)

follows that prfF has small effects on PET/CT clinical mea-

surements compared to prfGa. Therefore, it can be accepted

that for most cases

F prfGað Þ

F prfFð Þ
� F prfGað Þ (13)

Within the physical limits set by the clinical imaging sys-

tem,22,23 any such derived PRTFF?Ga will represent an

approximation of F prfGað Þ, rendering additional filtering

superfluous (cf. Fig. 1). The absent influence of objF on

recovery supports this view (Fig. 2).

As shown by Fig. 3(a), determining imgGa from
18F acqui-

sitions is trivial. In this case simulated 18F RCs were more

accurate than RCs from imgGa;calc from F; probably because

any object specific imaging bias introduced by the PET/CT

system was accounted for by determining psf0 for every

sphere anew.
18F RCs from transconvolved 68Ga measurements had a

worse NRMSD from actual 18F RCs, compared to 68Ga RCs

from transconvolved 18F measurements. Here, the remaining

high spatial frequency amplification of PRTFGa?F(BW)

resulted in a noisier imgF;calc from Ga. In this case, simulations

were equally capable of determining 18F RCs from 68Ga mea-

surements as from.

Common eligibility criteria given by EARL for the partici-

pation in multicenter clinical trials have NRMSD values of

9.7% (SUVmax) and 5.8% (VOI-A50) for their margin of
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FIG. 3. RCs from transconvolved imaged spheres (a) and from simulated

spheres convolved with psf0 (b) compared with measured RCs (solid lines).

Recovery is normalized to the recovery seen in the largest sphere. Blue lines

depict RCs obtained solely from 18F measurements, whereas red lines depict

RCs obtained solely from 68Ga measurements.
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error in RC measurements.6,24 This is about 260 times more

than our novel method will introduce to the data.

In general, any deviation between calculated and measured

recovery curves are attributed most likely to measurement

variability. Similarly, fluctuations in simulated RCs are

caused by the residual inaccuracy when determining psf0 or

MTF0 (Fig. 1).

Using a dedicated 68Ge/68Ga phantom in lieu of 18F phan-

toms should result, together with the proposed methodology

for RC determination, in smaller measurement errors, in more

reproducible data and in lower radiation exposure.25 When

using our second approach of RC calculations from simulated

spheres [Fig. 3(b)], determining psf0 is enough to fully

describe a PET/CT system. That is, no actual recovery curves

had to be measured at all, and the isotope used for imaging is

included post-hoc. Use of this method is warranted, when

determining psf0 with a different method other than using

measurements on hot spheres.13,15 However, the normaliza-

tion factor between 18F and 68Ga measurements needs to be

determined separately, ideally with the use of large cylindri-

cal phantoms. From previous calibration experiments with a

homogeneous hot cylinder phantom of 200 mm diameter and

6.28 l volume we had found normalization factors of 1.01 for
18F and of 1.19 for 68Ga. The similarity to the herein reported

normalization factors (cf. Results) also confirms, that at a

sphere volume of >16 ml full recovery is reached in the

sphere center. Such a sphere can thus be used for RC normal-

ization for clinical PET/CT systems with FWHMs around

6 mm.

The normalization factor compensates for the perceived

differences in activity concentration between the stock solu-

tions of the two different isotopes and the activity concentra-

tion in acquired PET/CT images. This disparity can stem

from imprecise calibrations of the activimeter used for the

original preparation or from different measurement

geometries.

Disadvantages include additional costs of the dedicated
68Ge/68Ga phantom. Also, 18F RCs derived from these mea-

surements show some, albeit small, noise amplification.

Here, a proper choice of the Butterworth filter is mandated.

5. CONCLUSION

Dedicated 68Ge/68Ga phantoms can replace the commonly

used 18F phantoms for RC and psf0 determination in clinical

routine,7 even when 18F RCs are requested. The advantages

of reproducibility and safe handling as well as lower radiation

exposure and reduced workload for the staff justify the addi-

tional expenditure of having a dedicated 68Ge/68Ga solid state

phantom. Following above outlined procedures will allow the

use of a single 68Ge/68Ga solid state phantom for site qualifi-

cation in multicenter clinical trials or for longitudinal bias

measurements on a single PET/CT system.26 Concurrent use

of 18F and 68Ga phantoms at different PET/CT sites is also

conceivable.

When using a 68Ge/68Ga phantom in multicenter clinical

trials, determination of the participating PET/CT systems’

psf0 is advisable over psfF or psfGa. The correspondent iso-

tope specific prf can then be easily incorporated into the PSF

or TCF. The data can then be normalized with the transcon-

volution method.
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