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Abstract. We construct a quasiconformal mapping of Rn, n ≥ 2, that simultaneously distorts

the Hausdorff dimension of a nearly maximal collection of parallel lines by a given amount. This

answers a question of Balogh, Monti, and Tyson.

1. Introduction

Despite their importance in a wide variety of mathematical settings, the family
of quasiconformal mappings of Rn, n > 2, remains somewhat mysterious. Excellent
introductions to the theory of quasiconformal mappings can be found in the mono-
graphs [22] and [25]. A core philosophical question is ‘how many such mappings are
there?’. The richness of the class of quasiconformal mappings of Rn is demonstrated
in part by the existence of mappings which simultaneously and uniformly increase the
Hausdorff dimension (denoted throughout this paper simply by dim) of many leaves
of a foliation of Rn. Such behavior, which cannot occur for smooth or even Lipschitz
mappings, reflects the genuinely nonsmooth nature of quasiconformal mappings.

The results of [4] provide bounds on the distortion of dimension of leaves of a
foliation by a Sobolev mapping in terms of the desired dimension of the image of the
leaf and the Sobolev exponent. Let us explain these bounds in a simplified setting.
Let n ≥ 2 be an integer, and let L be any one-dimensional vector subspace of Rn.
We consider the foliation {a+L : a ∈ L⊥} of Rn by lines parallel to L. The absolute
continuity along lines of a supercritical Sobolev mapping f ∈ W1,p

loc(R
n,RN), N ∈ N,

implies that
dim(f(a+ L)) ≤ 1

for Hn−1-almost every a ∈ L⊥. On the other hand, as a consequence of Morrey’s
inequality one may deduce (see, for instance, [19]) that

Hp/(p−(n−1))(f(a+ L)) = 0

for any (i.e., for H0-almost every) a ∈ L⊥. The following theorem from [4] interpo-
lates between these two results.
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Theorem 1.1. (Balogh–Monti–Tyson) For p > n ≥ 2, let f ∈ W1,p
loc(R

n;RN),

and let α ∈
(

1, p
p−(n−1)

]

. Then Hα(f(a+L)) = 0 for Hβ-almost every a ∈ L⊥, where

β = (n− 1)− p

(

1−
1

α

)

.

According to Gehring’s celebrated higher integrability theorem [11], each quasi-
conformal mapping of Rn lies in W1,p

loc(R
n;Rn) for some p > n. Thus, Theorem 1.1

has the following corollary.

Corollary 1.2. (Balogh–Monti–Tyson) Let f : Rn → R
n, n ≥ 2 be a quasi-

conformal mapping. For each α ∈ (1, n) and for Hβ-almost every a ∈ L⊥, we have

Hα(f(a+ L)) = 0, where β = (n/α)− 1.

Theorem 1.1 is sharp in the following sense. Given p > n and α and β as in the
statement, and for any integer N > α, there exists a mapping f ∈ W1,p

loc(R
n,RN)

with the property that for Hβ-almost every a ∈ L⊥,

dim(f(a+ L)) = α.

Such a mapping is constructed in [4] by a random method (which is based on a
construction of Kaufman). These mappings are unlikely to be injective, much less
quasiconformal.

As evidenced by both the Riemann Mapping Theorem and the measurable Rie-
mann Mapping Theorem, the class of quasiconformal mappings in R

2 is particularly
rich, and so it is reasonable to expect that Corollary 1.2 should also be sharp, at least
when n = 2. This expectation was confirmed by Bishop, Hakobyan, and Williams
[7], who proved the following theorem.

Theorem 1.3. (Bishop–Hakobyan–Williams) Fix α ∈ [1, 2) and a one-dimen-

sional linear subspace L ⊂ R
2. For any β < (2/α)− 1, there is a set E ⊆ L⊥ and a

quasiconformal mapping f : R2 → R
2 so that

(1.1) dim(f(a+ L)) ≥ α

for each a ∈ E, where

(1.2) dim(E) > β.

In fact, the authors of [7] constructed a function f as above with the property
that

dim(f(F )) = α dim(F )

for any a ∈ E and for any Borel subset F of a + L; this additional conclusion is
substantially more interesting and more difficult than the result which we described
in Theorem 1.3.

The construction in [7] that verifies Theorem 1.3 is completely deterministic, but
makes substantial use of conformal mappings and is therefore restricted to the planar
case. When n > 2, the paucity of conformal mappings makes sharpness of Corol-
lary 1.2 much less clear. The paper [4] contains a result analogous to Theorem 1.3
for quasiconformal mappings in any dimension n ≥ 2, but with Hausdorff dimension
replaced by upper Minkowski dimension in (1.1). The images of all but countably
many lines under that mapping are locally rectifiable and hence do not exhibit any
increase in Hausdorff dimension. A similar example with Hausdorff dimension in the
target must necessarily proceed along different lines, and the authors of [4] asked
whether an optimal example exists.
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In this work, we give a completely deterministic construction, different from all
those mentioned above, that shows the sharpness of Theorem 1.1 for quasiconformal
mappings in every dimension, taking into account the Sobolev exponent. Here is our
main result.

Theorem 1.4. Let p > n ≥ 2, fix

α ∈

[

1,
p

p− (n− 1)

)

,

and let L be a one-dimensional linear subspace of Rn. For any

β < (n− 1)− p

(

1−
1

α

)

,

there is a set E ⊆ L⊥ with dimE > β and a quasiconformal mapping Φ in W1,p
loc(R

n;Rn)
such that dimΦ(L+ a) > α for each a ∈ E.

Our construction is a simple example of a ‘conformal elevator’, an idea which
appeared already in the work of Gehring and Väisälä [12] and has proven useful in
dynamics [24, 15, 8]. Roughly speaking, we construct a single quasiconformal map-
ping between two multiply connected domains, then use iterated function systems
of contracting similarities to recreate this mapping in the bounded complementary
components of the domains. As we use rigid similarities rather than conformal map-
pings, it is more accurate to consider our construction as a ‘similarity elevator’. To
verify quasiconformality somewhere deep in the construction, we ride the ‘similarity
elevator’ back to the original scale without accruing distortion.

The set E in the statement of Theorem 1.4 is the invariant set of a product
iterated function system satisfying a strong separation condition, and as such is
topologically a Cantor set. The iterated function system is chosen so that E is
“subordinate” to the foliation by copies of L. Combinatorial considerations ensure
the large dimension of the images of leaves of the foliation. A delicate honing of
parameters yields a construction verifying Theorem 1.4.

In the plane, the sharp relationship between the dilatation of a quasiconformal
mapping and its Sobolev exponent was established by Astala [1]. This relationship
leads to sharp estimates of the Hausdorff dimension distortion of subsets in terms
of the dilatation. However, Astala’s dimension estimates are not sharp for lines; the
sharp estimates were established by Smirnov [23]. It would be very interesting to
have a version of Theorem 1.4 in which the role of the Sobolev exponent is assumed
by the dilatation. As Iwaniec’s conjecture [18] remains open, this seems tractable
only when n = 2.

The general theory of distortion of dimension of leaves of a foliation by Sobolev
mappings can be extended to a large class of foliated metric spaces [5], and is of partic-
ular interest in the Heisenberg group [6] equipped with its standard sub-Riemannian
metric. There, the sharpness of dimension distortion estimates analogous to Theo-
rem 1.1 remains unknown even for Sobolev mappings.

Acknowledgements. Research for this paper was initiated during the authors’
attendance at the Eighth School in Analysis and Geometry in Metric Spaces held
in Levico Terme, Italy in Summer 2014 and continued during a visit by the second
and third authors to the University of Bern in Summer 2015. The hospitality of the
Institute of Mathematics at the University of Bern is gratefully acknowledged.
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2. Quasiconformal mappings and iterated function systems

2.1. Pushing forward an iterated function system. In this section, we
establish notation for iterated function systems in R

n and describe how to build
mappings of Rn using such systems.

Let I = {fi : R
n → R

n}Ni=1 be a collection of strictly contracting similarities of
R

n that satisfies the strong separation condition [17]: there exists a bounded open
set Q such that for each i = 1, . . . , N , the set fi(Q) is contained in Q, and the sets
{fi(Q)}Ni=1 are disjoint. This condition implies that the invariant set of I is uniformly
(and hence totally) disconnected.

Now, let J = {gi : R
n → R

n}Ni=1 and S be another such collection and open set,
and consider any continuous mapping

φ : Rn\

(

N
⋃

i=1

fi(Q)

)

→ R
n\

(

N
⋃

i=1

gi(S)

)

satisfying the compatibility condition: there exists ǫ > 0 such that for each y ∈ R
n\Q

with dist(y,Q) ≤ ǫ and each i = 1, . . . , N ,

(2.1) φ(fi(y)) = gi(φ(y)).

We will call such a mapping a generating mapping. In this work, we will only consider
homeomorphic generating mappings, but there are interesting constructions that can
be made using non-injective generating mappings.

To extend a generating mapping to a mapping on all of Rn compatible with I
and J , we will employ a notation from symbolic dynamics. Let S be the collection of
all finite and infinite sequences with entries in {1, . . . , N}. The length of a sequence
σ ∈ S is denoted by |σ|. Given any sequence σ ∈ S, we denote the initial sequence
of σ of length k ∈ N by σ|k. Finally, for σ = (σ1, . . . , σk) in S of finite length, we
define a similarity fσ : R

n → R
n by

fσ = fσ1
◦ fσ2

◦ · · · fσk
.

Let φ be a generating mapping. We define the generated mapping Φ: Rn → R
n

inductively, as follows. First, we declare that

Φ|
Rn\(

⋃
|σ|=1

fσ(Q)) = φ.

Now, assume that for some integer k ≥ 1, the mapping Φ has been defined on

R
n\





⋃

|σ|=k

fσ(Q)



 .

For each sequence σ ∈ Σ of length k and each i = 1, . . . , N , we define

Φ|fσ(Q)\(
⋃N

i=1 fσ,i(Q)) = gσ ◦ φ ◦ f−1
σ .

Finally, the invariant sets for the systems I and J are

KI =
⋂

k∈N

⋃

|σ|=k

fσ(Q) and KJ =
⋂

k∈N

⋃

|σ|=k

gσ(S),

respectively. The strong separation condition guarantees each point of each invariant
set can be uniquely identified with an infinite sequence in S. Thus, we see that Φ
extends canonically to a bijection between KI and KJ , completing its definition.
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2.2. Quasiconformal generated mappings. We employ the following metric
definition of quasiconformality for mappings between subsets of Rn:

Definition 2.1. Let Φ: Ω → Ω′ be a homeomorphism between subsets of Rn,
and for all x ∈ Ω and r > 0, define

LΦ(x, r) := sup{|Φ(x)− Φ(y)| : |x− y| ≤ r, y ∈ Ω},

lΦ(x, r) := inf{|Φ(x)− Φ(y)| : |x− y| ≥ r, y ∈ Ω},

HΦ(x) := lim sup
r→0

LΦ(x, r)

lΦ(x, r)
.

The mapping Φ is H-quasiconformal, H ≥ 1, if HΦ(x) ≤ H for all x ∈ Ω.

A fundamental theorem of Gehring [9] implies that the above definition coincides
with other standard definitions of quasiconformal mappings if Ω is an open subset
of R

n and Φ is orientation preserving. In this case, the inequalities used in the
definitions of LΦ and lΦ can be replaced by equalities.

Note that if f and g are similarities of Rn, and φ : Ω → Ω′ is a homeomorphism
of subsets of Rn, then for each x ∈ Ω,

(2.2) Hφ(x) = Hg◦φ◦f−1(f(x)).

For the remainder of this section, we consider iterated function systems I and
J with the strong separation condition, a generating mapping φ, and a generated
mapping Φ as in the previous section, along with the relevant notation established
there.

The goal of this section is to prove the following proposition. In this generality,
the result does not seem to be present in the literature. However, the basic idea can
be found in [12, Theorem 5].

Proposition 2.2. Suppose that the generating mapping φ is quasiconformal

homeomorphism. Then the generated mapping Φ: Rn → R
n is a quasiconformal

homeomorphism satisfying Φ(KI) = KJ .

The proof will show that the quasiconformality constant of Φ depends only on the
quasiconformality constant of φ, the scaling ratios associated to the iterated function
systems I and J , and a geometric quantity associated to the strong separation
condition for I and J .

Quasiconformality of Φ on the complement of the invariant set follows from the
construction and the fact that the iterated function system is comprised of similar-
ities. On the invariant set, we use the fact that there are only finitely many open
sets involved in the strong separation condition. This step differs from the approach
taken in [12], in which the open set of the strong separation condition is a cube. One
can also verify quasiconformilty via removability results for quasiconformal mappings
such as [16, Theorem 4.2], or in the planar setting [13]. Such removability results are
valid in wide generality, see [2] or [3].

Proof of Proposition 2.2. We will show that there is a quantity H ≥ 1 such that
for each x ∈ R

n,

(2.3) HΦ(x) ≤ H.
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This is immediate for points of

R
n\

(

N
⋃

i=1

fi(Q)

)

,

and by (2.2) it also holds at each point in the orbit of this set under the iterated
function system of similarities I. Moreover, (2.3) holds by definition at points of
∂Q, but this does not automatically imply (2.3) at points in the orbit of ∂Q, as the
construction is “glued together” at these points. To deal with these points, suppose
that x ∈ ∂fi(Q), where 1 ≤ i ≤ N . If 0 < r < ǫ, then the compatibility condition
(2.1) and the definition of the generated mapping Φ imply that

Φ|B(x,r) = gi ◦ φ ◦ f−1
i |B(x,r).

Hence, (2.2) implies that

HΦ(x) = Hφ(f
−1
i (x)) ≤ H.

Thus, we only need to verify (2.3) at points of KI .
Finally, let x ∈ KI . Associated to x is a unique infinite sequence σ ∈ S, so that

{x} =
⋂

j∈N

fσ|j (Q),

where σ|j is the truncation of σ to length j ∈ N. For i = 1, . . . , N , let ti and τi be
the scaling ratios of the similarities fi and gi, respectively. Moreover, for any integer
j ≥ 1, denote the scaling ratios of fσ|j and gσ|j by tσ|j and τσ|j .

Set

d =
1

2
dist

(

N
⋃

i=1

(fi(Q)),Rn\Q

)

.

Then for any integer j ≥ 1,

tσ|jd < dist
(

fσ|j+1
(Q),Rn\fσ|j (Q)

)

,

which implies that

(2.4) B(x, tσ|jd) ⊆ fσ|j (Q) ⊆ B(x, 2tσ|j diamQ).

By the definition of Φ,

{Φ(x)} =
⋂

j∈N

gσ|j (S).

Setting

δ =
1

2
dist

(

N
⋃

i=1

(gi(S)),R
n\S

)

,

an analogous argument shows that for any integer j ≥ 1,

(2.5) B(Φ(x), τσ|jδ) ⊆ gσ|j (S) ⊆ B(x, 2τσ|j diamS)).

Choose an integer κ ≥ 1 such that
(

max
i=1,...,N

ti

)κ−1

<
d

2 diamQ
.

Note that κ depends only on the iterated function systems I and J , and not on x.
Then, for any integer j ≥ 1,

2tσ|j+κ
diamQ < tσ|j+1

d.
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Thus, if tσ|j+1
d ≤ r < tσ|jd, then (2.4), (2.5), and the definition of Φ imply that

B(Φ(x), τ j+1+κδ) ⊆ gσ|j+1+κ
(S) ⊆ Φ(B(x, r)) ⊆ gσ|j (S) ⊆ B(Φ(x), 2τ j diamS).

This yields
LΦ(x, r)

lΦ(x, r)
≤

2 diamS

τ 1+κδ
.

As the integer j ≥ 1 was arbitrary, this shows that

HΦ(x) ≤
2 diamS

τ 1+κδ
as well, completing the proof. �

Remark 2.3. If ∂Q is assumed to have σ-finite (n − 1)-dimensional Hausdorff
measure, then the compatibility condition (2.1) can be weakened to: for each y ∈ ∂Q
and each i = 1, . . . , N ,

φ(fi(y)) = gi(φ(y)).

This is due to classical removability results, which can be found in [9, 10].

2.3. Almost full iterated function systems with the strong separation

condition. It is not possible to find 15 disjoint closed squares of side-length 1/4
inside an open square of side-length 1, even though the total area of the smaller
squares is less than the area of the larger square. In this section, we will show that
by beginning with a product of intervals that is not a cube, we may pack as many
scaled copies as is allowed by volume considerations. This will be a crucial part of
our construction.

Proposition 2.4. Let n ≥ 1 be an integer, and let 0 < r < 1. For each integer

1 ≤ M < r−n, there is an iterated function system of orientation preserving contract-

ing similarities I = {fi : R
n → R

n}Mi=1, each with scaling ratio r, that satisfies the

strong separation condition on a product of n bounded open intervals.

Proof. The statement is trivial if n = 1, and so we assume that n ≥ 2. Choose
positive numbers h1, . . . , hn = 1 such that

1

rn
=

hn

rn
>

hn−1

rn−1
> . . . >

h1

r
> M.

Let

Q =

(

n−1
∏

i=1

(0, hi)

)

× (0, 1) ⊆ R
n.

Denote by F : Rn → R
n an orientation preserving similarity of Rn that has scaling

ratio r and permutes the coordinate axes

Li := {(x1, . . . , xn) ∈ R
n : xj = 0 if j 6= i}, i = 1, . . . , n,

as follows:
Ln → L1 → . . . → Ln−1 → Ln.

Since Mr < h1, there are M disjoint closed intervals of length r inside the open
interval (0, h1). Similarly, for each i = 1, . . . n−1, since rhi < hi+1, there is a disjoint
closed interval of length rhi insider the open interval (0, hi+1). This implies that we
may find M vectors v1, . . . vM such that the similarities

{fi = F + vi}
M
i=1

satisfy the desired strong separation condition on Q. �
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3. Quasiconformal mappings of maximal frequency

of dimension distortion

We now apply Theorem 2.2 to prove Theorem 1.4. We assume, without loss
of generality, that L is the one-dimensional subspace of R

n generated by the last
coordinate direction. More precisely, define π : Rn → R

n−1 by

π(x1, . . . , xn) 7→ (x1, . . . , xn−1).

Then L is the kernel of π, and for each a ∈ R
n−1,

(a, 0) + L = π−1(a).

We denote the complementary projection by π⊥ : Rn → R, where

π⊥(x1, . . . , xn) = xn.

Proof of Theorem 1.4. As in the statement of Theorem 1.4, we fix p > n ≥ 2

and α ∈
[

1, p
p−(n−1)

)

. Let

0 < β < β̂ := (n− 1)− p

(

1−
1

α

)

.

Then
(n− 1)− β > 0, and

n

α
− β − 1 > 0.

We will choose a parameter d so that several inequalities are satisfied. Each inequality
will hold when d is sufficiently small; rather than choose the smallest requirement, we
explicitly list the requirements separately for the reader’s convenience. Specifically,
choose d > 0 so that

(3.1) d < min



















































(

1
2

)1/β
(1),

(

2β − 1
)1/β

(2),

2−β/(n−1−β) (3),

2−(1+α) (4),

1− 2−α (5),
(

2−β3−n
)1/(n

α
−β−1)

(6),
(

2−β3−p
)1/(β̂−β)

(7).

Employing terms (1)–(3) in (3.1), we see that there is an integer M so that the
following inequalities are satisfied:

(3.2) 2 <

(

1

d

)β

< M <

(

2

d

)β

<

(

1

d

)n−1

.

Terms (4)–(5) in (3.1) allow us to find a number t > 0 so that

(3.3) 2d1/α < t < min
{

2−1/α, (2α − 1)1/α , 3d1/α
}

.

Hence there is an integer M ′ so that the following inequalities are satisfied:

(3.4) 2 <

(

1

t

)α

≤ M ′ <

(

2

t

)α

<

(

1

d

)

.

Terms (6) and (7) in (3.1) will be employed later in the construction.
Since M < d−(n−1), Proposition 2.4 yields an iterated function system

K = {h1, . . . , hM : Rn−1 → R
n−1}
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of orientation preserving contracting similarities with contraction ratio d that satisfies
the strong separation condition on a product Qn−1 of (n−1) bounded open intervals
in R

n−1. Similarly, since M ′ < d−1, we may find an iterated function system

K′ = {h′
1, . . . , h

′
M ′ : R → R}

of orientation preserving contracting similarities with ratio d that satisfy the strong
separation condition on (0, 1). Denote by KK and KK′ the invariant sets of K and
K′. Since the strong separation condition implies the open set condition, Moran’s
theorem [21], [14, Theorem (3)(i)] implies that similarity dimension and the Hausdorff
dimension of KK agree; the same is true of KK′. Hence, (3.2), and (3.3) imply that

dimKK =
logM

log d−1
> β, and dimKK′ =

logM ′

log d−1
< 1.

We define the product iterated function system

K ×K′ = {hi,j : R
n → R

n : 1 ≤ i ≤ M, 1 ≤ j ≤ M ′}

by setting
hi,j(x1, . . . , xn) = (hi(x1, . . . , xn−1), h

′
j(xn)).

Note that K×K′ consists of orientation preserving contracting similarities of ratio d
and satisfies the strong separation condition on Q := Qn−1 × (0, 1).

We now claim that there is an iterated function system of orientation preserving
contracting similarities

J = {gi,j : R
n → R

n : 1 ≤ i ≤ M, 1 ≤ j ≤ M ′}

that again satisfies the strong separation condition on product S of n bounded open
intervals and is combinatorially equivalent to K×K′, i.e., it contains the same number
of mappings at the first iteration, but so that each mapping in J has the larger
contraction ratio t defined above. By Proposition 2.4, this can be accomplished if

(3.5) MM ′ < t−n.

Towards this end, note that (3.2), (3.4), and (3.3), imply that

MM ′tn <

(

2

d

)β (
1

d

)

(

3d1/α
)n

≤ 2β3nd
n
α
−β−1.

Hence, term (6) of (3.1) verifies (3.5).
Moreover, since Q and S are both the products of n bounded open intervals, the

strong separation condition allows us to produce a piecewise-linear and orientation
preserving quasiconformal generating mapping

φ : Rn\

(

⋃

i,j

hi,j(Q)

)

→ R
n\

(

⋃

i,j

gi,j(S)

)

.

Thus, we may apply Theorem 2.2 to produce a quasiconformal mapping Φ: Rn → R
n

that canonically maps KK×K′ to KJ .
The key point of this construction is that the invariant set KK×K′ is the product

KK ×KK′ . Hence, for each point a ∈ KK, the intersection of π−1(a) with KK×K′ is
a copy of KK′ . This set is then mapped by the quasiconformal mapping Φ onto a
combinatorially equivalent Cantor set. The dimension of this Cantor set is specified
by our choice the contraction ratio t of the system J .

For ease of notation, we now denote by S the collection of all finite and infinite
sequences with entries in {1, . . . ,M} and by S ′ the collection of all finite and infinite
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sequences with entries in {1, . . . ,M ′}. Given sequences σ ∈ S and τ ∈ S ′, each of
length k ∈ N, we write

h(σ,τ) = hσk,τk ◦ . . . ◦ hσ1,τ1 and g(σ,τ) = gσk ,τk ◦ . . . ◦ gσ1,τ1 .

Let a ∈ KK. By construction, there is an infinite sequence σ ∈ S such that

{a} =
⋂

k∈N

hσ|k(π(Q),

and hence

π−1(a) ∩KK×K′ =
⋂

k∈N





⋃

τ∈S′,|τ |=k

h(σ|k ,τ)(Q)



 .

By construction, for each k ∈ N and each τ ∈ S ′ of length k,

Φ ◦ h(σ|k ,τ)(Q) = g(σ|k ,τ)(S).

Hence,

Φ(π−1(a) ∩KK×K′) =
⋂

k∈N





⋃

τ∈S′,|τ |=k

g(σ|k,τ)(S)



 .

A standard argument (see, e.g., [20, Section 4.12]) and (3.3) now imply that dimension
of this Cantor-type set satisfies

dimΦ(π−1(a) ∩KK×K′) =
logM ′

log t−1
> α.

Hence, for each point a ∈ KK, the image of the fiber π−1(a) under the map Φ has
dimension greater than α.

Since Φ is a piece-wise linear homeomorphism on Q\
⋃

i,j hi,j(Q),

ˆ

Q\
⋃

i,j hi,j(Q)

|DΦ|p dHn =: C < ∞.

We may now conclude from the self-similar nature of Φ that

ˆ

Q

|DΦ|p dHn ≤ C

∞
∑

l=0

(

MM ′

(

t

d

)p

dn
)l

Again applying (3.2), (3.3), and (3.4), we estimate

MM ′

(

t

d

)p

dn <

(

2

d

)β (
1

d

)

(3d
1

α )pdn−p = 2β3pdβ̂−β.

Term (7) of (3.1) now implies that MM ′(t/d)pdn < 1 and so
ˆ

Q

|DΦ|p dHn < ∞.

Since Φ can be chosen to be linear off Q, this implies that Φ ∈ W1,p
loc(R

n;Rn). �



Quasiconformal mappings that highly distort dimensions of many parallel lines 71

References

[1] Astala, K.: Area distortion of quasiconformal mappings. - Acta Math. 173:1, 1994, 37–60.

[2] Balogh, Z.M., and P. Koskela: Quasiconformality, quasisymmetry, and removability in
Loewner spaces. - Duke Math. J. 101:3, 2000, 554–577.

[3] Balogh, Z.M., P. Koskela, and S. Rogovin: Absolute continuity of quasiconformal map-
pings on curves. - Geom. Funct. Anal. 17:3, 2007, 645–664.

[4] Balogh, Z.M., R. Monti, and J. T. Tyson: Frequency of Sobolev and quasiconformal
dimension distortion. - J. Math. Pures Appl. (9) 99:2, 2013, 125–149.

[5] Balogh, Z.M., J. T. Tyson, and K. Wildrick: Dimension distortion by Sobolev mappings
in foliated metric spaces. - Anal. Geom. Metr. Spaces 1, 2013, 232–254.

[6] Balogh, Z.M., J. T. Tyson, and K. Wildrick: Frequency of Sobolev dimension distortion
of horizontal subgroups of Heisenberg groups. - Preprint, arXiv:1303.7094.

[7] Bishop, C., H. Hakobyan, and M. Williams: Quasisymmetric dimension distortion of
Ahlfors regular subsets of a metric space. - Preprint, arXiv:1211.0233.

[8] Bonk, M. and D. Meyer: Expanding Thurston maps. - Preprint, arXiv:1009.3647.

[9] Gehring, F.W.: The definitions and exceptional sets for quasiconformal mappings. - Ann.
Acad. Sci. Fenn. Ser. A I Math. 281, 1960, 1–28.

[10] Gehring, F.W.: Rings and quasiconformal mappings in space. - Trans. Amer. Math. Soc.
103, 1962, 353–393.

[11] Gehring, F.W.: The L
p-integrability of the partial derivatives of a quasiconformal mapping.

- Acta Math. 130, 1973, 265–277.

[12] Gehring, F.W., and J. Väisälä: Hausdorff dimension and quasiconformal mappings. - J.
London Math. Soc. (2) 6, 1973, 504–512.

[13] Gotoh, Y., and M. Taniguchi: A condition of quasiconformal extendability. - Proc. Japan
Acad. Ser. A Math. Sci. 75:4, 1999, 58–60.

[14] Hutchinson, J. E.: Fractals and self-similarity. - Indiana Univ. Math. J. 30:5, 1981, 713–747.

[15] Haïssinsky, P., and K.M. Pilgrim: Coarse expanding conformal dynamics. - Astérisque
325, 2009.

[16] Heinonen, J., and P. Koskela: Definitions of quasiconformality. - Invent. Math. 120:1, 1995,
61–79.

[17] Hochman, M., and P. Shmerkin: Local entropy averages and projections of fractal measures.
- Ann. of Math. (2) 175:3, 2012, 1001–1059.

[18] Iwaniec, T.: Extremal inequalities in Sobolev spaces and quasiconformal mappings. - Z. Anal.
Anwendungen 1:6, 1–16, 1982.

[19] Kaufman, R. P.: Sobolev spaces, dimension, and random series. - Proc. Amer. Math. Soc.
128:2, 2000, 427–431.

[20] Mattila, P.: Geometry of sets and measures in Euclidean spaces. - Cambridge Stud. Adv.
Math. 44, Cambridge Univ. Press, 1995.

[21] Moran, P.A.P.: Additive functions of intervals and Hausdorff measure. - Proc. Cambridge
Philos. Soc. 42, 1946, 15–23.

[22] Reshetnyak, Yu.G.: Space mappings with bounded distortion. - Transl. Math. Monogr. 73,
Amer. Math. Soc., Providence, RI, 1989.

[23] Smirnov, S.: Dimension of quasicircles. - Acta Math. 205:1, 2010, 189–197.

[24] Sullivan, D.: Quasiconformal homeomorphisms in dynamics, topology, and geometry. - In:
Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986),
Amer. Math. Soc., Providence, RI, 1987, 1216–1228.



72 Zoltán M. Balogh, Jeremy T. Tyson and Kevin Wildrick

[25] Väisälä, J.: Lectures on n-dimensional quasiconformal mappings. - Lecture Notes in Math.
229, Springer-Verlag, Berlin-New York, 1971.

Received 29 December 2015 • Accepted 29 April 2016


