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Abstract

The effective mass of an acoustical metamaterial chain, which consists of a modified monatomic
chain with a lightweight attached mass–link system, is derived and used to analyse its low-frequency
vibration-isolation properties. The effective mass is expressed in terms of the resonant and anti-
resonant frequencies of a basic element of the chain, and it is shown that the geometry of the
attached system can be used to lower the resonant and anti-resonant frequencies, in turn lowering
the bandgap of the chain, and producing efficient low-frequency vibration isolation with lightweight
attached masses. In certain parameter limits, the chain is shown to degenerate to two previously
proposed chains with contrasting band structures, and this provides insights into controlling the
underlying vibration-isolation mechanisms. Numerical simulations are presented that illustrate the
efficiency of the proposed system in terms of minimising transmission of a low-frequency incident
wave packet with only two units of the attached system.

1 Introduction

Developing systems to isolate low-frequency structural vibrations, i.e. the components that propagate
long distances without inherent structural damping, has applications to microscopy [1], aerospace [2],
health monitoring [3], and shipping [4], among many others. The field of acoustic metamaterials pro-
vides a general framework to achieve low-frequency vibration isolation, where the term metamaterial
generally refers to systems incorporating resonant sub-wavelength elements that create unnatural ef-
fective properties, such as negative material constants, in frequency ranges around the resonances,
which prohibit propagation of vibrations. Reviews are given by Ma et al. [5] and Chen et al. [6],
and in the book by Craster & Guenneau [7]. The field has progressed to theoretical, numerical and
experimental realisations of broadband low-frequency vibration isolation, e.g. for plates with cavities
[8] or attached pillars [9, 10] or a combination of cavities and pillars [11, 12], and porous structures
that simultaneously isolate both acoustic and elastic vibrations [13].

A canonical setting in the context of developing acoustic metamaterials for vibration isolation is
an infinite monatomic chain, consisting of masses m and springs k, to which a system is attached. In
the absence of an attached system, longitudinal vibrations propagate along the chain for angular fre-
quencies ω satisfying m < 4 k /ω2, i.e. low-frequency waves propagate along the chain. In comparison,
high-frequency vibrations, for which m > 4 k /ω2, attenuate with distance along the chain, although
high-frequency attenuation is not of interest in the present study. A standard metamaterial approach
is to attach a mass M to each mass m with a (massless) spring K [e.g. 14], as shown in Fig. 1(a).
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Figure 1: (a) Schematic of the mass-in-mass chain. (b–e) Corresponding band diagrams showing the
acoustical ( ) and optical ( ) branches, for m = 1, k = K = π2 / 4 and (b) M = 0, (c) M = m,
(d) M = 4m, (d) M = 9m. Anti-resonant frequencies ω∗ =

√
M /K are overlaid ( ).
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Figure 2: Schematic of the effective monatomic chain.

This is commonly known as the mass-in-mass system/chain, and has been generalised to systems with
multiple degrees of freedom [e.g. 15] and involving nonlinearity [e.g. 16].

The attached system creates a local resonance, ω = ω∗, which is referred to here as an anti-
resonance (for reasons that will become clear in § 2), and a surrounding frequency interval in which
vibrations attenuate along the chain without the presence of a dissipative mechanism. For the mass-
in-mass system, the anti-resonant frequency is ω∗ =

√
K /M , meaning arbitrarily low anti-resonances

can be attained by increasing the attached mass, resulting in low-frequency vibration isolation. This
process is illustrated by the band diagrams shown in Figs. 1(b–e), i.e. dispersion curves ω(q), where
q ∈ [0, π] is the wavenumber (defined in § 2.2), with the anti-resonant frequencies overlaid ( ).
Fig. 1(b) shows the band diagram for the monatomic chain (no attached mass, M = 0), for which the
anti-resonant frequency does not exist; there is a single band (dispersion curve) for frequencies ω such
that

0 < ω < 2

√
k

m
= π as k =

π2

4
and m = 1, (1)

which is known as an acoustical branch, and defines frequencies at which vibrations propagate along
the chain. Figs. 1(c–e) show band diagrams for mass-in-mass chains (M 6= 0), with (c) M = m,
(d) M = 4m, and (e) M = 9m. In these cases, there are two bands: an acoustical branch ( )
at lower frequencies, and a curve occupying a higher-frequency interval known as the optical branch
( ). The branches are separated by a frequency interval known as a bandgap, which defines relatively
low-frequency ranges for which vibrations attenuate along the chain. The bandgap contains the
anti-resonant frequency, with vibrations at surrounding frequencies strongly attenuated, i.e. efficient
vibration isolation. As the attached mass is increased, the acoustical branch, anti-resonant frequency
and bandgap all shift to lower frequencies, resulting in low-frequency vibration isolation.
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Calculating the so-called effective properties of the mass-in-mass chain provides insights into the
band structures shown in Figs. 1(b–e), and hence methods to control the vibration-isolation properties
of the system. For instance, the mass-in-mass chain can be mapped to the monatomic chain shown in
Fig. 2, with springs k and effective, frequency-dependent masses [see 14, Eq. 2]

meff(ω) = m+
M ω2

∗
ω2∗ − ω2

. (2)

Therefore, the effective mass is unbounded as ω → ω∗.The effective mass is positive in the limit from
below, meaning the narrow bandgap intervals below the anti-resonant frequencies are associated to
the inequality meff > 4 k /ω2. In contrast, the effective mass is negative in the limit from above, so
that the wider bandgap intervals above the anti-resonant frequencies are associated with meff < 0.

In practice, the attached mass is likely to be restricted by design considerations, thus limiting
the lowest frequency at which vibration isolation can be achieved. An attractive alternative is to
attach a lightweight system with geometry that provides control of the anti-resonant frequency, rather
than using the attached mass to control the anti-resonant frequency. Fig. 3 shows a schematic of the
chain to be studied, which consists of a modified monatomic chain, with masses m and alternating
springs k and K, and lightweight masses M above and below the K-springs that are attached to the
masses either side of the K-springs with rigid, massless links. In a seminal study, Yilmaz et al. [17]
considered a similar attached mass–link system, and showed that it produces low-frequency bandgaps
when applied to a two-dimensional mass–spring lattice. Yilmaz & Hulbert [18] backed the finding
with numerical simulations for finite lattices, and Acar & Yilmaz [19] showed that a similar approach
can be used for one- and two-dimensional distributed parameter systems. Huang & Sun [20] studied
a cognate mass–link system attached to a monatomic chain, where, motivated by possible practical
material designs, the mass is connected to the links by a spring. They showed that the bandgaps
produced by the system are associated with an elastic continuum (rather than an effective chain) with
a negative effective Young’s modulus, and illustrated the vibration-isolation properties with numerical
simulations, in which 12 units of the system are applied in the middle of a monatomic chain to
minimise transmission of an incident wave packet. Following the work of Yilmaz and co-workers,
Frandsen et al. [21] proposed a mass–link system arranged periodically along an elastic rod, and
showed numerically that the system isolates low-frequency longitudinal vibrations.

Bobrovnitskii [22] studied a similar chain to the one shown in Fig. 3 theoretically, but in which the
masses m = 0, and the springs K are absent, i.e. it cannot be considered in the context set out above
of a monatomic chain with attachments (thus motivating our consideration of a modified monatomic
chain). He found that the band structure involves an optical branch above a gap that stretches to zero
frequency, and showed that low frequencies are associated with negative effective material properties.
Oh et al. [23] also achieved zero-frequency bandgaps, both numerically and experimentally along a
diatomic chain with spin applied to the smaller masses via link mechanisms to generate zero effective
stiffness, in a broadly analogous fashion to [24]. Foehr et al. [25] recently showed how annular spiral-
shaped voids in an elastic body can be used to generate inertial-amplification-type behaviour and
produce wide low-frequency bandgaps.

In this work, the chain shown in Fig. 3 is used to generalise (i) a monatomic chain with the at-
tached system proposed by Yilmaz and co-workers, and (ii) the chain proposed by Bobrovnitskii. The
vibration-isolation properties of the chain are analysed in terms of the resonant and anti-resonant
frequencies of a basic element, and a compact, general method is developed to calculate the effective
mass of the chain. The effective mass is expressed in terms of the resonant and anti-resonant frequen-
cies, and this empowers control over the band structure using the geometry of the attached system,
particularly with respect to lowering its acoustical branch and moving the anti-resonant frequency into
the bandgap between the acoustical and optical branches, thereby achieving efficient low-frequency
vibration isolation. It is shown that the Yilmaz et al. and Bobrovnitskii chains can be recovered
in certain parameter limits, thus revealing how the band structure of the proposed chain transitions
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Figure 3: Schematic of the chain to be studied, involving lightweight attached masses M and rigid
massless links ( ).
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Figure 4: Schematic of a basic element of the chain shown in Fig. 3, with applied forces Fj(t) and
resulting displacements Uj(t) (j = 1, 2).

from an isolated low-frequency acoustical branch (Yilmaz et al. chain) to an isolated optical branch
above a gap stretching to zero frequency (Bobrovnitskii chain). The low-frequency vibration-isolation
properties of the proposed system are illustrated via numerical simulations, in the vein of [20], but in
which only two units of the system are attached in the middle of a monatomic chain, and the geometry
is tuned to minimise transmission of an incident wave packet.

2 Equations of motion

2.1 Basic element: Resonant and anti-resonant frequencies

Consider the basic element shown in Fig. 4, consisting of a horizontal spring K connecting two identical
masses m, to which two additional masses M are attached above and below by rigid links, where the
links make an angle α with the horizontal. Horizontal forces F1(t) and F2(t) are applied to the left-
and right-hand masses m, respectively, and the resulting horizontal displacements of the masses m
are denoted U1(t) and U2(t), respectively. The linearised equations of motion are

F1 =

(
m+

1

2
M (1 + γ2)

)
d2U1

dt2
+

1

2
M (1− γ2)

d2U2

dt2
+K (U1 − U2) (3a)

and F2 =
1

2
M (1− γ2)

d2U1

dt2
+

(
m+

1

2
M (1 + γ2)

)
d2U2

dt2
+K (U2 − U1), (3b)

where t is time and γ = cotα is a geometrical parameter. For time-harmonic motions of the form

Uj(t) = uj e−iω t and Fj(t) = fj e−iω t for j = 1, 2, (4)
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the matrix/vector form of Eqs. (3) is(
f1

f2

)
= C0

(
u1

u2

)
where C0 =

(
ĉ1 ĉ2

ĉ2 ĉ1

)
(5)

is the (dynamic) stiffness matrix, with entries

ĉ1(ω) = K − ω2

(
m+

1

2
M (1 + γ2)

)
and ĉ2(ω) = −K − 1

2
ω2M (1− γ2). (6)

The reciprocal relationship is(
u1

u2

)
= D0

(
f1

f2

)
where D0 = inv{C0} =

(
d̂1 d̂2

d̂2 d̂1

)
(7)

is the (dynamic) compliance matrix, with entries d̂1 = ∆ ĉ1 and d̂2 = −∆ ĉ2, in which

∆−1 = det{C0} = ω4 {m2 +mM (1 + γ2) +M2 γ2} − 2ω2KmM. (8)

The resonant frequency of the basic element is ω = ω0, where

ω0 =

√
2K

m+M γ2
is defined by det{C0(ω0)} = 0, (9)

i.e. the compliance matrix D0(ω0) is undefined at the resonant frequency. The anti-resonant frequency
is ω = ω∗, where

ω∗ =

√
2K

M (γ2 − 1)
∈ R for γ > 1, (10)

so that the anti-resonant frequency exists for angles α < π / 4 only. At the anti-resonant frequency
ĉ2 = d̂2 = 0, meaning energy cannot be transferred across the basic element. The resonant and anti-
resonant frequencies can be made arbitrarily small by increasing the attached mass M (similarly to
the mass-in-mass chain) or increasing the geometrical parameter γ, i.e. decreasing the angle α (with
no analogue for the mass-in-mass chain).

2.2 Infinite chain: Dispersion relation

Now consider an infinite chain formed by connecting basic elements with springs k, as shown in Fig. 3,
and where k = K = π2 / 4 unless otherwise stated. Assigning superscripts (n) for n ∈ Z to the
displacements of the masses in the nth element along the chain (ordered left to right), the equations
of motion for the nth element are(

m+
1

2
M (1 + γ2)

)
d2U

(n)
1

dt2
+

1

2
M (1− γ2)

d2U
(n)
2

dt2
(11a)

+K (U
(n)
1 − U (n)

2 ) + k (U
(n)
1 − U (n−1)

2 ) = 0, (11b)

1

2
M (1− γ2)

d2U
(n)
1

dt2
+

(
m+

1

2
M (1 + γ2)

)
d2U

(n)
2

dt2
(11c)

+K (U
(n)
2 − U (n)

1 ) + k (U
(n)
2 − U (n+1)

1 ) = 0. (11d)
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Figure 5: Schematic of unit cell of the chain shown in Fig. 3, with applied forces Gj(t) and resulting
displacements Vj(t) of points (•) at left- (j = 1) and right-hand (j = 2) ends of cell.

Fig. 5 shows a unit cell of the infinite chain, in the form of the basic element with half springs
attached on either end (thus preserving symmetry). Note that the equivalent spring constant of the
series of springs in the unit cell, kK / (k + K), is less than the spring constant of the basic element,
K. Horizontal forces G1(t) and G2(t) are applied to points at the left- and right-hand ends of the
cell, respectively, and the resulting horizontal displacements of the points are denoted V1(t) and V2(t),
respectively. The compliance matrix D(ω) for the cell is defined by(

v1

v2

)
= D

(
g1

g2

)
where Gj(t) = gj e−iω t and Vj(t) = vj e−iω t (12)

for j = 1, 2. Following [26], the compliance matrix for the unit cell is calculated from the compliance
matrix for the basic element via the relation

D(ω) = D0(ω) + d2 k I, where d2 k = 1/(2 k) (13)

and I is the dimension two identity matrix. The stiffness matrix for the unit cell is then simply

C =

(
c1 c2

c2 c1

)
where C(ω) = inv{D(ω)}. (14)

At the anti-resonant frequency of the basic element, ω = ω∗, the dynamic compliance matrix is a
diagonal matrix (and hence so is the stiffness matrix), meaning ω∗ is an anti-resonance for the unit
cell. In contrast, the resonant frequency of the basic element, ω = ω0, is not a resonant frequency of
the unit cell in general, i.e. det{C(ω0)} 6= 0.

The compliance matrix (or the stiffness matrix) can be rearranged to calculate the transfer matrix
(or monodromy matrix) P, defined via(

v2

g2

)
= P

(
v1

−g1

)
where P =

1

d̂2

(
d̂1 + d2 k (d̂1 + d2 k)2 − d̂2

2

1 d̂1 + d2 k

)
. (15)

The eigenvalues of the transfer matrix, λ±, define the Bloch–Floquet wavenumber for the chain, q,
via λ± = exp(±i q), noting that |λ±| = 1 defines propagating wavenumbers q ∈ R, i.e. frequencies
in the bands, and |λ±| 6= 1 defines decaying wavenumbers q ∈ C, i.e. frequencies in bandgaps. The
Bloch–Floquet wavenumber satisfies the dispersion relation

Mω−2
0 ω4 +

{M (1 + 2κ)

2κ
+ 2ω−2

0 + 2ω−2
∗ cos q

}
ω2 = 2 (1− cos q), (16)
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where

M =
2 (m+M)

k
and κ =

K

k
(17)

are, respectively, the mass of the basic element and its spring, scaled by the spring connecting the
elements.

3 Effective monatomic chain

The dispersion relation for the chain can be written compactly in terms of the entries of the compliance
matrix C, as

c1 + c2 cos q = 0. (18)

Comparing this with the dispersion relation for the effective monatomic chain (shown in Fig. 2), which
is

meff ω
2 = 2 k (1− cos q), (19)

the chain defined by Eqs. (11) corresponds to the effective chain with

meff

k
=

2

ω2

(
c1 + c2

c1

)
(20a)

=
Mω2

∗ {ω2
0 + κ (ω2

0 − ω2)}
κω2

0 (ω2∗ − ω2)
. (20b)

The first expression (20a) holds for an arbitrary compliance matrix, whereas the second expres-
sion (20b) is specific to the chain defined by Eqs. (11). It can be deduced from Eq. (20b) that
the effective mass becomes unboundedly large around the anti-resonant frequency, i.e. as ω → ω∗,
and hence energy cannot be transferred along the chain. The band edges q = 0 and q = π can be
calculated from Eqs. (19) and (20b), as ω = 0 or ω = ω− for q = 0, and ω = ω0 or ω = ω+ for q = π,
where

ω− = ω0

√
1 + κ

κ
and ω+ =

√
4

M , (21)

noting that ω+ is independent of the geometrical parameter γ.
The left-hand panels of Fig. 6, i.e. (a,c,e), show band diagrams for chains with lightweight attached

masses M = m/ 10, which are an order of magnitude less than the added masses used for the mass-in-
mass chains in Fig. 1. The link angle α decreases from top panel to bottom, meaning the geometrical
parameter γ increases from top to bottom. The band edges ω = ω0 and ω = ω± are overlaid on the
plots, along with the anti-resonant frequency ω∗ (where it exists), and frequency intervals in which
meff > 4 k /ω2 and meff < 0 are shaded.

For panel (a), in which the angle α is largest, γ < 1 meaning the anti-resonant frequency does
not exist. Both acoustical and optical branches exist, as for the mass-in-mass chain, but, unlike the
mass-in-mass chain, the optical branch is concave down, similar to a diatomic chain [e.g. 27]. A narrow
bandgap exists between the acoustical and optical branches, in the interval 2.12 ≈ ω+ < ω < ω0 ≈ 2.20,
for which meff > 4 k /ω2. The frequency ω = ω− is the upper edge of the optical branch, and meff < 0
for frequencies above the optical branch (ω > ω−).

For panel (c) the angle is smaller than in panel (a), resulting in smaller values of the band edges ω0

and ω−, with ω0 < ω+ so that the bandgap exists in the interval ω0 < ω < ω+, and thus pushing both
the acoustical and optical branches to lower frequencies. Moreover, γ > 1 meaning the anti-resonant
frequency exists, and ω∗ > ω+ so that the anti-resonant frequency lies above the optical branch.
For frequencies immediately above the optical branch meff < 0, as in panel (a), but for ω > ω∗ the
inequality switches to meff > 4 k /ω2. For panel (e), in which the angle is smallest, ω0 and ω− reduce
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Figure 6: (Left-hand panels, a,c,e) Band diagrams for the chain defined by Eqs. (11) and shown
in Fig. 3, with m = 1 , M = 0.1m, and (a) α = 3π / 8, (c) α = π / 8, (e) α = π / 16. (Right,
b,d,f) Corresponding imaginary values of Bloch–Floquet wavenumber. Frequencies ω = ω0 ( ),
ω− ( ), ω+ ( ) and ω∗ ( ) are overlaid, where ω∗ ∈ R for (c–f) only. Shaded regions indicate
intervals where meff > 4 k /ω2 ( ) and meff < 0 ( ).
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Figure 7: Schematics of (a) proposed chain, (b) Yilmaz et al. chain, and (c) Bobrovnitskii chain.

further, pushing the acoustical and optical branches to even lower frequencies, and causing ω+ < ω−
so that the concavity of the optical branch changes. The anti-resonant frequency also reduces, such
that ω∗ < ω−, meaning the anti-resonant frequency lies in the bandgap, and hence the gap interval
below the anti-resonant frequency results from the effective mass satisfying meff > 4 k /ω2 and the
interval above results from meff < 0.

The right-hand panels of Fig. 6, i.e. (b,d,f), show the imaginary components of the Bloch–Floquet
wavenumber corresponding to the left-hand panels, noting that the imaginary components define
attenuation rates along the chain and are only non-zero for frequencies outside the bands, i.e. in the
bandgap and above the optical branch. For panel (b), in which the anti-resonant frequency does not
exist, the imaginary component is relatively small in the bandgap, with Im (q) < 0.08, so that the
attenuation is weak. Above the optical branch, the imaginary component grows monotonically with
frequency (although, as discussed in § 1, the resulting strong attenuation in the high-frequency regime
is not of interest for the present investigation). For panel (d), in which the anti-resonant frequency
exists above the optical branch, the imaginary component of the wavenumber in the bandgap attains
appreciably greater values than in panel (b), but it remains bounded, with Im (q) < 0.46. Immediately
above the optical branch, the imaginary component increases rapidly with frequency and becomes
unboundedly large as ω → ω∗, by definition of the anti-resonant frequency (zero vibrational energy
transfer). Above the anti-resonant frequency, the imaginary component initially decreases before
increasing monotonically with frequency (not visible, as beyond axes limits). For panel (f), the anti-
resonant frequency exists in the bandgap, causing the imaginary component to become unboundedly
large within the bandgap, resulting in unboundedly strong attenuation at low frequencies, and thus
demonstrating that the geometrical parameter γ can be used to generate both low-frequency bandgaps
and strong attenuation within the gaps.
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4 Limiting cases

4.1 Yilmaz et al. chain
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Figure 8: Band diagrams for chain shown in Fig. 7(a), with masses m = m0 / 2 = 0.5 and M = M0 =
m/ 10, angle α = π / 8, and springs K = π2 / 4, and (a) k = K, (b) k = 5K, (c) k = 25K, i.e. limiting
towards chain shown in Fig. 7(b).

In the limit k → ∞, the chain from §2–3, which is shown in Fig. 7(a), reduces to the Yil-
maz et al. chain shown in Fig. 7(b),with masses M0 = M and m0 = 2m. In terms of the new
notation, the resonant and anti-resonant frequencies, ω0 and ω∗, respectively, are

ω0 =

√
4K

m0 + 2M0 γ2
and ω∗ =

√
2K

M0 (γ2 − 1)
. (22)

The band edges ω± become unboundedly large, i.e. ω± →∞, as k →∞.
Fig. 8 shows band diagrams for attached masses M0 = m0 / 10, link angles α = π / 8, and with

spring k-values increasing from the left panel to right. In all cases, the resonant frequency ω0 is the
upper limit of the acoustical branch, and, as it is independent of the spring k, the acoustical branch
occupies the same frequency range in panels (a–c). The optical branch occupies a frequency interval
bounded by ω±, and, thus, as k increases, the optical branch is pushed to arbitrarily high frequencies
(beyond the axes limits in panel c). Therefore, for an operational (bounded) range of frequencies, only
the acoustical branch is present in the limit k →∞.

In the context set out in § 1, of using attached masses to achieve vibration isolation along a
monatomic chain with masses m and springs k, the masses and springs along the chain shown in
Fig. 7(b) are set as m0 = m and K = k. For consistency with the chain shown in Fig. 7(a), the
attached mass per mass on the chain is set as M0 = M / 2. Therefore, the resonant and anti-resonant
frequencies in Eq. (22) become

ω0 =

√
4 k

m+M γ2
and ω∗ =

√
4 k

M (γ2 − 1)
. (23)

4.2 Bobrovnitskii chain

In the limits m→ 0 and K → 0, the chain reduces to the Bobrovnitskii chain, as shown in Fig. 7(c).
In the limit m→ 0 alone, the resonant frequency becomes

ω0 =

√
2K

M γ2
> 0, (24)
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Figure 9: Band diagrams for chain shown in Fig. 7(a), with masses M = 0.1, springs k = π2 / 4, angle
α = π / 8, and (a) m = 10M and K = k, (b) m = M and k = K / 10, and (c) m = M / 10 and
K = k / 100, i.e. limiting towards chain shown in Fig. 7(c).

and the anti-resonant frequency ω∗ is unchanged from Eq. (10). The band-edge frequencies ω± > 0, so
that an acoustical branch exists for arbitrarily small frequencies and the lower limit of the band gap is
at a finite frequency. In the limit K → 0 alone, the resonant and anti-resonant frequencies both tend
to zero, i.e. ω0, ω∗ → 0, so that the acoustical branch collapses to ω(q) ≡ 0. The band-edge frequency
ω− becomes

ω− =

√
2 k

m+M γ2
> 0, (25)

and ω+ > 0 is unchanged from Eq. (21), so that the lower limit of the optical branch is at a finite
frequency above a bandgap that stretches to zero frequency. Therefore, it is the removal of a restoring
force in the basic element that causes the zero-frequency bandgap in the Bobrovnitskii chain.

Fig. 9 shows band diagrams for attached masses M = 0.1, angles α = π / 8, and with values of
masses m and springs K decreasing from the left panel to right. Again, the resonant frequency ω0

is the upper bound of the acoustical branch in all cases, and, as it decreases with decreasing K, it
pushes the acoustical branch onto the q-axis. The bounds of the optical branch, ω±, increase with
decreasing m and K, tending towards the finite (non-zero) limits, with ω− < ω+ in panel (a), swapping
to ω− > ω+ in panels (b–c). This causes the optical branch to change concavity, noting that this only
occurs only when the anti-resonant frequency exists and concomitantly the anti-resonant frequency
moves from above the optical branch into the bandgap.

5 Numerical results

Consider a long, finite monatomic chain of length 264, with masses m = 1 and springs k = π2 / 4.
The masses are indexed n = −129, . . . , 134 from left to right. Four lightweight masses M = m/ 8
are attached to four masses in the middle of the chain, n = 1, 2, 3, 4 (giving a net attached mass of
m/ 2 = 0.5), in the form of (i) the mass-in-mass system with attached springs k, or (ii) the proposed
system involving links, as shown in Figs. 10(a) and (e), respectively. Therefore, the middle of the
chain contains either four cells of the mass-in-mass system or two cells of the system with links.

A low-frequency incident wave packet propagates rightwards along the chain, where the wave packet
is of toneburst form, and is generated by applying the force Ftb to the leftmost mass m (n = −129),
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Figure 10: (a,e) Schematics of the long, finite monatomic chain, containing (a) four units cells of
the mass-in-mass system, and (e) two unit cells of the system with links. (b–d,f–h) Snapshots of the
evolution of the incident wave packet along the chain containing (b–d) the mass-in-mass system, and
(f–h) the system involving links, at (left; b,f) t = 50 s, (middle; c,g) t = 100 s, and (right; d,h) t = 150 s.
The location of the attached masses are indicated ( ).
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Figure 11: Band diagrams for (a) the mass-in-mass system and (b) the system with links, with m = 1,
M = m/ 8 and ωct = 0.45π, and including the anti-resonant frequencies. The dispersion curve for
the monatomic chain ( ), and the Fourier transform of the toneburst forcing F(Ftb) ( ) are overlaid,
where max{F(Ftb)} ≈ 0.006.

where

Ftb(t) =


a

2

(
1− cos

(
ωct t

Ncy

))
cos(ωct t) for t <

2πNcy

ωct

0 otherwise,

(26)

in which a = 0.1 N is the force amplitude, ωct is the central packet frequency and Ncy = 5 is the number
of packet cycles. The attached masses are arranged to minimise transmission of the wave packet into
the right-hand side of the chain. For the mass-in-mass system, this simply means attaching the full
mass available. For the system involving links, the angle of the links is chosen so that the anti-resonant
frequency coincides with the central frequency, i.e.

α = α̂(ωct) ≡ arccot

(√
1 +

2 k

M ω2
ct

)
. (27)

Fig. 11 shows the band diagrams for the two systems (including the anti-resonant frequencies),
with the dispersion curve for the underlying monatomic chain (of the acoustical type) and the Fourier
transform of the toneburst forcing F(Ftb) both overlaid, where the central wave frequency is ωct =
0.45π. For the lightweight attached masses used, the bandgap of the mass-in-mass system occupies
the relatively high-frequency interval 0.91π < ω < 1.5π, with the anti-resonant frequency ω∗ ≈ 1.4π
close to the top of the gap. The most strongly excited frequencies of the incident packet, say F(Ftb) >
max{F(Ftb)} / 6, are 0.33π < ω < 0.57π, and lie approximately in the middle of the frequency interval
occupied by the acoustical branch, where the acoustical branch is close to that of the monatomic chain.
For the system with links, setting the angle according to Eq. (27), α = α̂(0.45π) ≈ 0.069π ≈ 12.42◦,
means that the anti-resonant frequency ω∗ = ωct, so that the bandgap interval 0.37π < ω < 0.53π is
roughly centred around the central frequency of the incident packet, and only the fringes of the most
strongly generated incident frequencies are on the dispersion curves.

Figs. 10(b–d) and (f–h) show snapshots of the evolution of the (longitudinal) incident wave packet
along the chain, for the chain containing (b–d) the mass-in-mass system, and (f–h) the link system.
The left-hand panels (b,f) show the incident packet prior to interaction with the interval containing the
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Figure 12: (a) Evolution of the transmitted energy for the tests shown in Fig. 10 (chain containing
mass-in-mass system , and system involving links ). (b) Transmission coefficient as a function of
central incident frequency, for chain containing mass-in-mass system ( ), and system involving links
with α = α̂(0.55π) ( ), α̂(0.45π) ( ), and α̂(0.35π) ( ).

attached masses (shaded gold region), and the middle panels (c,g) show the packet during interaction
with the attached masses. The right-hand panels (d,h) show the packet following the interaction, in
which the packet is split into a reflected component (on the left) and a transmitted component (on
the right). For the chain containing the mass-in-mass system, the majority of the incident packet is
transmitted, with only a small reflected component, as the packet lies on the acoustical branch in an
interval where the acoustical branch is close to that of the monatomic chain, so that the mass-in-mass
system is nearly impedance matched with the surrounding monatomic chain. For the chain containing
the link system, the majority of the incident packet is reflected, as the packet frequencies are strongly
attenuated by the link system.

Fig. 12(a) quantifies the transmissions shown in Fig. 10, in terms of the evolution of the transmitted
energies ET (t), which are calculated as the sum of kinetic and potential energies of the masses on the
right-hand side of the interval containing the attached masses. The energies are zero up to t ≈ 100 s,
when the first components of the incident wave packet reach the masses on the right, after which
the energies increase monotonically until they plateau at steady, maximum values. The maximum
transmitted energy for the chain containing the mass-in-mass system ( ) is ≈ 16 times greater than
the maximum for the chain containing the link system ( ).

Fig. 12(b) shows transmission coefficients, T , as functions of the central incident frequency, ωct,
where the transmission coefficient is defined as the steady, maximum transmitted energy normalised
by the maximum incident energy, i.e. T = max(ET ) / max(EI). For the chain containing the mass-
in-mass system ( ), the incident energy is fully transmitted, i.e. T ≈ 1, for ωct ≤ 0.6π. As the
central frequency increases above this threshold, the transmission coefficient reduces monotonically,
reaching T ≈ 0.09 for the highest frequency considered, ωct = 1.2π, recalling that the anti-resonant
frequency for the mass-in-mass system, ω∗ ≈ 1.4π, lies just above the frequency range shown. For the
chain containing the link system ( ), transmission is full for only the lowest frequencies considered,
ωct ≤ 0.25π. As the central frequency increases above ωct = 0.25π, the transmission coefficient
decreases rapidly, reaching a local minimum of T ≈ 0.06 at ωct = ω∗ = 0.45π, then increasing to
a local maximum of T ≈ 0.25 at ωct ≈ 0.57π, close to the upper bound of the bandgap, and then
monotonically decreasing to zero at ωct ≈ 1. Transmission coefficients are also shown for the chain
containing the link system with angles α = α̂(0.35π) ≈ 0.054π ( ) and α = α̂(0.55π) ≈ 0.083π
( ). The qualitative behaviour of the transmission coefficient as a function of ωct is unchanged by the
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variations in angle, but the low-frequency local extrema shift to lower/higher frequencies as the angle is
decreased/increased, with the locations of the local minima dictated by the anti-resonant frequencies.
Further, the local minimum value increases/decreases slightly as the angle is decreased/increased, and
the local maximum strongly increases/decreases as the angle is decreased/increased, so that it is barely
visible for the largest angle considered, α ≈ 0.083π.

6 Conclusions

An acoustical metamaterial chain has been proposed for efficient low-frequency vibration isolation. The
chain consists of a modified monatomic chain plus a system of lightweight masses attached to the chain
with rigid links, in which the mean link angle acts as a tunable geometrical parameter. The vibration-
isolation properties of the proposed system were determined from the resonant and anti-resonant
frequencies of a basic chain element, using an efficient relation between the dynamic compliance and
stiffness matrices of the basic element and a unit cell of the chain. The compliance/stiffness matrix
formulation facilitated straightforward derivation of the effective mass of the chain, and the derived
expression identified the roles of the resonant and anti-resonant frequencies in the effective mass. It
was shown that decreasing the link angle lowers the resonant and anti-resonant frequencies (with the
anti-resonant frequency existing only below a certain link angle), thus forcing the bandgap to lower
frequencies, and the anti-resonant frequency into the bandgap, so that efficient low-frequency vibration
isolation is achieved by tuning the geometry rather than the mass of the attached system.

The proposed metamaterial chain was shown to generalise two existing chains with similar tunable
geometrical parameters (attributed to Yilmaz et al. and Bobrovnitskii, respectively), and these chains
were obtained by taking certain parameter limits of the proposed chain. The single dispersion curve of
the Yilmaz et al. chain was shown to have similar properties to the acoustical branch of the proposed
chain. Taking the Bobrovnitskii limit was shown to force the acoustical branch of the proposed chain,
and hence the bandgap, to arbitrarily low frequencies, but only at the potentially impractical cost of
losing the restoring force between masses in a basic element.

A numerical test was conducted to illustrate the low-frequency vibration-isolation properties of
the proposed system, in which a prescribed net attached mass was attached in the middle of a long
monatomic chain in the form of two units of the system. The link angle in the system was chosen
to minimise transmission of a wave packet generated at one end of the chain, by setting the anti-
resonant frequency equal to the central wave packet frequency. This approach was shown to reduce
the transmitted energy by an order of magnitude, in comparison to applying same net attached mass in
the form of four units of the standard mass-in-mass system. Further, the energy transmitted through
the system was shown to remain small when the central wave frequency was varied, without the need
to re-tune the link angle/anti-resonant frequency.

References

[1] B. Voigtländer, P. Coenen, V. Cherepanov, P. Borgens, T. Duden, and F. S. Tautz. Low vibration
laboratory with a single-stage vibration isolation for microscopy applications. Rev. Sci. Inst., 88
(2):1–8, 2017.

[2] T. Bein, J. Bös, S. Herold, D. Mayer, T. Melz, and M. Thomaier. Smart interfaces and semi-
active vibration absorber for noise reduction in vehicle structures. Aero. Sci. Technol., 12(1):
62–73, 2008.

[3] W. Johnson and M. Ruzzene. Challenges and constraints in the application of resonance-based
metamaterials for vibration isolation. Proc SPIE, 10600, Health Monitoring of Structural and
Biological Systems XII, page 1060024, 2018.

15



[4] P. G. Dylejko, I. R. MacGillivray, S. M. Moore, and A. Skvortsov. The Influence of Internal
Resonances From Machinery Mounts on Radiated Noise From Ships. IEEE J. Ocean. Eng., 42
(2):399–409, 2017.

[5] Guancong Ma and Ping Sheng. Acoustic metamaterials: From local resonances to broad horizons.
Sci. Adv., 2:e1501595, 2016. ISSN 2375-2548.

[6] Shuang Chen, Yuancheng Fan, Quanhong Fu, Hongjing Wu, Yabin Jin, Jianbang Zheng, and Fuli
Zhang. A review of tunable acoustic metamaterials. Appl. Sci., 8(9):1480, 2018.

[7] Richard V. Craster and Sbastien Guenneau, editors. Acoustic metamaterials: negative refraction,
imaging, lensing and cloaking. Number 166 in Springer series in materials science. Springer,
Dordrecht ; New York, 2013. ISBN 978-94-007-4812-5.

[8] Penglin Gao, Alfonso Climente, Jos Snchez-Dehesa, and Linzhi Wu. Single-phase metamaterial
plates for broadband vibration suppression at low frequencies. J. Sound Vib., 444:108–126, 2019.

[9] Hao-Jiang Zhao, Hong-Wei Guo, Bing-Yan Li, Zong-Quan Deng, and Rong-Qiang Liu. Flexural
vibration band gaps in a double-side phononic crystal plate. J. Appl. Phys., 118:044906, 2015.

[10] Hao-Jiang Zhao, Hong-Wei Guo, Ming-Xing Gao, Rong-Qiang Liu, and Zong-Quan Deng. Vibra-
tion band gaps in double-vibrator pillared phononic crystal plate. J. Appl. Phys., 119(1):014903,
2016.

[11] Etienne Coffy, Thomas Lavergne, Mahmoud Addouche, Sbastien Euphrasie, Pascal Vairac, and
Abdelkrim Khelif. Ultra-wide acoustic band gaps in pillar-based phononic crystal strips. J. Appl.
Phys., 118:214902, 2015.

[12] Osama R. Bilal, Andr Foehr, and Chiara Daraio. Observation of trampoline phenomena in 3d-
printed metamaterial plates. Extreme Mech. Lett., 15:103–107, 2017.

[13] Osama R. Bilal, David Ballagi, and Chiara Daraio. Architected lattices for simultaneous broad-
band attenuation of airborne sound and mechanical vibrations in all directions. Phys. Rev. Appl.,
10:054060, 2018.

[14] H. H. Huang, C T Sun, and G. L. Huang. On the negative effective mass density in acoustic
metamaterials. Int. J. Eng. Sci., 47(4):610–617, 2009.

[15] G. L. Huang and C. T. Sun. Band gaps in a multiresonator acoustic metamaterial. J. Vib.
Acoust., 132(3):031003, 2010.

[16] B. S. Lazarov and J. S. Jensen. Low-frequency band gaps in chains with attached non-linear
oscillators. Int. J. Non-Lin. Mech., 42(10):1186–1193, 2007.

[17] C. Yilmaz, G. M. Hulbert, and N. Kikuchi. Phononic band gaps induced by inertial amplification
in periodic media. Phys. Rev. B, 76:054309, 2007.

[18] C. Yilmaz and G. M. Hulbert. Theory of phononic gaps induced by inertial amplification in finite
structures. Phys. Lett. A, 374(34):3576–3584, 2010. ISSN 03759601.

[19] G. Acar and C. Yilmaz. Experimental and numerical evidence for the existence of wide and deep
phononic gaps induced by inertial amplification in two-dimensional solid structures. J. Sound
Vib., 332(24):6389–6404, 2013.

[20] H. H. Huang and C. T. Sun. Theoretical investigation of the behavior of an acoustic metamaterial
with extreme Youngs modulus. J. Mech. Phys. Solids, 59(10):2070–2081, 2011. ISSN 00225096.

16



[21] N. M. M. Frandsen, O. R. Bilal, J. S. Jensen, and M. I. Hussein. Inertial amplification of
continuous structures: Large band gaps from small masses. J. Appl. Phys., 119:124902, 2016.

[22] Y. I. Bobrovnitskii. An acoustic metamaterial with unusual wave properties. Acoust. Phys., 60
(4):371–378, 2014. ISSN 1063-7710.

[23] Joo Hwan Oh, Seong Jae Choi, Jun Kyu Lee, and Yoon Young Kim. Zero-frequency Bragg gap
by spin-harnessed metamaterial. New J. Phys., 20:083035, 2018.

[24] J. H. Oh and B. Assouar. Quasi-static stop band with flexural metamaterial having zero rotational
stiffness. Sci. Rep., 6:33410–33410, 2016.

[25] Andr Foehr, Osama R. Bilal, Sebastian D. Huber, and Chiara Daraio. Spiral-based phononic
plates: From wave beaming to topological insulators. Phys. Rev. Lett., 120(20):205501, 2018.

[26] Y. I. Bobrovnitskii. Models and general wave properties of two-dimensional acoustic metamate-
rials and media. Acoust. Phys., 60(2):134–141, 2014. ISSN 1063-7710.

[27] N. M. M. Frandsen and J. S. Jensen. Modal interaction and higher harmonic generation in a
weakly nonlinear, periodic mass-spring chain. Wave Motion, 68:149–161, 2017.

17


	Introduction
	Equations of motion
	Basic element: Resonant and anti-resonant frequencies
	Infinite chain: Dispersion relation

	Effective monatomic chain
	Limiting cases
	Yilmaz et al. chain
	Bobrovnitskii chain

	Numerical results
	Conclusions

