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Abstract

Providing efficient theorem proving support for general ASM rules that up-
date proper functions, use sequential and parallel composition, nondeterminis-
tic choice and recursion is difficult, since it is not easy to find a predicate logic
formula that describes the transition relation of an ASM rule. One important
obstacle to achieving this goal is that executing rules may result in a clash, that
aborts the ASM run. This paper contributes three results towards this goal.

First, it shows that it is possible to compute a first-order formula for each rule
that implies clash-freedom when provable. The derived formula is not a precise
characterization, but is provable for many ASMs that are used in practice.

Second, we give axioms that describe the transition relation for clash-free
ASM rules as formulas of predicate logic that can be used to verify pre/post-
condition assertions using automated theorem provers.

Third, we show that the relational encoding can be used to justify a calculus
for clash-free ASM rules based on symbolic execution. Such a calculus is useful
for interactive theorem provers such as our tool KIV.

Keywords: Abstract State Machines, Symbolic Execution, Synchronous
Parallelism, Clashes

1. Introduction

ASM rules are very expressive. Compared to other state-based formalisms
they do not just give a transition relation as a formula ϕ(x, x′) in terms of the
pre state x and the post state x′ (like Z, TLA or Event-B do). The additional
concepts like function updates, parallel and sequential composition, nondeter-
ministic choice, and defined rules with recursion give ASMs a lot of additional
expressiveness. They allow refinement from very abstract models down to ASMs
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which can easily be seen to be equivalent to real programs which is the focus of
our work, see e.g. [1]. For formalisms based on transition relations translating
to real programs is hard, typically only the reverse is done. Using program
counters a transition relation can be derived from a program.

On the flip side a relational encoding for ASM rules is difficult. As a con-
sequence, we are not aware of any deduction approach with tool support for
arbitrary ASM rules, since an explicit transition relation is the basis for model
checking as well as for abstracting calls of auxiliary rules using contracts. Most
verification tools, such as KIV [2], have allowed the purely sequential fragment
without any parallel rules or allowed only parallel assignments to different func-
tion symbols. Others have avoided sequential composition and recursion, and
used assignment for functions with arity zero only. With these restrictions how-
ever we are in essence back to transition systems.

As soon as parallel rules R are allowed, it is possible that the rule R pro-
duces clashes. A clash occurs if R produces two different, parallel updates for
the same location. With clashes it becomes hard to define a transition relation
rel(R)(f, f ′, x) which characterizes the effect of R in terms of the dynamic func-
tions f it assigns and the variables x it reads. Consider the simple parallel rule
f(t1) := u1 par f(t2) := u2. If we define rel(f(ti) := ui)(f, f

′, x) ≡ f ′(ti) = ui
and use conjunction for par, the relation will not ensure that f is unchanged
for arguments other than t1 and t2. The formula will also mask the clash for
the case t1 = t2 but u1 6= u2, which results in undefined behavior. Clashes
are the main obstacle for a relational encoding. However, in most applications
clash-free rules which avoid such conflicting updates are desirable.

This paper contributes a clash-freedom check cfc(R) that statically computes
a first-order formula for an ASM rule R. If provable, all executions of rule R are
guaranteed to be clash-free in the strongest possible sense, i.e., its evaluation
will never result in updates to the same location, not even with the same value.
We discuss weaker notions in related work.

Our emphasis is on a modular definition. Mutually recursive rules R1, . . . Rn
give formulas cfc(Ri) for each Ri that can be verified independently. Such mu-
tually recursive rules are critical for a refinement based approach that seeks to
develop efficient software. Top-level specifications have very simple and abstract
rules, but the final implementation typically involves iteration and recursion.
The price we pay is that the predicate is necessarily an overapproximation of
clash-freedom, since cfc(Ri) cannot depend on the semantics of other called
rules Rj , but on their call-interface only. We add reference parameters to make
(potentially) assigned locations explicit in calls and to facilitate syntactic sub-
stitution of dynamic functions.

We then contribute a relational encoding and a symbolic execution calculus
for deduction for clash-free ASM rules. This paper extends the short paper [3]
with an improved dependency analysis (Sec. 4), and a calculus for deduction
(Sec. 7). The relational encoding (Sec. 6) is now proven to be sound for all
clash-free rules, not just for those where checking cfc(R) is successful. We have
also added more examples throughout.

The paper is structured as follows. Sec. 2 recaps the syntax and seman-
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tics of ASMs. Sec. 3 states the goals behind the various predicates and their
interaction. Sec. 4 gives a predicate for dependency analysis and one for the
assigned locations. The clash-freedom check is presented in Sec. 5 and builds on
these predicates. Sec. 6 and Sec. 7 give a relational encoding of and a calculus
for ASMs based on symbolic execution, under the assumption of clash-freedom.
Sec. 8 summarizes related work and Sec. 9 concludes.

2. Syntax and Semantics of ASM Rules

We assume the reader to be familiar with first order logic and repeat only
some basic notations. A signature Σ consists of function symbols f and predicate
symbols p, all equipped with some arity. Given a signature and a set of variables
x, y, z ∈ X, terms t, u and formulas ϕ can be built up as usual. Terms and
formulas are evaluated over a (Σ-)Algebra A (with carrier set |A| and functions
fA) and a valuation ξ as tAξ and by A, ξ |= ϕ. The set of variables in a term t or
a formula ϕ are denoted vars(t) and vars(ϕ), the free variables of ϕ as free(ϕ).
In the following tuples are written underlined, i.e., t = t1, . . . , tn is a tuple of
terms, and we assume functions to be extended to tuples in the natural way,
i.e., tAξ is a tuple of semantic values, vars(t) are all variables occurring in any ti.

For the relational encoding we will also use second order formulas that ad-
ditionally allow function variables f̂ . These are used like function symbols in
terms. Like variables they can be quantified and ξ(f̂) returns a function.

2.1. Syntax

For use in ASMs, the first order signature is assumed to be partitioned into
a static signature, which is axiomatized using algebraic specifications, and a
dynamic signature, which is allowed to be modified by the rules.

Given a finite, possibly empty set of rule identifiers P with typical element
ρ, an ASM rule R follows the grammar

R ::= skip | f(t) := u | R1 par R2 | R1 seq R2 |
if ϕ then R1 else R2 | choose x with ϕ in R |
forall x do R | ρ(t;h(u))

Rule skip does nothing, the update f(t) := u modifies the dynamic function
f to be u at arguments t. Constructs par and seq are parallel and sequential
composition. The if executes R1 if ϕ holds and R2 otherwise. The choose
nondeterministically binds some element that satisfies ϕ to local variable x and
executes R with this binding. The forall construct executes R for all possible
values of x in parallel. A call has by-name parameters t and reference parameters
h(u) ≡ h1(u1), . . . , hn(un), where hi are pairwise different dynamic functions.
The terms t as well as ui are required to be static, i.e. to not not contain any
dynamic functions. It is allowed to pass an entire dynamic function hi with
ui ≡ 〈〉, where 〈〉 stands for an empty list of arguments. This allows the callee
to assign arbitrary locations of hi.
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Jf(t) := uKAξ . {(f, tAξ , uAξ )} (sem-asg)

JR1KAξ . U1 JR2KAξ . U2

JR1 par R2KAξ . U1 ∪ U2 (sem-par)

JR1KAξ . U1 con(U1) JR2KA+U1

ξ . U2

JR1 seq R2KAξ . U1 ⊕ U2 (sem-seq-cons)

JR1KAξ . U1 ¬ con(U1)

JR1 seq R2KAξ . U1 (sem-seq-incons)

JR1KAξ . U A, ξ |= ϕ

Jif ϕ then R1 else R2KAξ . U (sem-if-pos)

JR2KAξ . U A, ξ 6|= ϕ

Jif ϕ then R1 else R2KAξ . U (sem-if-neg)

JRKAξ{x 7→a} . U A, ξ{x 7→ a} |= ϕ

Jchoose x with ϕ in RKAξ . U (sem-choose)

JRKAξ{x 7→a} . Ua for all a ∈ |A|

Jforall x do RKAξ .
⋃
a Ua (sem-forall)

JR
t h(u)
y g KAξ . U

Jρ(t;h(u))KAξ . U
declaration ρ(y; g).R

(sem-call)

Figure 1: Derivation rules for update sets
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The dynamic functions used in R and transitively in all rules called by R are
denoted dyn(R). The subset of those functions f modified in updates f(t) := u
of R or in any of its subrules are denoted mod(R). The free variables free(R)
of a rule are all variables used without the bound occurrences of x in choose x
and forall x.

In an ASM all rules should have a proper declaration.

Definition 1 (Proper Declaration). A proper declaration ρ(y, g) = R for a rule
identifier ρ has pairwise different variables y as formal call-by-name parameters
and pairwise different dynamic functions g as formal reference parameters. The
body R of ρ is required to satisfy dyn(R) = g and free(R) = y.

Definition 2 (Call Fits to Declaration). A call ρ(t;h(u)) fits to a declaration
ρ(y, g) = R if the numbers of parameters agree. A parameter hi with ui 6= 〈〉 is
allowed when gi is a dynamic function without arguments, otherwise the arity
of gi and hi must be the same.

A call will execute the body R where y has been substituted with t and
all gi have been substituted with hi(ui) (resp. with hi if ui = 〈〉). The substi-

tuted body is written R
t h(u)
y g . Substitution has to rename variables x bound by

choose x or forall x when they conflict with variables used in t or u.

Definition 3 (ASM). An ASM consists of proper declarations for all rule iden-
tifiers P , where all calls fit to the declarations. An ASM has one designated
main rule, which does not have any call-by-name parameters y (so the rule has
no free variables), and has all ui = 〈〉.

Note that Def. 3 allows for mutually recursive calls. The toplevel rule has
no “real” parameters, it reads and/or modifies some dynamic functions g from
the signature.

We have defined the core syntax as minimal as possible to save unnecessary
cases in definitions and proofs. To get the full syntax of [4], the following
abbreviations for the standard let-binding and conditional forall suffice.

let x = t in R ≡ choose x0 with x0 = t in Rx0
x

if ϕ then R ≡ if ϕ then R else skip

forall x with ϕ do R ≡ forall x do if ϕ then R

The abbreviation for let renames all occurrences of x to a fresh variable x0 in
R. Freshness is required to avoid a naming conflict when x is free in t since the
scope of x in let excludes the term t while the scope of x0 in choose includes
the equation x0 = t.

Our calling convention differs in the following aspects from the standard
convention of ASMs as given in [5].

• We restrict call-by-name parameters to be static terms, which effectively
makes them call-by-value. Otherwise it is not possible to determine a
uniform characterization of clash-freedom (see Example 1 below).
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• We require the dynamic functions used in ASM rules to be explicitly men-
tioned as reference-parameters in calls and declarations, while usually they
are considered as globally available. To translate an ordinary ASM to our
setting one has to compute the used functions dyn(R) of a rule as the tran-
sitive closure of the ones directly used by R together with the ones used
in bodies of called rules. Both formal and actual reference-parameters g
and h(u) then have to be set to dyn(R) and substitution of g by h in R
then has no effect. Having the used functions explicit in rule declarations
is not required for most results of this paper. It is however mandatory for
defining a calculus based on symbolic execution, see Sec. 7.

• We add the possibility of using reference parameters hi(ui) with ui 6= 〈〉.
These increase the precision of our clash-freedom check since they ensure
that all assignments to hi will be specifically with arguments ui. Such
parameters are also useful when parameterizing ASMs with processes. A
typical example is when lifting a rule R(; g) that uses registers g of a single
thread to a rule parameterized with a thread t as is done in the Java ASM
[6]. With the extension defined here this can be done by just using a call
R(; g(t)) in the main rule and by assuming that the ASM has registers
g(t) for every thread t. Ambient ASMs [7] offer a concept of environments
that goes beyond the simple extension we use here.

Definition 4 (Sequential Fragment). An ASM rule is in the sequential fragment
if it does neither use the par nor the forall construct. An ASM is in the
sequential fragment, if all declared rules are.

2.2. Semantics

Given an algebra A executing a rule R computes a new algebra A′ in two
steps. First, a set U of updates is computed (nondeterministically) as the least
fixpoint of the rules given in Fig. 1. In other words, a closed derivation tree
with conclusion JRKAξ . U must exist. Each update in U is of the form (f, a, b),
where f is a dynamic function symbol and a, b are elements of the carrier set
of the algebra. An f-update is an update with f as function symbol and we call
f(a) the updated location.

Definition 5 (Consistency of Update Sets). A set of updates U is consistent,
written con(U), if it does not contain two updates for the same location f(a),
i.e., there are no (f, a, b1) and (f, a, b2) in U with b1 6= b2.

If consistent, the set U can be applied in the second step to give the new
algebra as A′ := A+U . The algebra A+U leaves the carrier set of A unchanged
but modifies each fA at any argument a to be b where (f, a, b) ∈ U .

Definition 6 (Clash-Freedom). A rule R is called clash-free, written con(R),
if it never computes an inconsistent set of updates, i.e., JRKAξ .U for any A and
ξ and U implies con(U).
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The set U1 ⊕ U2 computed by the rule sem-seq-cons contains all updates of
U2 and all updates (f, a, b) from U1 for which no update (f, a, c) is in U2. The
definition is such that A + (U1 ⊕ U2) = (A + U1) + U2 holds, i.e., the effect is
that of sequentially applying the update sets. The rule sem-seq-incons makes
sure that R1 seq R2 produces an inconsistent update set, if R1 does.

The computation of the update set for choose (sem-choose) is nondetermin-
istic. Possible update sets may be computed by binding x to any value a that
satisfies ϕ in its premise.

The union in rule sem-forall is over all elements a of the carrier set |A| of A,
so the rule usually has infinitely many premises. A closed derivation tree using
sem-forall therefore has infinite width. The least fixpoint of the rule system
still exists by Knaster-Tarski’s Theorem [8]. Restricted versions of sem-forall,
which allow only finite choice, and therefore admit a simpler characterization of
the least fixpoint by Kleene’s theorem, are possible, but we do not need such a
restriction in this work, since rule induction (induction, assuming the property
for all premises to prove it for the conclusion) is still admissible and sufficient
for all proofs. Many proofs only require induction over the structure of a rule.

Clashes are only produced by the sem-forall and sem-par rules. For example
the rule f(0) := 1 par f(0) := 2 contains a clash since f(0) := 1 and f(0) := 2
yield the update set {(f, 0, 1)} and {(f, 0, 2)}, respectively. Combining those
two update sets as done by the sem-par rule produces an inconsistent update
set and therefore the rule has a clash.

Rule sem-call assumes that the declaration of ρ is again ρ(y; g).R. As
described before, calling R replaces formal with actual parameters, denoted

R
t h(u)
y g .

In general a rule may compute infinitely many different update sets, but it
may also fail to compute an update set at all, when the computation goes into
an infinite recursion (even nondeterministically) or when there is no choice in
rule sem-choose (when ϕ = false). We do not consider such a rule to have a
clash in this paper, even though possible nontermination when computing an
update set can be viewed as a similarly erroneous behavior than producing an
inconsistent one. The reason is simply that proving guaranteed termination
requires well-foundedness arguments, which are quite different from checks for
clash-freedom.

We remark that a definition of guaranteed termination is of course possible,
based on another set of rules similar to the ones given e.g. in [9] for guaranteed
termination of while programs. This would rule out the possibility of infinite
recursion and would allow to define a weakest precondition operator. A full
definition is however outside the scope of this paper.

Lemma 1. Given that R yields update set U , i.e., JRKAξ . U , and f 6∈ mod(R)
then (f, a, b) 6∈ U for all a, b.

Proof. By rule induction over R.

The restriction to allow only static terms u and t in calls ρ(t;h(u)) (Def. 3)
is motivated by our intent, to analyze subrules modularly, with a separate clash-
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free analysis of the body. To do this we must ensure that a reference parameter
h(u) forces that h can be assigned at u only. Then Theorem 2 holds, which will
be used to justify a modular analysis. Otherwise, the Examples 1 and 2 show
that the theorem does not hold.

Lemma 2 (Substitution in Calls). Let ρ(t;h(u)) be a call in an ASM to a rule
declared as ρ(y; g){R0} where hi = gi for all i with ui 6= 〈〉. Let R be any

subrule of the body R0. Then JR
t h(u)
y g KAξ . U implies that all updates to any

hi with ui 6= 〈〉 are of the form (hi, ui
A
ξ , b). Derivability of U is equivalent to

JRKA
′

ξ{x 7→t} . U
′, where U ′ replaces such updates in U with (gi, b) and where A′

adds h(u)
A

ξ
as the interpretation of the formal parameters g.

Proof. By rule induction. The crucial point is that static terms ui and t will
always evaluate to the same value. In particular, an assignment h(ui) := tj that
results from syntactic substitution in gi := xj will always produce the update
(hi, ui

A
ξ , tj

A
ξ ), even if it is evaluated in an algebra A + U instead of A.

The Examples 1 and 2 show that Lemma 2 is wrong, when non-static u and
t are used in calls.

Example 1. Consider a declaration ρ(; g, c) = { c := c + 1 seq g := 2 }. A
call ρ(;h(c), c) which uses non-static reference parameter h(c) assigns h at c+1,
instead of h(c).

Example 2. Consider the declaration

ρ(x; g, f) = { g := 1 seq { f(x) := 1 par f(1) := 2 } }.

Then con(ρ(x; g, f)) ≡ x 6= 1, but if we pass a non-static parameter g we have
con(ρ(g; g, f)) ≡ false. The formula con(ρ(x; g, f)) then is not g 6= 1, the result
of substituting x with g in x 6= 1.

The lemma implies that properties of calls like ρ(t;h(u)) can be reduced to
a property of its body R. As an example con(ρ(t;h(u))) then is the same as

con(R)
t,h(u)
y,g . The same will hold for the relational encoding. Without the re-

striction, the analysis of calls (clash-freedom as well as determining a relational
encoding) must be done individually for each call the ASM will do while exe-
cuting the main rule, which may be an unbounded number when recursion is
present.

In the following sections we assume that all dynamic functions used in rule
declarations are nullary or unary. This restriction is not essential, it just allows
us to save notation for sequences of arguments which would get very messy.
The restriction can also be justified theoretically by encoding n-ary functions
as unary-functions on n-tuples, using static functions to construct and destruct
the tuples.
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3. Goals of the Approach

The goal of Sec. 4 and Sec. 5 will be the definition of a first-order predicate-
logic formula cfc(R) that implies that rule R is clash-free, i.e., never produces
inconsistent updates. Formally we want to have

Goal 1 (Consistency). If A, ξ |= cfc(R) and JRKAξ . U , then U is consistent.

The formula cfc(R) should be computable for the setting of Sec. 2 which
allows recursive, nondeterministic rules with parallel and sequential composi-
tion. When a set of (mutually recursive) rules is defined, successfully proving
cfc(R) for the body R of each rule should guarantee that runs of the ASM
will never produce a clash. Thus, the syntactic check cfc(R) implies semantic
clash-freedom con(R).

The computation of cfc(R) can not open up calls ρ(t;h(u)) in the body of a
declaration, like the least fixpoint semantics does, since then the computation of
cfc(R) may not terminate, defeating the purpose of generating a proof obligation
statically. Instead we have to approximate the effect of a recursive call by
assuming that the locations h(u) are updated with some unknown value, even
though some particular runs of the body may not update it at all.

The main source of clashes are parallel updates R1 par R2. We will compute
cfc(R) as false for a rule R = f(t) := t′ par f(t) := t′′, even though in a concrete
run t′ and t′′ might evaluate to the same value. Since the practically relevant
cases we are aware of do not use parallel updates to the same location with the
same value, we consider R1 par R2 to be harmful already when the assigned
locations computed by the rules overlap.

Our approach therefore focuses on sets of potentially modified locations in-
stead of additionally considering the possible values assigned by updates too.

Goal 2 (Assigned Locations). We want to define a formula asg(R, f, z) for
a rule R that approximates its assigned locations. A, ξ |= ¬ asg(R, f, z) and
JRKAξ . U should imply that U does not contain an update (f, ξ(z), b) for any b.

It is intuitive to view the predicate asg(R, f, z) as specifying a set of locations
Asg(R)Aξ . The set Asg(R)Aξ is defined by

(f, a) ∈ Asg(R)Aξ iff A, ξ{z 7→ a} |= asg(R, f, z).

The locations in Asg(R)Aξ are those which are potentially assigned by R when
R is executed in A, ξ. Note that for nondeterministic rules, this set already is
an approximation of the locations updated in U . Update sets for

R = choose x with true in f(x) := 0

will assign a single (f, a), but Asg(R)Aξ will be the full set of all (f, a).
Formula asg(R, f, z) allows to define cfc(R1 par R2) for a parallel rule. The

requirement is that ∃ z. asg(R1, f, z) ∧ asg(R2, f, z) is false for all functions f
assigned in R1 or R2, or equivalently that Asg(R1)Aξ and Asg(R2)Aξ are disjoint.

Computing the set of assigned locations is difficult for sequential composi-
tion.
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Example 3. As an example consider

R1 seq R2 = { g(y) := t seq f(g(x)) := u }

Surely g is updated at y, but what about f in R2? If x and y store different
values, f is updated at g(x), but otherwise the updated location depends on the
value of t. When the values of assignments are ignored in the computation, the
best we can therefore get is

asg(R1 seq R2, f, z) ↔ z = g(x) ∨ x = y

When x = y holds, f is potentially assigned at any argument. This formula is
a disjunct of asg(R1, f, z) (which is false), asg(R2, f, z) (which is z = g(x)), and
the condition that asg(R2, f, z) is correct, even when R2 is not run in the initial
state but in some state A + U1, ξ, where some update set U1 computed by R1

has been applied.

To compute this formula in general, we need to know which locations (g, b)
influence the computation of the assigned locations of f in R2. In the example
it is the single location (g, ξ(x)). If none of these locations is assigned in R1,
asg(R2, f, z) correctly computes the assigned locations in R2 even if the rule is
not run in the initial state A, ξ, but in the state after applying the updates of
R1. We therefore have Goal 3.

Goal 3 (Dependent Locations). Define a predicate dep(R, g, z, f) that deter-
mines a set of locations Dep(R, f)Aξ by

(g, a) ∈ Dep(R, f)Aξ iff A, ξ{z 7→ a} |= dep(R, g, z, f)

such that if A′ agrees with A on these locations, the f -locations in Asg(R)Aξ and

in Asg(R)A
′

ξ are the same.

If dep(R, g, z, f) holds then the resulting function f after execution of rule
R might (since it is an overapproximation) depend on the initial value of the
location g(z). Conversely, if dep(R, g, z, f) does not hold, different initial values
of g(z) do not lead to different values for f after execution of R.

For rule R2 from Example 3 we will have

dep(R2, g, z, f)↔ z = x

and dep(R2, g
′, z, f ′) for other functions f ′, g′ will be false, implying that only

(g, ξ(y)) is relevant to determine the assigned f -locations of R2. Since this
location is assigned in R1 only when z = y, the condition for f being potentially
modified at other locations than (f, ξ(x)) becomes ∃ z. z = x ∧ z = y, which
simplifies to x = y as intended.

Sections 4 and 5 will give formal definitions of the three predicates dep, asg,
and clf bottom-up, proving the goals stated above as theorems.
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dept(g, z, t) ≡
∨

g(u)∈ t
z = u

depf(g, z, ∀ x.ϕ) ≡ depf(g, z, ∃ x.ϕ) ≡ ∃ x. depf(g, z, ϕ)

depf(g, z, ϕ⊗ ψ) ≡ depf(g, z, ϕ) ∨ depf(g, z, ψ) where ⊗ ∈ { → , ↔ , ∧ , ∨ }
depf(g, z,¬ ϕ) ≡ depf(g, z, ϕ)

depf(g, z, p(t1, . . . , tn)) ≡
∨
i=1...n dept(g, z, ti)

depf(g, z, t1 = t2) ≡ dept(g, z, t1) ∨ dept(g, z, t2)

Figure 2: Dependency of a formula and term on a location g(z)

dep(skip, g, z, f) ≡ false (dep-skip)

dep(ρ(t;h(u)), g, z, f) ≡ false (dep-call)

dep(h(u) := t, g, z, f) ≡

{
dept(g, z, u), f = h

false, otherwise
(dep-asg)

dep(R1 seq R2, g, z, f) ≡ (dep-seq)

dep(R1, g, z, f) ∨ dep(R2, g, z, f)

∨
∨

h∈mod(R1)

dep(R1, g, z, h) ∧ ∃ z0. dep(R2, h, z0, f)

dep(R1 par R2, g, z, f) ≡ dep(R1, g, z, f) ∨ dep(R2, g, z, f) (dep-par)

dep(ifϕ then R1 else R2, g, z, f) ≡ (dep-if)

depf(g, z, ϕ) ∧ f ∈ mod(R1 seq R2)

∨ (ϕ⊃dep(R1, g, z, f); dep(R2, g, z, f))

dep(choose x with ϕ(x) in R, g, z, f) ≡ (dep-choose)

∃ x. ϕ(x) ∧ dep(R, g, z, f) ∨ depf(g, z, ϕ) ∧ f ∈ mod(R)

dep(forall x do R, g, z, f) ≡ ∃ x. dep(R, g, z, f) (dep-forall)

Figure 3: Dependency of f on locations g(z)
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4. Assigned Locations

This sections gives formal definitions for dep(R, g, f, z) and asg(R, f, z) and
provides several examples.

All definitions assume that variable z is auxiliary and therefore globally fresh.
The definitions abbreviate (ϕ → t = u) ∧ (¬ ϕ → t = v) as t = (ϕ ⊃ u; v).

The auxiliary definitions of dept(g, z, t) and depf(g, z, ϕ) in Fig. 2 express
that the (truth) value of term t (formula ϕ) depends on location (g, ξ(z)). The
definitions are straightforward.

Fig. 3 defines the dependency predicate dep(R, g, z, f) that collects locations
(g, a) with a = ξ(z) that possibly influence the set of assigned f -locations.

The assigned locations of a call dep-call do not depend on any dynamic
function, since u must be a static term.

For assignments of the form f(u) := t, the assigned f -locations depend on
(g, a) if evaluating u depends on the location (g, a) according to dep-asg. This

is the case if u has a subterm g(u′) with a = u′
A
ξ . This is expressed by the

formula dept(g, z, u), which is computed as z = u′ if g(u′) is the only subterm
of u involving g.

Example 4. An example is the assignment f(g(h(x))) := t, which gives

dep(f(g(h(x))) := t, h, z0, f) ≡ z0 = x and

dep(f(g(h(x))) := t, g, z1, f) ≡ z1 = h(x).

The case dep-seq in Fig. 3 defines dependency for sequential composition by
chaining dependencies of the rule R1 and R2 transitively, using a globally fresh
variable z0 for the intermediate location h(z0).

Example 5. Consider the rule

R = R1 seq R2 = {h(g(t1)) := t seq f(h(t2)) := t′ }.

Rule R1 and R2 have dep(R1, g, z, h) ≡ z = t1 and dep(R2, h, z0, f) ≡ z0 = t2.
By the first line of the definition we get the same dependencies for R in place of
R1 and R2. By transitivity we get dep(R, g, z, f) when z = t1 ∧ ∃ z0. z0 = t2,
which simplifies to z = t1. Indeed modifying h in the first assignment may
change the argument of f in the second, thus affecting which f -locations are
modified in R.

Our first intuition was to strengthen the second line of dep-seq to∨
h∈mod(R1)

( dep(R1, g, z, h) ∧ ∃ z0. asg(R1, h, z0) ∧ dep(R2, h, z0, f) ) (wrong)

This additionally demands that the location h(z0) that f depends on is actually
modified in the first part R1 of the sequential composition. However, this is not
correct, although it is not easy to find a counterexample. We encourage the
reader to try to find one before reading on.
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For Example 5 this would give the more precise result dep(R, g, z, f) ≡ z =
x ∧ g(t1) = t2. However, since the dependency is computed in the initial state,
this would incorrectly compare g(t1) and t2 in the initial algebra, while t2 is
evaluated in the state after executing R1. In this algebra functions used in t2
may have been altered, making the check incorrect, as shown by Example 6.

Example 6. Consider the rule

R = R1 seq R2 = { {h(g(c)) := t1 par h′(c) := d } seq f(h(h′(c))) := t2 }

with constants c and d being executed in a context where g(c) 6= h′(c). Using
the incorrect definition above would give

dep(R, g, z, f) ≡ z = c ∧ ∃ z0. z0 = g(c) ∧ z0 = h′(c) (wrong)

which is equivalent to false from the context. The z0 = g(c) conjunct stems
from the additional asg predicate and is wrong. However, if initially g(c) = d,
the assigned location in R2 changes from (f, h(h′(c))Aξ ) when executing R2 alone

to (f, h(d)Aξ ) after executing R1, so there is a dependency.

According to the definition dep-if and dep-choose (in Fig. 3) of dependency
for if and choose the locations h(z) occurring in the respective test ϕ potentially
have an influence on the final value of f as well, but only if f is assigned at all.
This is illustrated by Example 7.

Example 7.

dep(choose x with x > g(x) in f(x) := t, g, z, f)

≡ ∃ x. x > g(x) ∧ dep(f(x) := t, g, z, t) ∨ depf(g, z, x > g(x))

≡ ∃ x. x > g(x) ∧ dep(f(x) := t, g, z, t) ∨ z = x ≡ true

Here depf(g, z, x > g(x)) evaluates to z = x and the existential quantifier there-
fore evaluates to true. Thus, f depends on the entire dynamic function g. Note
that this result is precise and not an overapproximation.

We remark, that in Example 7 the dependency of f on g could be removed
when the f -assignments do not depend on the chosen x at all, e.g., if the as-
signment would be f(c) := t instead of f(x) := t. We have not verified this
extension, but adding a definition dep(R, x, f) which treats x like a nullary func-
tion would be possible. The second line of the dep-definition for choose and
similarly for forall could then be strengthened to dep(R, x, f) ∧ depf(g, z, ϕ).

The f -locations assigned by a rule R are given by the predicate asg(R, f, z),
i.e., asg(R, f, z) holds if the location f(z) can potentially be assigned by rule R.
Fig. 4 shows the definition of this predicate.

For assignments to f(u) we keep z = u according to case asg-asg.
In the case asg-call for calls to a procedure with declaration ρ(x; g){R }, the

location f(z) is assigned if it matches one of the reference parameters hi(ui) or
if the entire function f is passed as a parameter, and the corresponding formal

13



asg(skip, f, z) ≡ false (asg-skip)

asg(g(u) := t, f, z) ≡

{
z = u, f = g

false, otherwise
(asg-asg)

asg(ρ(t;h(u)), f, z) ≡



true f = hi and ui = 〈〉 for some i

and gi ∈ mod(R)

z = ui, otherwise, and f = hi for some i

and gi ∈ mod(R)

false, otherwise

(asg-call)

asg(R1 seq R2, f, z) ≡ asg(R1, f, z) ∨ asg(R2, f, z) (asg-seq)

∨
∨

g∈mod(R1)

∃ z0. dep(R2, g, z0, f) ∧ asg(R1, g, z0)

asg(R1 par R2, f, z) ≡ asg(R1, f, z) ∨ asg(R2, f, z) (asg-par)

asg(if ϕ then R1 else R2, f, z) ≡ (ϕ ⊃ asg(R1, f, z); asg(R2, f, z)) (asg-if)

asg(choose x with ϕ(x) in R, f, z) ≡ ∃ x. ϕ(x) ∧ asg(R, f, z) (asg-choose)

asg(forall x do R, f, z) ≡ ∃ x. asg(R, f, z) (asg-forall)

Figure 4: Assigned f -locations

parameter gi is modified in the body R. The restriction that the terms ui of
the reference parameters h(u) are static is crucial for the correctness of the asg
predicate as shown by Example 8.

Example 8. Given the rules R and R′.

R = R′(; f, h(f))

R′(; f, g) = { f := 1 seq g := 2 }

According to the definition of asg only the locations f and h(f), where f is
evaluated in the initial state, are assigned by R. However, in this context R
actually assigns f and h(1).

The case asg-seq for sequential composition considers whether R1 assigns
to some g(z0) that controls the argument of f as f(g(u)) in R2. In this case,
possible values for z are unconstrained if f is modified at all.

Conditionals (asg-if) strengthen the check of the branches by the assump-
tion from the test. In a choose rule (asg-choose), f could be affected by any
execution of the body for an x that satisfies the condition ϕ.

Example 9. Example 3 works out as expected with these definitions.

asg(g(y) := t seq f(g(x)) := u, f, z) ↔ z = g(x) ∨ x = y

14



Note that this is obviously an overapproximation and the formula z = (x = y ⊃
t; g(x)) would be a more precise characterization of the assigned locations.

The correctness of dep and asg is ensured by Thms. 1 and 2, thus Goal 2
and 3 are achieved. The proofs are delayed until the end of the section until
several lemmas have been proven.

Theorem 1 (Assigned Locations Depend on dep only). For all rules R, func-
tions f, algebras A, and A′: If A′ agrees with A on the locations Dep(R, f)Aξ ,

then the f -locations in Asg(R)Aξ and in Asg(R)A
′

ξ are the same.

Note that Thm. 1 is about locations (f, a) ∈ Asg(R)Aξ , i.e., for locations, where
the asg-formula holds. A theorem similar to Thm. 1 does not hold in general
when Asg(R)Aξ is replaced with update sets U such that JRKAξ . U . The rea-
son is that the values in an update set might depend on more locations than⋃
f

Dep(R, f)Aξ as shown by Example 10.

Example 10. Consider the rule R = f(0) := g(5), which has Dep(R, h)Aξ = ∅
for all functions h. However, the update sets produced by R depend on the
value of g(5). Therefore, there certainly exist two algebras A and A′, which
coincide on Dep(R, h)Aξ for all h, and two update sets U and U ′ with JRKAξ . U
and JRKA

′

ξ . U ′ with U 6= U ′.

Theorem 2 (Correctness of asg). Given an update set U of R, i.e., JRKAξ . U ,
and a location (f, a) with A, ξ{z 7→ a} |= ¬ asg(R, f, z), then (f, a, b) /∈ U for
any b.

Note that the theorem is stated for all update sets, it does not depend on U
being a consistent update set.

For the proofs of Thms. 1 and 2 several lemmas are needed, which are proved
first.

Lemma 3 (Coincidence of dep and asg). Given two auxiliary variables z and
z0 with z, z0 6∈ t, ϕ,R and arbitrary value a then

A, ξ{z 7→ a} |= dept(g, z, t) iff A, ξ{z0 7→ a} |= dept(g, z0, t)

A, ξ{z 7→ a} |= depf(g, z, ϕ) iff A, ξ{z0 7→ a} |= depf(g, z0, ϕ)

A, ξ{z 7→ a} |= dep(R, g, z, f) iff A, ξ{z0 7→ a} |= dep(R, g, z0, f)

A, ξ{z 7→ a} |= asg(R, f, z) iff A, ξ{z0 7→ a} |= asg(R, f, z0)

Proof. By structural induction over term t, formula ϕ and rule R.

Lemma 3 states that the truth value of the predicates is independent of the
concrete variable name z. Renaming z to z0 does not change the result. This
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implies that the equations

(g, a) ∈ Dept(t)Aξ iff A, ξ{z 7→ a} |= dept(g, z, t)

(g, a) ∈ Depf(ϕ)Aξ iff A, ξ{z 7→ a} |= depf(g, z, ϕ)

(g, a) ∈ Dep(R, f)Aξ iff A, ξ{z 7→ a} |= dep(R, g, z, f)

(f, a) ∈ Asg(R)Aξ iff A, ξ{z 7→ a} |= asg(R, f, z)

are proper definitions of the sets of dependent and assigned locations. In the
Lemmas 4-7 and the proofs of Theorems 1 and 2, we therefore can reason about
these sets of locations.

Lemma 4 (Modified Functions). If (g, a) ∈ Dep(R, f)Aξ or (f, a) ∈ Asg(R)Aξ
then f ∈ mod(R).

Proof. By rule induction.

Lemma 4 shows that the set of assigned f -locations is empty in all states
A, ξ (or equivalently: formula asg is always false) for all functions f that are not
modified in assignments and not used as reference parameters. These functions
also have no dependent locations, on which the (always empty) set of assigned
locations could depend.

Lemma 5 (Dependency for Terms). If two algebras A and A′ agree on all
locations (g, a) ∈ Dept(t)Aξ , then tAξ = tA

′

ξ and Dept(t)A
′

ξ = Dept(t)Aξ .

Proof. By structural induction over t.

Lemma 6 (Dependency for Formulas). If two algebras A and A′ agree on
all locations (g, a) ∈ Depf(ϕ)Aξ , then A, ξ |= ϕ holds iff A′, ξ |= ϕ holds, and

Depf(ϕ)A
′

ξ = Depf(ϕ)Aξ .

Proof. By structural induction over ϕ.

Lemma 7 (Dependency for Rules). If two algebras A and A′ agree on all loca-
tions from Dep(R, f)Aξ , then Dep(R, f)A

′

ξ = Dep(R, f)Aξ .

Proof. By structural induction over R. The case of an assignment f(t) := u
uses Lemma 5. The case for choose uses Lemma 6 with ϕ. It also requires
Lemma 4 to justify that depf(g, z, ϕ) must not be considered when f 6∈ mod(R).

The only other difficult case is R ≡ R1 seq R2. We assume A and A′ are
equal on locations in Dep(R, f)Aξ and prove that Dep(R, f)Aξ = Dep(R, f)A

′

ξ .

The elements (g, a) of Dep(R, f)Aξ are either from Dep(R1, f)Aξ , Dep(R2, f)Aξ
(where the induction hypothesis directly gives equality to being in Dep(R1, f)A

′

ξ

or Dep(R2, f)A
′

ξ ), or there is (h, b) ∈ Dep(R2, f)Aξ such that (g, a) ∈ Dep(R2, h)Aξ .

By induction hypothesis forR2 and f we get equivalence to (h, b) ∈ Dep(R2, f)A
′

ξ ,

so it remains to prove Dep(R2, h)Aξ = Dep(R2, h)A
′

ξ when (h, b) ∈ Dep(R2, f)Aξ .
Using the induction hypothesis with rule R1 and function h proves the result if it
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can be established that A and A′ agree on Dep(R1, h)Aξ . This is indeed the case.

When (h, b) is in Dep(R2, f)Aξ , the set Dep(R1, h)Aξ is a subset of Dep(R, f)Aξ by
definition.

Lemmas 5-7 show that modifying locations outside of the dependent loca-
tions, neither modifies the semantics of terms, formulas, or rules nor does it
modify the computation of dependent locations itself.

With these lemmas the proofs for Thm. 1 and 2 proceed as follows.

Proof of Thm. 1. By structural induction over R. For assignments f(t) := t′,
lemma 5 is used to ensure tAξ = tA

′

ξ , implying that the assigned location is the
same. Similarly, for choose lemma 6 is used to ensure that those x for which
ϕ is true are the same. The difficult case is again the one for R ≡ R1 seq R2.
A location (f, a) is in Asg(R)Aξ if it is in Asg(R1)Aξ , Asg(R2)Aξ , or if there is

a location (g, b) that is in both Asg(R1)Aξ and in Dep(R2, g)Aξ . The first two
cases are trivial by induction hypothesis. For the last case, we get equivalence
to (g, b) being in Asg(R1)A

′

ξ by the induction hypothesis. Finally, that (g, b) ∈
Dep(R2, g)Aξ is equivalent to (g, b) ∈ Dep(R2, g)A

′

ξ is the content of the previous
lemma 7.

Proof of Thm. 2. By structural induction over the rule R. The interesting case
is again R ≡ R1 seq R2. There are two cases. The first, where R1 produces an
inconsistent update set, is by induction hypothesis. Otherwise JR1KAξ . U1 with

a consistent set U1 and JR2KA+U1

ξ . U2 such that U = U1 ⊕ U2. Assume, some

(f, a, b) is in U but (f, a) is not in Asg(R)Aξ . If (f, a) is in U1, the induction

hypothesis for R1 would give that it is in Asg(R1)Aξ , contradicting that it is not

in the superset Asg(R)Aξ .
So (f, a, b) must be in U2. The induction hypothesis implies that (f, a) must

be in Asg(R2)A+U1

ξ . If this set is the same as Asg(R2)Aξ , we get a contradiction
like in the case (f, a) ∈ U1 before. According to Theorem 1 (using A′ :=
A+U1) the sets can differ in the f-location (f, a) only if some location (g, a′) ∈
Dep(R2, f)Aξ evaluates differently in A and A + U1. This is possible only if
U1 contains an update (g, a′, b′). By the induction hypothesis, this implies
(g, a′) ∈ Asg(R1)Aξ . However, this makes the second line of the definition of
asg for the case of sequential composition true. There now exists a function
g and a z0 (semantically, the location (g,a′)) which is in both Dep(R2, f)Aξ
and Asg(R1)Aξ , implying that Asg(R)Aξ contains all f -locations, contradicting

(f, a) 6∈ Asg(R)Aξ .

5. Checking Clash-Freedom

This section defines a syntactic check for clash-freedom, expressed by the
first-order formula cfc(R). If the formula is provable, then the rule is clash-free
(Thm. 4), i.e., con(R) holds. The static check cfc(R) of a rule R is defined over
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cfc(skip) ≡ true (cfc-skip)

cfc(g(u) := t) ≡ true (cfc-asg)

cfc(ρ(t;h(u))) ≡ true (cfc-call)

cfc(R1 seq R2) ≡ (cfc-seq)

cfc(R1)

∧
((∧

f∈mod(R1)
∀ z.¬ asg(R1, f, z) → f(z) = f ′(z)

)
→ con

(
R2

f ′

mod(R1)

))
cfc(R1 par R2) ≡ (cfc-par)

cfc(R1) ∧ cfc(R2)
∧
∧
f∈mod(R1 par R2)

¬ ∃ y. asg(R1, f, y) ∧ asg(R2, f, y)

cfc(if ϕ then R1 else R2) ≡ (ϕ ⊃ cfc(R1); cfc(R2)) (cfc-if)

cfc(choose x with ϕ(x) in R) ≡ (∀ x. ϕ(x) → cfc(R)) (cfc-choose)

cfc(forall x do R) ≡ (cfc-forall)

∀ x. cfc(R)

∧
∧
f∈mod(R) ¬ ∃ x1, x2, y. x1 6= x2 ∧ asg(Rx1

x , f, y) ∧ asg(Rx2
x , f, y)

Figure 5: Syntactic Consistency cfc(R) of Rule R

the structure of rules. Note that all variables that appear on the right hand side
of a definition but not on the left are assumed to be globally fresh.

Fig. 4 shows the definition of the cfc(R) predicate.
Assignments cfc-asg and calls cfc-call never provoke clashes. Note that this

assumes that the called rule ρ is checked separately for clashes, since this only
checks that no additional clashes are introduced.

In a sequential composition cfc-seq, consistency of R2 must be checked for
possibly modified values of dynamic functions, expressed by fresh function sym-
bols f ′ that are constrained to be the same as the original ones only for argu-

ments that R1 certainly does not assign. Note that f ′ can be viewed alterna-
tively as new function variables that are implicitly universally quantified. Since
none of the rules uses existential quantifiers over cfc(R)-formulas, the universal
quantifier can be moved to the top-level, and replaced with a new uninterpreted
function symbol in the signature, thus staying in first-order logic. The resulting
formula is then evaluated over an extended algebra that provides some inter-
pretation for all introduced f ′. When submitting the formula to a prover, f ′ is
just an uninterpreted function without any additional axioms.

Parallel execution cfc-par of R1 and R2 conservatively excludes assignments
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to the same location, where asg(R, f, y) renames z to a fresh variable y in
asg(R, f, z).

Example 11. To continue Example 3, putting the rule

g(y) := t seq f(g(x)) := u

in parallel with any assignment to an f -location will make con false for the
combined rule.

Note that the combination of sequential and parallel composition as in Ex-
ample 11 and the fact that we assume that the argument f(u) is always assigned
in a recursive call are the only two sources for imprecision if assigning the same
value to a location twice is regarded as a clash.

Nondeterministic choice cfc-choose hides the bound variable x and adds the
assumption ϕ(x) about the choice for that x to the consistency check of the
body.

For general parallel execution cfc-forall the second line excludes conflicts
between two parallel executions of the body. Two fresh different representants
x1 and x2 of the index x are used to ensure that there are no two assignments
to the same f(y).

All sequential rules check trivially as stated by Theorem 3.

Theorem 3. Given a rule R from the sequential fragment of ASM rules, cfc(R)
holds trivially.

Proof. By induction over the structure of the rule R.

Example 12. Typical parallel rules with disjoint tests (e.g. used in the WAM [10])

{ if instruction = i1 then R1 } par { if instruction = i2 then R2 }

are recognized as clash-free. Lifting a rule R(; g) of one process p with process-
local state g to a parallel rule

forall p do R(; f(p))

for all processes p is also permissible by the check. This is for example used for
the threads of the Java ASM [6].

Theorem 4 states that con is correct and therefore Goal 1 is achieved. Note
that cfc(R) needs to be evaluated over an extended algebra that evaluates the
new function symbols f ′ that are introduced in the case for sequential compo-
sition cfc-seq.

Theorem 4 (Correctness of cfc). Given a rule R with A′, ξ |= cfc(R) for every
A′ that extends A with an interpretation of the new function symbols used in
cfc(R), then every update set U with JRKAξ . U is consistent.
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Proof. Rule induction is needed here to get an induction hypothesis, which
directly closes the case of a call, since we can assume the theorem to hold for
the body (with appropriate renaming, as done by the semantic rule).

The case of sequential composition is simple here. Given cfc(R1), the induc-
tion hypothesis implies that R1 produces a consistent update set U1. By Theo-
rem 2 the algebra A + U1 differs from A in at most the locations of Asg(R1)Aξ .

Choosing A′ such that f ′
A′

= fA+U1 satisfies the precondition of the second

line. This implies A ∪ A′, ξ |= cfc(R2
f ′

mod(R1)
). Since f ′

A′
= fA+U1 , we can re-

name f ′ back to f and get (A+U1)∪A′, ξ |= cfc(R2). By induction hypothesis
this implies that the update set U2 of R2 is consistent too, which is sufficient
for consistency of the full update set U1 ⊕ U2.

The complex cases in this proof are the parallel rule R1 par R2 and the rule
for forall x do R. Since the parallel rule can be viewed as the special case of
a forall with a binary choice, we give the proof for the latter only. The rule
R (which may depend on x) computes an update set Ua as JRKAξ{x7→a} . Ua for
each a. The sets are all consistent themselves by the induction hypothesis. If
the union

⋃
a Ua were inconsistent, then there would be two elements a1 and

a2, such that Ua1 and Ua2 both contain an update for the same location (f, b)
(with different value). By Theorem 2 (f, b) would be in Asg(R)Aξ{x7→a1} and in

Asg(R)Aξ{x 7→a2}. This however, implies that the second line of the definition of
con is false by choosing the quantified variables x1, x2 and y to be a1, a2 and
b, contradicting the assumption that cfc(forall x do R) holds. This requires
a standard coincidence lemma, which asserts that A, ξ |= asg(R, f, x) holds iff
A, ξ{x1 7→ ξ(x)} |= asg(Rx1

x , f, x1) is satisfied.

6. Relational Encoding

A relational encoding of a clash-free ASM with main rule R is a formula
ϕ(f, f ′) that describes a state transition of R from the state f before applying

the rule to the state f ′ after applying it. The two states (algebras) are expressed

here using f and new primed function symbols f ′, where f is the set of dynamic

functions of the algebra. The defining property (see Thm. 5) is that ϕ(f, f ′)
holds if and only if R can calculate an update set U such that applying it to f

(as the values of in the initial algebra) yields A⊕ U where the values are f ′.
Having an explicit formula in (second-order) predicate logic that expresses

the effect of an ASM rule allows the use of predicate logic theorem provers to
derive properties of ASMs.2 As an example a partial correctness assertion with
precondition pre and postcondition post then can be verified by proving the

2This could involve using a standard transformation of second-order logic to first-order logic
first, if the prover can handle first-order logic only. See [11] for a specification of dynamic
functions that was used when KIV implemented first-order logic only or [12].

20



predicate logic goal

pre ∧ ϕ(f, f ′) → post
f ′

f .

If all domains are finite then model checking temporal properties of ASM
runs becomes possible, since the relation ϕ then is the transition relation of the
relevant Kripke structure. Finally, the relational encoding can also be used to
verify symbolic execution rules for ASMs as given in Sec. 7.

We define a relational encoding here by first extending the signature of the
ASM with predicates rel(R′j) for every subrule R′j syntactically contained in
one of the rules Rj of the ASM. Note that formally the rule R′j is part of the

predicate name,3 and that the set rel of predicates is finite.
The arguments of the predicate of rel(R′j) are two sequences of terms, each of

which has the function types given by the types of f = dyn(Rj), together with
parameters of the types of the free variables x = free(R′j) of this subrule. A

typical application of the predicate will have the form rel(R′j)(f̂ , f̂
′
, x) with two

sequences of function variables f̂ and f̂
′
that have the same types as the sequence

f of used functions. The arguments could be optimized to drop f̂ ′i (but not f̂i)
when R′j just reads, but does not modify fi (i.e. when fi ∈ dyn(R) \ mod(R))

since then obviously f̂ ′i = f̂i. We have not done so to simplify the presentation.
Fig. 6 gives the main axioms of the relational encoding for clash-free rules.

Variable y as well as function variables ĝ, f̂
1
, f̂

2
and F are assumed to be

different from the other variables used in the formulas.
Axiom rel-asg updates the modified location ĝ(t) to u and leaves all other

functions f 6= g unchanged. We write ĝ(t 7→ u) for the updated function.
Axiom rel-call assumes a declaration of ρ with ρ(y; g){R}, thus the predicate

rel(R) for the body has formal arguments ĝ, ĝ′ and y. These get instantiated

with actual parameters ĥ(u), ĝ′ and t. The second conjunct ensures that the

final values ĝ′ are propagated back to the locations ĥ(u). If some ui = 〈〉
then the equation ĥ′i = ĥi(ui 7→ ĝ′i) becomes ĥ′i = ĝ′i and the existentially
quantified ĝ′i can be optimized away.

Sequential composition rel-seq introduces an intermediate state f̂
1

between
execution of R1 and R2. Both rel-seq and rel-if use x1 = free(R1) and x2 =
free(R2), which are both subsets of the free variables x of the whole rule.

Axiom rel-par uses a static, second-order function merge(f̂1, f̂2, f̂), which
merges two computed functions, and is defined as

f̂ ′ = merge(f̂1, f̂2, f̂) ⇐⇒ f̂ ′(y) =

{
f̂1(y), if f̂(y) 6= f̂1(y)

f̂2(y), otherwise

3For simplicity we assume that two different rules never have the same subrule, otherwise
the index j of the rule has to be added to the predicate name, too.

21



rel(skip)(f̂ , f̂
′
) ↔ f̂

′
= f̂ (rel-skip)

rel(g(t) := u)(f̂ , f̂
′
, x) ↔ ĝ′ = ĝ(t 7→ u) ∧

∧
f∈f,f 6=g

f̂ ′ = f̂ (rel-asg)

rel(ρ(t;h(u)))(f̂ , f̂
′
, x) ↔ (rel-call)(∧

f∈f̂\ĥ f̂
′

= f̂
)
∧ ∃ ĝ′. rel(R)(ĥ(u), ĝ′, t) ∧ ĥ′ = ĥ(u 7→ ĝ′)

rel(R1 seq R2)(f̂ , f̂
′
, x) ↔ (rel-seq)

∃ f̂1. rel(R1)(f̂ , f̂1, x1) ∧ rel(R2)(f̂1, f̂
′
, x2)

rel(if ϕ then R1 else R2)(f̂ , f̂
′
, x) ↔ (rel-if)(

ϕ ⊃ rel(R1)(f̂ , f̂
′
, x1); rel(R2)(f̂ , f̂

′
, x2)

)
rel(choose x with ϕ(x) in R)(f̂ , f̂

′
, x) ↔ (rel-choose)

∃ x. ϕ(x) ∧ rel(R)(f̂ , f̂
′
, x, x)

rel(R1 par R2)(f̂ , f̂
′
, x) ↔ (rel-par)

∃ f̂1, f̂2. rel(R1)(f̂ , f̂1, x1) ∧ rel(R2)(f̂ , f̂2, x2) ∧ f̂
′

= merge(f̂1, f̂2, f̂)

rel(forall x do R)(f̂ , f̂
′
, x) ↔ (rel-forall)

∃ F .
(
∀ x. rel(R)(f, Fx, x, x)

)
∧ f̂

′
= merge(F , f̂)

Figure 6: Relational encoding for clash-free ASM rules

The equation f̂
′

= merge(f̂
1
, f̂

2
, f̂) in the rule has to be read as the conjunction

of all individual equations for the elements of the four tuples involved. The
definition solves the problem of parallel rules R1 par R2 from the introduction
by first computing two individual results f̂

1
and f̂

2
for the two rules. Since we

know from con(R) that each location (f, y) is assigned by at most one of the

two rules, we can merge both computations to get the final result f̂
′
.

The axiom rel-forall generalizes from merging two results f̂1, f̂2 to a set Fx of
results, with one result Fx for every x. Formally, function variable F is assumed
to have two arguments, and we write Fx(y) instead of F (x, y). This allows to
view Fx as a unary (curried) function, that maps every y to Fx(y). For different
x, Fx is the result of running rule R with input x. Note that since x ∈ free(R),
all functions Fx may be different. To avoid inconsistency, merging is defined
only, when

∀ x1, x2, y. Fx1(y) 6= f̂(y) ∧ Fx2(y) 6= f̂(y) → x1 = x2
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holds. Then we have

f̂ ′ = merge(F, f̂) ⇐⇒ f̂ ′(y) =

Fx(y), if Fx(y) 6= f̂(y) for some
(unique) x

f̂(y), otherwise

Again, f̂
′

= merge(F , f̂) has to be read as a conjunction. That the precondition
is valid, depends on con(forall x do R) having been proved, e.g. by checking
cfc(forall x do R), which ensures that at most one x causes an update of f(y).

Finally, the relational encoding ϕ(f, f ′) we are looking for is the conjunction

of the formula rel(R)(f, f ′) for the main rule R, which has no free variables

x, with all the axioms. Note that rel(R)(f, f ′) uses two sequences of dynamic
functions as arguments, that describe the state before and after the rule, instead
of function variables.

If the ASM is hierarchical, i.e., has no recursive rules, then the axioms of
Fig. 6 are nonrecursive (hierarchical) definitions of all predicates, so they triv-
ially have a unique interpretation. Given any algebra A for the signature of the
ASM, there is always a unique algebra A+ that extends A with interpretations
of the predicates and of the two variants of merge such that the axioms are valid
(conservative extension).

If recursive rules are present, then the axioms form a conservative extension,
provided an axiom is added that characterizes the predicates to have the unique
least fixpoint interpretation according to Knaster-Tarski’s fixpoint theorem [8].

The least fixpoint of recursive definitions defines the extension rel(R′j)
A+

for
each predicate rel(R′j) as the smallest one possible. In other words, each predi-
cate is true in A+ for those arguments only, where this is implied by the axioms.
According to Knaster-Tarski’s theorem the least fixpoint can be uniquely char-
acterized by the higher-order axiom

∀ rel′. Ax
rel′

rel →
∧

reli∈ rel

∀ f̂ , f̂
′
, x. rel′i(f̂ , f̂

′
, x) → reli(f̂ , f̂

′
, x)

that characterizes the intersection of all possible interpretations. Here rel is the
sequence of all predicates defined, and Ax(rel) is the conjunction of the (uni-
versally quantified) axioms of Fig. 6. New predicate variables rel’ are used to
quantify over all possible interpretations that satisfy the axioms. This charac-
terization still admits rule induction, i.e., proving a property for rel can be done
by proving it for rel on the left hand side of the recursion, assuming it holds for
all calls on the right hand side.4

A simpler characterization via Kleene’s fixpoint theorem is possible, if the
recursion is continuous, which is the case if all forall x constructs used in the
ASM iterate over a finite domain. All practically relevant ASMs we know of
satisfy this constraint and some papers, e.g. [14], explicitly enforce it. The use

4See e.g. [13], chapter 3.5 on the monotone µ-calculus, which can be used to formally
justify mutual recursive definitions, and to derive the principle of rule induction.
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of the higher-order axiom above with predicate variables rel’ is then replaced
with structural induction over recursion depth. Formally, auxiliary predicates
relh(R) with an extra argument n for the recursion depth are needed. The axiom
rel-seq of Fig. 6 is replaced with

relh(R1 seq R2)(f̂ , f̂
′
, x, n) ↔ ∃ f̂1. rel(R1)(f̂ , f̂1, x1, n) ∧ rel(R2)(f̂1, f̂

′
, x2, n)

All other axioms except for rel-call are changed similarly. In rel-call the recursion
depth is decremented and we get no result (nontermination), if it is already zero.

relh(ρ(t;h(u)))(f̂ , f̂
′
, x, n) ↔ n 6= 0 ∧

∧
f∈f\h

f̂ ′ = f̂

∧ ∃ ĝ′. rel(R)(ĥ(u), ĝ′, t, n− 1) ∧ ĥ′ = ĥ(u 7→ ĝ′)

Finally, for each R′j axioms of the form

rel(R′j)(f̂ , f̂
′
, x) ↔ ∃ n. relh(R′j)(f̂ , f̂

′
, x, n)

are needed. Together with standard axioms for natural numbers (including the

induction scheme) they express that a rule changes the state from f̂ to f̂
′

if it
does so with some finite recursion depth. Note that with infinite iteration in
forall a characterization with recursion depth is no longer possible as demon-
strated by Example 13.

Example 13. Consider an ASM with main rule R and auxiliary rule R1.

R = forall m do R1(m)

R1(m) = if m > 0 then R1(m− 1) else skip

The rule terminates with an empty update set, so rel(R)() (which has no argu-
ments) should be equivalent to true. However, since there is no finite recursion
depth n such that relh(R)(n) is valid (each bound will be violated by some call
to R1), the incorrect characterization would evaluate rel(R)() as false.

To formulate the correctness of rel as a theorem, we need signatures and al-
gebras with renamed function symbols. Let Σ′ be the signature that is obtained
by replacing all dynamic functions f with primed versions f ′, assuming Σ does
not itself have function symbols with primes. Then A′ is defined to be the al-
gebra with signature Σ′ that defines f ′A

′
to be fA. We write A+ ∪ B′ for the

(disjoint) union of the algebras A+ (that for the given ASM uniquely extends
A with predicate symbols rel) and B′. The algebra therefore has signature Σ ∪
Σ′ ∪ rel. With this notation we have

Theorem 5. Given an ASM with main rule R, such that con(Rj) holds for all
rule bodies Rj, and two algebras A and B that differ in at most dyn(R), then
A+ ∪ B′, ξ |= rel(R′j)(f, f

′) if and only if there is some (consistent) U such that

JR′jK
ξ
A . U and B = A + U .
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Proof. By applying the following inductive Lemma 8 on the main rule, which
has no free variables and f = dyn(R) as reference parameters, by instantiating

function variables f̂ , f̂
′

with f, f ′.

Lemma 8. Assume a clash-free ASM where con(Rj) holds for all rules. Let R
be any subrule of rule Rj, f = dyn(Rj) and x = free(R). Let A be any algebra
for the signature of the ASM extended with any interpretation of the formal
parameters g of the declaration of Rj. Let A+ be the unique extension of A that
also interprets rel. Then

• JRKAξ . U implies A+, ξ{f̂ , f̂
′
7→ fA, fA⊕U} |= rel(R)(f̂ , f̂

′
, x).

• Conversely, if ξ(f̂) = fA and A+, ξ |= rel(R)(f̂ , f̂
′
), then there is an update

set U such that JRKAξ . U and f ′A⊕U = ξ(f̂
′
).

Proof. The proof has two parts for the two directions of the lemma. The “if”
direction, which assumes JRKξA . U is proved by rule induction over the defini-
tion of the derivation relation from Fig. 1, while the “only if” direction, which

assumes A+ ∪ B′, ξ |= rel(R)(f̂ , f̂
′
, x) is by rule induction over rel from Fig. 6.

Since the structure of the recursion in both definitions is the same, the two
proofs are rather similar. The proof for assignment and choose is simple, the
proof for calls applies Lemma 2 from Sec. 2.

The “if” proof for sequential composition must prove that the assertion

A+, ξ{f̂ , f̂
′
7→ fA, fA⊕U} |= rel(R1 seq R2)(f̂ , f̂

′
, x), assuming JR1 seq R2K

ξ
A.U

holds. Since all rules are clash-free by assumption, so is set U . Therefore the
set can only be the result of applying sem-seq-cons from Fig. 1 (since sem-
seq-incons derives an inconsistent set), implying there is a consistent set U1

and an arbitrary set U2 with JR1K
ξ
A . U1 and JR2K

ξ
A+U1

. U2 such that U =
U1 ∪ U2. U2 must be consistent too, otherwise U would be inconsistent. The

induction hypothesis for R1 and R2 therefore gives A+, ξ{f̂ , f̂
′
7→ fA, fA⊕U1} |=

rel(R1)(f̂ , f̂
′
) and A+, ξ{f̂ , f̂

′
7→ fA⊕U1 , fA⊕U} |= rel(R2)(f̂ , f̂

′
). Renaming the

intermediate function variables suitably and applying axiom rel-seq implies the
desired result. The reverse direction for the sequential case is similar.

It remains to prove par and forall. Like in the proof for Theorem 4 the
proof for par can be viewed as the special case of forall with binary choice,
so we only give the “only if” direction for forall. The “if” direction is again
similar.

The proof has to show that when A+, ξ |= rel(forall x do R)(f̂ , f̂
′
, x) and

ξ(f̂) = fA hold, an update set U can be found with Jforall x do RKξA . U and

f ′A⊕U = ξ(f̂
′
). Expanding the assumption using rel-forall and its quantifiers, we

get that there are (binary) functions G such that for all a A+, ξ{F , x 7→ G, a} |=
rel(R)(f̂ , f̂

′
, F x, x, x) holds, and also that A+, ξ{F 7→ G} |= merge(F x, f̂

′
) is

true. Applying the induction hypothesis for each a we get that there are update

sets Ua with JRKξ{x 7→a}A . Ua and that function λb.G(a, b) agrees with fA⊕Ua .
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Using sem-forall implies Jforall x do RKξ{x7→a}A .U for the union U of all update
sets Ua. The modification of function variables F to be G can be dropped by
coincidence. U (and all Ua) are consistent since the rule is assumed to be
consistent, so at most one Ua contains an update for each location fi(b), where

fi ∈ f . The result of merge(F, f̂
′
) therefore is defined and we finally have to

show that the definition of merge implies ξ(f̂
′
) = fA⊕U . The consistency of U

ensures that for each function fi ∈ f and each argument b there is at most one
Ua with an update of (fi, b, c) ∈ Ua. If the update exists we have Gi(a, b) = c.
Therefore, if c 6= fi

A(b) then a and b will be the values for x and y used in Fix(y)

in the definition of merge and we get that ξ(f̂i)(b) = c = fi
A⊕U (b) as desired. If

there is no update or if the update does not modify fi, the “otherwise” clause
of the merge definition applies, which ensures ξ(f̂i)(b) = fi

A(b) = fi
A⊕U (b) as

desired.

7. Calculus

This section defines a weakest liberal precondition calculus for ASMs based
on the relational encoding provided in Sec. 6. The calculus is only applicable
and sound if all rules are proven to be clash-free, either by the static check given
in Sec. 5 or some other method. The main feature of the calculus is that parallel
rules are executed sequentially and results are merged.

We extend the formulas of first-order logic by the modality [R]ψ (weakest
liberal precondition) with the semantics given by Def. 7.

Definition 7 (Weakest Liberal Precondition).

J[R]ψKAξ iff for all consistent U with JRKAξ . U: A + U, ξ |= ψ

Fig. 7 shows the rules of the calculus, which are similar to dynamic logic [15].
For simplicity, to avoid conversions between function symbols and function vari-
ables as in the relational encoding, we assume the signature to contain a supply
of (uninterpreted) fresh function symbols f ′, f1, f2, F etc. for every dynamic
function f that is used in the ASM. This is sufficient, since in contrast to the
relational encoding the symbolic execution calculus does not need to quantify
over functions.

The rule calc-asg for assignment introduces a fresh updated state f ′. The
postcondition ψ is then expressed over this updated state. Note that for the
syntactic renaming of f with f ′ in ψ it is crucial that calls (ψ may be a box-
formula with a call) mention all their parameters. Otherwise, when the call is
opened up, the body would still modify the original state instead of the renamed
one. A useful calculus for symbolic execution for a logic which is able (in contrast
to Hoare’s Logic) to have program formulas with several programs, such as
[R2]ϕ → [R2]ϕ to express correctness of program transformations, must be able
to execute one box-formula yielding an intermediate state without affecting the
state, that another box-formulas starts with. This enforces that the initial state
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ψ

[skip]ψ (calc-skip)

f ′ = f(t 7→ u) → ψf
′

f

[f(t) := u]ψ
f ′ fresh

(calc-asg)

[R
t h(u)
x g ]ψ

[ρ(t;h(u))]ψ
with declaration ρ(x; g).R

(calc-call)

[R1] [R2]ψ

[R1 seq R2]ψ (calc-seq)

ϕ → [R1]ψ ¬ ϕ → [R2]ψ

[if ϕ then R1 else R2]ψ (calc-if)

∀ x. ϕ(x) → [R]ψ

[choose x with ϕ(x) in R]ψ (calc-choose)

f
1

= f ∧ f
2

= f → [R1
f
1

f ] [R2
f
2

f ]
(
f ′ = merge(f

1
, f

2
, f) → ψ

f ′

f

)
[R1 par R2]ψ (calc-par)

[R]χ(x)
(
∀ x. χ(x)

Fx

f

)
∧ f ′ = merge(F , f) → ψ

f ′

f

[forall x do R]ψ (calc-forall)

Figure 7: Rules of the Calculus

of all functions that are modified in the body of a call must be syntactically
represented as arguments of the call.

For clash-free parallel rules we use merge similar to the relational encoding.
Note that it is sufficient that f ranges over all modified functions f = mod(R) =
mod(R1) ∪mod(R2).

For par (calc-par) two fresh states f
1

and f
2

with an initial value of f
are introduced for R1 resp. R2. R1 then updates f

1
and R2 updates f

2
.

Afterwards these two are merged into the fresh variable f ′. The postcondition

is then expressed over the merged state f ′.
The rule calc-forall abstracts each of the parallel computations to a formula χ

that characterizes each individual execution of R in isolation (first premise). The
second premise can intuitively be understood as proving the postcondition ψ
from the results χ(x) for all indices x. However, χ(x) for a particular x must
be weakened by potential interference of other parallel executions of R.
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Note that both rules execute the computations in the initial state, i.e., its
reads yield values from the initial state, unless that value was overwritten in
the computation that does the reading. The rule calc-par could be organized
like calc-forall. However, it seems more convenient to execute the branches
sequentially. This avoids the need to define postconditions χ(1) and χ(2) in
advance.

Example 14. A simple example is the formula

[forall x do f(x) := x]∀ x.f(x) = x

Application of the calculus rule calc-forall with χ(x) ≡ f(x) = x yields the two
premises

(1.) [f(x) := x] f(x) = x

(2.) (∀ x. Fx(x) = x) ∧ f ′ = merge(F, f) → ∀ x.f ′(x) = x

The first premise is trivially true. In the second premise the two conjuncts imply
f ′(x) = Fx(x) = x for every x, which yields the post condition.

The choice of the formula χ(x) requires some insight into the algorithm and
a creative step, similar to the invariant rule for while programs in dynamic logic
or Hoare logic. Viewing forall as a for-loop that iterates over all x can give an
idea, though the effects of “earlier” iterations are invisible in “later” ones.

Example 15. If we have proven the property [p(t; g)]ψ(g) for a procedure p,
we can use it trivially for rules of the form

forall x do p(t; f(x))

by using χ(x) ≡ ψ(f(x)) for calc-forall.

The soundness of the calculus is proven based on the relational encoding.

Theorem 6 (Soundness of the Calculus). If the rule R is clash-free and [R]ϕ is
derivable with the calculus rules shown in Fig. 7 in the algebra A with valuation
ξ, then A + U, ξ |= ψ holds for all U with JRKAξ . U .

Proof. By Thm. 5 it only needs to be shown that if [R]ϕ holds then for all B′

with A+ ∪ B′, ξ |= rel(R′j)(f, f
′, x) implies B′, ξ |= ϕ, where B may only differ

with A on mod(R). The proof uses structural induction over the derivation tree
and just unfolds the definition of rel.

8. Related Work

8.1. Clash-Freedom Check

The approach most closely related to ours is the logic for ASMs defined by
Stärk and Nanchen [4] (also given in [5]). We use the same syntax and semantics
of ASMs with two exceptions. We only allow static by-name parameters, which
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then coincide with value parameters, to facilitate modular reasoning for calls
(cf. Lemma 2). Furthermore, we added explicit reference parameters, which are
useful to make the static check for clash-freedom more precise.

The predicate con(R) we define is similar to the predicate con(R) defined in
[4] but our con(R) does not imply that executing R terminates (via def(R)) —
termination must be shown using well-founded orders otherwise. We support
nondeterministic choice, replaced by choice functions in [4], which makes rules
and verification conditions at least harder to read.

For hierarchical ASMs without nondeterminism, con(R) can be expanded by
unfolding all calls, so this gives a precise check for clash-freedom. For ASMs
with recursive rules just expanding the definitions in [4] would lead to an infinite
computation. Note that the completeness theorem of the paper that permits
to eliminate modal constructs is for hierarchical ASMs only, where recursion is
forbidden.

The approach in [14] extends [4] to nondeterminism, and formalizes clash-
freedom as a formula scon (strong consistency). The paper does not consider
calls, although it should be possible to add them. Unfolding the definition
scon gives a precise clash-freedom check for hierarchical nondeterministic ASMs,
though the resulting formula is now in a specialized logic with operators ∈1 and
∈2 and second-order variables X that encode update sets syntactically. It seems
to be possible to translate the result into second-order logic by using separate
predicates ∈1f for every dynamic function f .

One motivation when we defined our clash-freedom check was that expanding
definitions as necessary in [4] and [14] will yield a very large formula even for
medium sized ASMs. When a proof for the formula fails it will be hard to
pinpoint the subrule responsible. Their clash-freedom check is also purely first-
order, which is implied by the results in [16].

In contrast the clash-freedom check cfc(R) we define does not use modal
constructs ([R] ϕ) and statically computes a formula for each (sub-)rule sepa-
rately, even for recursive rules, since the computation stops at calls. Of course
for a hierarchical ASM opening up all definitions is still possible and will make
the check more precise, though the check will still be stronger than con(R).

The price we pay for having a computable cfc(R) for all rules is that our
predicate only approximates clash-freedom. There are clash-free rules which our
check rejects. The scheme is however strong enough to trivially return true for
all rules of the sequential fragment, as well as for some typical parallel rules. In
general a theorem prover or a decision procedure, when the data structures used
by the rule are decidable, is needed to prove the computed cfc(R). An SMT
solver should suffice for many practical cases to establish clash-freedom.

8.2. Strong vs. Weak Consistency

[4] also discusses weak consistency wcon(R) as an alternative to clash-freedom
for nondeterministic rules. Weak consistency holds iff for every A and ξ there
is at least some consistent update sets U with JRKAξ . U . The calculus in [14]
gives a formal definition.
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Checking weak consistency instead of clash-freedom is harder, in particular
our approach based on the set of potentially assigned locations is useless.

We object to the use of weakly consistent rules (except maybe when hidden
behind aggregation operators [17]) for several reasons. First, in analogy to “a
potentially diverging program is as bad as an always diverging one” as used in
standard definitions of total correctness we believe that specifying an ASM that
randomly crashes when simulating runs is a bad idea.

Second, weakly consistent rules are not compatible with standard refinement
based approaches, e.g. ASM refinement [5] formalized in [18] as well as most
other refinement definitions, that allow to reduce nondeterminism. Implement-
ing a weakly consistent rule that nondeterministically computes either consistent
U1 or inconsistent U2 with one that always computes the inconsistent update
set U2 is clearly not a desirable refinement. At least special proof obligations
would be required to rule out this case.

Third, wcon(R) does not imply con(R) in the presence of recursive rules, as
it implies the existence of a terminating run. A deterministic rule, that does not
terminate is clash-free, but not weakly consistent. An axiomatization of weak
consistency for recursive rules therefore also has to consider termination.

Fourth, ASM rules that are close to an implementation often still have nonde-
terminism, that is resolved when translating the rules to code in a programming
language. Examples are calling a scheduler (e.g. the one of the JVM) or calling
malloc in C to implement the (nondeterministic) choice of a new memory loca-
tion. Having random clashes that lead to exceptional behavior of the generated
code is clearly undesirable too.

8.3. Other Semantics for ASMs

We have not considered alternative semantics for ASMs that compute mul-
tisets instead of sets U . Such a semantics is used in work on parallel ASMs
[19, 20, 21], in the concurrent ASM thesis [22], or when aggregating update
multisets into single updates. See e.g. the let rule in [17], which is used to
model access to databases. The paper [23] defines an extension of the logic
in [14] that can handle multi-sets using specialized operators and second-order
variables.

8.4. Relational Encoding and Calculus

In parallel to our work, a relational encoding of ASMs to Event-B was de-
veloped in [24]. In contrast to ours, the clash-freedom check there is exact and
tolerates rules, which compute the same update several times in parallel. The
approach avoids the use of higher-order functions using set theory instead. On
the other hand the approach is limited to ASM rules without nondeterminism,
recursion and sequential composition, so it is not sufficient to support the rules
used in KIV. An interesting idea used in the approach is that the union U1 ∪ U2

of two consistent sets U1 and U2 is consistent iff U1⊕U2 and U2⊕U1 are the same
set. For deterministic rules, checking whether R1 par R2 produces a clash on

top-level therefore can be done, by running (R1 seq R2)
f1
f and (R2 seq R1)

f2
f
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on two copies f1 and f2 (that are initialized with f), and by finally checking for
f1 = f2 at the end. Since Event-B lacks a sequential composition operator, the
approach in [24] realizes this idea by sequentially composing update operators.

Note that our calculus needs to run each sub-rule once, not twice as in the

approach above. However, running merge(f1, f2, f) after R1
f1
f seq R2

f2
f cannot

detect the difference between the inconsistent rule f(x) := f(x) par f(x) :=
f(x)+1 and the clash-free rule skip par f(x) := f(x)+1, while the commutation
check can. Therefore we must assume that clash-freedom has been proved in
advance to ensure our approach is valid. Of course our check for clash-freedom
trivially fails for the first, but succeeds for the second rule.

Our relational encoding rel for clash-free rules shows some similarities to
[14], in particular higher-order functions are used in both. For a clash-free rule
R our definition of [R]ϕ has the same semantics.

A main difference is that we separate the clash-freedom check from the def-
inition of the effect of a rule, which makes the relational encoding simpler than
the logic in [14] that mimics the semantic of ASMs in the logic (by having
syntactic variables X that describe update sets U), which must be checked to
be consistent (a predicate conUSet(X) is axiomatized for this purpose) when
proving [R]ϕ. Instead we only need new functions for the semantics of dynamic
functions in state A⊕ U , since consistency of U has been checked in advance.

We are not aware of related work that defines a symbolic execution calculus
for ASMs, while symbolic execution for sequential programs is of course well-
known [25].

9. Conclusion & Outlook

In this paper we have defined a static clash-freedom check for ASM rules, a
relational encoding and a calculus for clash-free ASM rules. Since usually ASM
rules are required to be clash-free, the three results contribute to separating
proofs of clash-freedom, from proving properties of clash-free ASM rule applica-
tions (or of whole ASM runs) using either a direct relational encoding (typically
for automatic proofs) or a more intuitive calculus of symbolic execution (for
interactive proofs).

The static check we have defined might lead to false positives, i.e., the check
is sound, but not complete. If a false positive occurs a stronger method for
establishing clash-freedom might be employed. For hierarchical ASM the axioms
given in [14] could probably be used in this case (by eliminating all special
operators). When restricting calls as we have done in Sec. 2, then for ASMs
with recursion it might still be possible to extend this axiomatization using least
fixpoints, since still a finite number of predicates is involved. Otherwise finding
a relational encoding (with finitely many axioms) is still an open question.

The main feature of our calculus for symbolic execution is that parallel
execution (par) reduces to sequential execution and merging the results. Fur-
thermore, the forall construct allows for a rule that is similar to the invariant
rule of dynamic or Hoare logic.
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We have verified some of the results of this paper in KIV by a predicate
logic embedding of ASM rules and their semantics (see the URL [26]). The
embedding is somewhat similar to what we have done for the temporal logic
RGITL [27]. In contrast to the latter, the embedding given is a semantic one
(shallow embedding), that defines a semantic predicate rel(R)(A, ξ,A′) only.
Such an embedding skips the formalization of substitution and therefore does not
allow to formalize Lemma 2. Adding a syntactic embedding (deep embedding)
remains future work. The proofs have nevertheless been augmented compared
to the ones that were done for [3] to include the least fixpoint theory needed
for calls, the new dependency tracking and several other small improvements.
The relational encoding has now been shown to be sound for all clash-free rules,
not just for those that satisfy cfc(R). Again formally checking the theorems
uncovered several mistakes in initial versions of the definitions. In particular
the problem of Example 6 was found by careful analysis of failed proof attempts.

We also implemented a prototypical check in Scala, the programming lan-
guage of KIV, that checks cfc(R) for the rules natively implemented in KIV.
This is slightly simpler to implement than the check given here, since ASM rules
in KIV’s higher-order setting update function variables instead of dynamic func-
tions. Therefore all updates in KIV modify the valuation ξ, and new function
symbols are available without extending the signature. Extending the sequent
calculus used in KIV with rules for par and forall similar to the ones given
here so that KIV would support arbitrary parallel ASM rules and collecting
experience with the proposed rules is future work though.

The check presented in this paper could be improved in practice by using
invariants of the ASM or preconditions of recursive rules as assumptions. The
rule f(x) := 1 par f(y) := 2 for example is clash-free when the invariants imply
x 6= y.
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