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Abstract: MicroRNAs (miRNAs) regulate post-transcriptional gene expression and may be exported
from cells via exosomes or in partnership with RNA-binding proteins. MiRNAs in body fluids can
act in a hormone-like manner and play important roles in disease initiation and progression. Hence,
miRNAs are promising candidates as biomarkers. To identify serum miRNA biomarkers in the equine
model of asthma we investigated small RNA derived from the serum of 34 control and 37 asthmatic
horses. These samples were used for next generation sequencing, novel miRNA identification and
differential miRNA expression analysis. We identified 11 significantly differentially expressed miRNAs
between case and control horses: eca-miR-128, eca-miR-744, eca-miR-197, eca-miR-103, eca-miR-107a,
eca-miR-30d, eca-miR-140-3p, eca-miR-7, eca-miR-361-3p, eca-miR-148b-3p and eca-miR-215. Pathway
enrichment using experimentally validated target genes of the human homologous miRNAs showed
a significant enrichment in the regulation of epithelial-to-mesenchymal transition (key player in airway
remodeling in asthma) and the phosphatidylinositol (3,4,5)-triphosphate (PIP3) signaling pathway
(modulator of CD4+ T cell maturation and function). Downregulated miR-128 and miR-744 supports
a Th2/Th17 type immune response in severe equine asthma.

Keywords: miR-128; severe equine asthma; recurrent airway obstruction; microRNA; biomarker;
RNA-sequencing; serum; hemolysis; differential expression

1. Introduction

Despite intensive efforts, the prevalence of allergies and asthma is still increasing worldwide [1].
Although the therapy for asthma has improved over the years, asthmatic condition can still lead to
a sudden death [2,3]. Asthma is a complex disease and hundreds of candidate genes have been proposed
for this condition [4,5]. Apart from genetic predisposition, environmental factors seem to play a crucial
role in asthma development, including the exposition to indoor and outdoor allergens, such as mites or
pollens and irritants like lipopolysaccharides (LPS) [6,7]. Novel techniques and methods, such as next
generation sequencing (NGS) have opened a new era in asthma research. Although many genome-wide
association studies have been conducted, little replication has been observed [8]. One possible
explanation of this phenomenon could be the fact that multiple known phenotypes of human asthma
are present and classification depends on clinical phenotypes (severity, treatment-resistance etc.),
trigger (allergic/non-allergic asthma, aspirin-induced asthma etc.) and inflammatory phenotype
(eosinophilic, neutrophilic, or paucigranulocytic asthma) [9]. Due to the absence of standardized
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phenotype definitions in the past, interpretation as well as integration of findings proved to be
challenging. The most consistently identified candidate genes (interleukin 13 (IL13), interleukin 4
(IL4), interleukin-4 receptor, alpha (IL4RA), cluster of differentiation 14 (CD14), Beta-2 adrenergic
receptor (ADRB2), membrane-spanning 4-domains subfamily A member 2 (MS4A2/FCER1B), tumor
necrosis factor (TNF) superfamily, disintegrin and metalloproteinase domain-containing protein 33
(ADAM33), and ORLDM Sphingolipid biosynthesis regulator 3 (ORMDL3) do not show association in
all of the populations studied or may only show small effects explaining only a very low percentage of
the total phenotypic variance [5,10,11].

Severe equine asthma (also called recurrent airway obstruction or heaves) occurs naturally
and shares many features with human neutrophilic asthma [12] and also shows parallels to human
late-onset and severe asthma [13]. Therefore, asthmatic horses are considered a good animal model
for human asthma [13,14]. Asthma in horses has a large economic impact on horse breeding and
equestrian sports. Until now, little has been done to prevent the development of asthma in horses.
Treatment strategies are focused mostly on a decreased exposure of asthmatic horses to hay, which
has been shown to be the major risk factor for asthma development in horses [15,16]. Even though
a strong genetic predisposition to severe equine asthma has been reported [17–19], excluding affected
animals from breeding is difficult. Clinical signs of asthma often appear later than age eight, which
is much higher than the average age at which horses are chosen for breeding. Hence, the search for
non-invasive biomarkers is of great interest. Potential biomarkers discovered in the equine model
could also be further investigated for their implication in human asthma and might even serve as
novel therapeutic targets for both equine and human asthma.

Recently, microRNAs in serum (miRNAs) have received great attention as potential biomarkers
for many diseases, e.g., neoplastic, cardiac, immune-related, pulmonary and other diseases [20].
MicroRNAs are small RNA molecules that impact biologic responses through the regulation of mRNA
transcription and/or translation. A single miRNA may regulate dozens of target genes and thus
disrupt an entire genetic pathway leading to pathological features [21].

MicroRNAs are very stable molecules compared to other RNA species and can be transported
between cells, tissues and even organisms (mother and fetus) [22]. Extracellular miRNAs can be
deregulated in serum and other body fluids during the pathogenesis of many disorders. MicroRNAs
from serum are thus of particular interest as promising non-invasive disease biomarkers [23]. Our
present understanding of their role in the regulation of allergic diseases is still very limited. However,
differential miRNA expression has been shown in a wide range of tissues, cell types, biofluids and
vesicles such as bronchoalveolar lavage fluid exosomes, airway T cells and serum from asthmatic
patients [24,25]. Since distinct miRNA networks regulate CD4+ T cell differentiation, miRNA
differential expression studies have the potential to unravel aberrant molecular mechanisms underlying
disorders of the immune system [26]. Specifically, miR-155 plays a major role in both allergy and
anti-parasitic immunity [27].

Over 1000 miRNAs have been identified in the horse with distinct subsets of miRNAs differentially
expressed in a tissue-specific manner [28,29]. Due to their conservation, a majority of equine
mature miRNAs have been perfectly matched to human disease-associated miRNAs [30], indicating
the potential of investigating miRNA profiles in equine allergic and other conditions [31].

We investigated serum miRNAs and compared the expression profiles of 37 asthmatic Warmblood
horses in comparison with 35 unaffected control horses using miRNA-seq. As erythrocyte-derived
miRNA may bias the expression profile of serum miRNA [32], we took into account the level of
hemolysis in our samples. Furthermore, we retrieved the potential targets of candidate miRNA
biomarkers and investigated their expression in peripheral blood mononuclear cells (PBMCs) [33] in
correlation with the serum miRNA expression in the same individuals.
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2. Materials and Methods

2.1. Samples

All animal experiments were performed according to the local regulations and with the consent of
the horse owners. Sample collection was approved by the Animal Experimentation Committee of the
Canton of Bern, Switzerland (BE33/07 (approved 28 March 2007), BE58/10 (approved 19 May 2010),
and BE10/13 (approved 19 March 2013)). Phenotyping was performed based on the HOARSI (horse
owner assessed respiratory signs index) scoring system [34–36]. The HOARSI system is based on the
clinical signs and categorizes horses with a score ranging from 1 to 4 (healthy to severe). A HOARSI
of 1 indicates no clinical signs of respiratory disease, 2 implies mild clinical signs, 3 means moderate
signs and 4 stands for severe clinical signs. Horses presenting a HOARSI of 3 or 4 were considered to
suffer from severe equine asthma, while horses with a HOARSI of 1 were used as controls.

We used 79 serum samples derived from Warmblood horses. We reassessed our phenotypic data
published before [16,33] and corrected for their status based on reports we received from the horse
owners (Table S1). As phenotypic changes for seven horses were reported, these horses were only used
for novel miRNA identification but excluded from downstream differential miRNA expression analysis.
The age of the control horses ranged from 6 to 32 years (median = 19 years; one horse was six years
old, others ≥ 12 years). The asthmatic horses were 9 to 24 years old (median = 16 years) and were in
the remission phase of the disease. The studied horses are part of three distinct cohorts: two half-sib
families and one unrelated cohort. The blood collection procedure and the investigated individuals
were described in our previous studies [16,33,37]. We used 2 mL of serum for the small RNA extraction
with the miRNeasy serum/plasma kit (QIAGEN, Hilden, Germany) using an optimized procedure that
was described in more detail in a previous publication [38]. In order to verify the level of hemolysis in
serum samples, we used a VersaMax ELISA Microplate Reader (Molecular Devices, Sunnyvale, CA,
USA) and SoftMax Pro software (version 3.1.2, Molecular Devices). The absorbance in 200 µL of serum
was measured at 414 nm, which is the wavelength of maximum absorbance for hemoglobin [32,39].
The quantity of small RNA samples was measured with a QuBit fluorimeter 2.0 (Invitrogen, Carlsbad,
CA, USA) and 22 (28%) samples were additionally assessed for miRNA concentration and RNA length
distribution with a Bioanalyzer (Agilent, Santa Clara, CA, USA). Next, 5 µL of each small RNA sample
was converted into single-end libraries following the standard protocol of the NEBNext Multiplex
Small RNA Library Prep Set for Illumina (New England Biolabs, Ipswich, MA, USA). The libraries
were then sequenced on five lanes using the Illumina HiSeq 2500 system (Illumina, San Diego, CA,
USA) with 50 sequencing cycles.

2.2. Data Pre-Processing and Initial Quality Control

Raw sequencing data quality was assessed with FastQC software [40]. Since truncated adapter
sequences were reported by FastQC to be over-represented, a FASTA file was generated with the
original adapter sequence plus the sequences corresponding to truncated adapters reported by FastQC
for every sample. These multiple adapter sequences, as well as low quality base calls (q < 20), were
trimmed with cutadapt (v. 1.8) [41] with the following options: –trim-n -a file:‘sample specific adapter
sequences in FASTA file’ -m 15 -q 20. The resulting read length distribution was further analyzed
as next quality control step. The sequencing dataset of 42 controls and 37 cases is available at the
European Nucleotide Archive (ENA) [42].

2.3. Novel miRNA Identification

For the identification of potential novel equine miRNAs, the quality and adapter trimmed
reads were mapped to the reference genome (EquCab2.0) [43] using miRDeep2 (v.0.0.7) [44]. Briefly,
miRDeep2 predicts novel miRNAs by aligning the reads to a reference genome and extracting candidate
pre-miRNA sequences from the aligned genomic DNA loci and these extracted pre-miRNA sequences
are assigned a score based on the ability of the precursor to fold to a pre-miRNA like secondary
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hairpin structure, the absolute and relative number of reads mapping to the three distinct precursor
products that result from dicer processing (5p arm, 3p arm and loop), the possible conservation of the
5′ end and the presence of a 3′ overhang in the mature sequence [45]. If the algorithm fails to identify
a stem-loop product within the candidate, then the miRNA precursor is rejected. The processed reads
from all 79 FASTQ files were mapped using the mapper.pl script of the miRDeep2 tool in one run
using a configuration file containing a list of all FASTQ files names and a three-letter code for each
sample. The module maps the reads to the genome with Bowtie1 [46] keeping only the alignments with
0 mismatches (option -n) in the seed region and only reads that do not map to more than five different
loci in the genome are kept (option -m). The module was run with the following parameters: -d -v -u
-e -h -o 16 -m -n -q -p. Subsequently, the core algorithm module miRDeep2.pl was used to discover
potential novel miRNAs as described previously [29]. MiRDeep2 assigns each novel miRNA a log-odds
score (further referenced as miRDeep2 score) that represents the probability that the precursor is a true
miRNA precursor based on the theory of miRNA processing by dicer as well as the actual data and the
alignment pattern of the reads. Any pre-miRNA candidate with a miRDeep2 score of at least 0 was
considered as a potential (predicted) miRNA. To filter for predicted potential novel horse-specific
miRNAs with high confidence, a miRDeep2 score cut-off of four was adopted. This cut-off was set
based on our initial analysis: the signal-to-noise ratio (total miRNA precursors reported divided by
the mean estimated false positive miRNA precursors over 100 rounds of permuted controls) reached
a reasonable level of 9.4:1 at that threshold while the value dropped drastically for lower miRDeep2
scores. Additionally, the percentage of the detected novel miRNAs that were estimated to be true
positives dropped drastically too at that threshold (82% true positive rate at a miRDeep2 score of
4 versus a rate of 54% true positive rate at a miRDeep2 score of 3; Table S2). Human known miRNAs
were used as a guide for the novel equine miRNA identification. Known equine and human miRNAs
were obtained from the miRBase database, release 21 [47]. Finally, overlapping novel miRNAs (by at
most 1 nucleotide) were merged using BED tools [48].

2.4. Identification of a Read Count Threshold to Select Relevant miRNAs

The distribution of miRNA transcript counts in our dataset showed three distinct phases, similar
to that described in Koh et al. [49]. The first phase with low count miRNAs likely represents noise in
the dataset, due to random expression of these transcripts. The second phase shows similar expression
between replicates which may be attributed to steady state expression or consistently expressed miRNA
transcripts. Finally, the last phase consists of miRNAs with large count numbers. Kolmogorov-Smirnov
test (KS-test) was used to examine the similarity of the empirical distributions between replicates
and distinguish biologically relevant miRNAs from the noisy transcripts. The D statistic of a given
KS-test near zero indicates similar distributions, while a larger test statistic indicates more severe
bias. Similar to Koh et al. we used the D statistic as a cost function, hence we first determined the
D statistic of the whole dataset and then determined the D statistic by iteratively excluding miRNAs
not achieving a required minimal read count level [49]. As we changed the minimum threshold value
for exclusion of low count miRNAs, we arrive at a low D statistic point indicating similar distributions.
The D statistic point where this first occurs is designated as the minimum threshold count value of
biological significance (code available on GitHub [50]).

2.5. Differential Expression Analysis

The dataset used for differential expression analysis consisted of a total of 71 horses: 34 controls
(19 females and 15 males) and 37 affected horses with severe equine asthma (one principal component
analysis (PCA) outlier and 7 phenotypically changed horses were excluded) (Table S7).

For differential expression analysis, both novel and known equine miRNAs (miRBase v21) were
used. The quantification of miRNA expression level was carried out using the quantifier.pl script of
the miRDeep2 tool applying the parameters -k -j.
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MicroRNAs not meeting the threshold for biological relevance determined by the KS-test approach
were filtered out. Furthermore, we removed lowly expressed miRNAs (showing zero counts in more than
10% of samples). The filtered miRNAs were then quality controlled using PCA (top 50 variable miRNAs)
based clustering. The PCA plot was produced using variance-stabilized counts [51]. Differential
expression analyses were carried out with edgeR (v. 3.16.5) [52] and DESeq2 (v. 1.14.1) [53]. For DESeq2,
we used the DESeq function, which estimates size factors and dispersions and finally fits a model in order
to perform differential expression tests using negative binomial generalized linear models. For edgeR,
the function calcNormFactors was used to normalize the count data, while the function estimateDisp was
used to estimate the dispersions and likelihood ratio test for generalized linear models (glmLRT) for the
differential expression tests. For both tools, the linear model applied corrected for the levels of hemolysis
as well as the underlying population structure (Table S1). MicroRNAs with a false discovery rate (FDR)
adjusted p-value (adjusted p) determined by DESeq2 below our FDR threshold of 0.05 were considered
as differentially expressed (up/downregulated) and will further be referenced as differentially expressed
miRNAs (DEmiRs).

2.6. mRNA-miRNA Interaction

We next retrieved potential target genes of the DEmiR, showing the lowest adjusted p-value,
eca-miR-128, with TargetScan (v. 6.2) [54]. Human gene symbols of the target genes were converted to
horse Ensembl IDs with the Ensembl biomart tool [55]. TargetScan searches for conserved target-sites
in the 3′ UTR of equine genes. The human homologous gene symbols of the potential target genes were
used for Gene Ontology (GO) (GO, release 106) biological process network enrichment analysis with
the GeneCodis tool [56–59]. The list of reported target genes was intersected with a list of previously
published differentially expressed mRNA in PBMCs of the same horses in order to investigate potential
regulatory miRNA-mRNA networks [33].

2.7. Functional Enrichment of DEmiR Target Genes

A high confidence set of experimentally-validated target genes for all DEmiR (human homologues)
was obtained from DIANA-TarBase v. 7.0 [60] using a stringent prediction score threshold of 0.9
(Table S8). The resulting set of high-confidence target genes was used with the GeneGo database
to perform a functional enrichment analysis. MetaCoreTM v. 6.32 (Thomson Reuters, London, UK)
software was used for GeneGo pathway and network analysis. The auto expand algorithm was used
for building a functional network.

2.8. Code

The scripts that were used for the analyses of this study can be found on GitHub [50].

3. Results

3.1. Small RNA Sequencing and Data Quality Control

As a first step, small RNAs were extracted from 79 horse serum samples (Figure 1). Few samples
were visibly hemolytic and the absorbance values at 414 nm ranged from 0.53 to 4 (median = 1).
We used between 12.55 ng and 88.00 ng (mean = 36.60 ng) of the small RNA extracts for the library
preparation. Subsequent to an initial quality control step using FASTQC [40], we performed adapter
and quality trimming. The mean percentage of total reads remaining after applying cutadapt [41]
was 86.6% and truncated adapters were trimmed from an average of 0.34% of total reads. After
pre-processing of the raw reads, we obtained 11.7 million reads per library on average. The mean
number of reads mapped by Bowtie1 to the horse reference genome per library was 6.99 million.
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genome. After mapping, the reads were collapsed into 303000 unique reads per library on average and 
were used for novel miRNA identification and expression quantification with miRDeep2 [44]. 

Figure 1. Flow chart outlining the pipeline for novel miRNA detection as well as miRNA expression
profiling and differential expression analysis. After extracting small RNA from serum samples of
79 horses, the samples were sequenced and analyzed using state of the art bioinformatics tools. While
all samples were used for the novel miRNA identification, only 71 horses were used for the differential
miRNA expression analysis.

Analysis of the read length distribution of all samples revealed a clear bimodality where on
average 4.6% of the total reads constituted the first peak between 21 and 24 nucleotides (nts) while
the second and more prominent peak was located between 29 and 33 nts with 95% of the total reads
falling into this range (Figure 2A). Since the percentage of mapped reads to the equine genome
showed a rather low value of median 38% using Bowtie1 [46] (mapper.pl module), different mapping
algorithms were applied to investigate the impact on the percentage of mapped reads and the impact on
the percentage of reads mapped to annotated regions coding for miRNAs. Even though the percentage
of reads mapped to the equine genome was increased to a median of 70% for Burrows-Wheeler
Aligner (BWA) [61] (parameters -n 1 -o O -e O -k 0 -l 8 -t 4) and 95% for Bowtie2 [62] (parameters -q
–very-sensitive-local), the percentage of reads mapping to known miRNA regions relative to the number
of total reads was higher in case of Bowtie1 (4% of reads mapped to known miRNAs) when compared
to Bowtie2 and BWA (2% mapped to known miRNAs). Thus, the mapper.pl script (implementing
Bowtie1) was used to map the small RNA sequencing reads to the equine genome. After mapping,
the reads were collapsed into 303,000 unique reads per library on average and were used for novel
miRNA identification and expression quantification with miRDeep2 [44].

3.2. Novel miRNA Identification

The core algorithm of miRDeep2 reported a total of 721 putative novel miRNAs with a miRDeep2
score between 0 and 10 (Table S2). After applying our miRDeep2 score cut-off of 4 to filter for
high confidence novel miRNAs, a set of 192 novel miRNAs remained. Of this subset of potential
novel miRNAs, three mapped to ribosomal or transfer RNA regions (Rfam v. 12.2) [63] and showed
non-significant randfold p-value suggesting the secondary structure was unlikely to match the one of
a miRNA precursor. This resulting set of high confidence novel miRNAs is listed in Tables S3 and S4.
The precursors of 47 of the novel miRNAs overlapped with a set of novel equine miRNA precursors
identified in a previous study of our group [33].



Genes 2017, 8, 383 7 of 24

Genes 2017, 8, 383  7 of 24 

 

 
Figure 2. Read length distribution and miRNA expression profile. (A) Read length distribution after 
adapter and quality trimming for all 79 samples. The error bars indicate the standard error of the 
mean; (B) Boxplots of the DESeq2 normalized read counts of the 20 most highly expressed known 
miRNAs in all samples. For better representation of the data, the top expressed miRNA eca-miR-486-
5p is shown in a separate plot with a different scale on the y-axis. 

3.2. Novel miRNA Identification 

The core algorithm of miRDeep2 reported a total of 721 putative novel miRNAs with a 
miRDeep2 score between 0 and 10 (Table S2). After applying our miRDeep2 score cut-off of 4 to filter 
for high confidence novel miRNAs, a set of 192 novel miRNAs remained. Of this subset of potential 
novel miRNAs, three mapped to ribosomal or transfer RNA regions (Rfam v. 12.2) [63] and showed 
non-significant randfold p-value suggesting the secondary structure was unlikely to match the one 
of a miRNA precursor. This resulting set of high confidence novel miRNAs is listed in Tables S3 and 
S4. The precursors of 47 of the novel miRNAs overlapped with a set of novel equine miRNA 
precursors identified in a previous study of our group [33]. 

3.3. Threshold Read Count Value Determination by KS-Test 

A threshold value of 13 (DESeq2 mean normalized) read counts was set for biological 
significance by applying the KS-test approach (see Materials and Methods for details). Therefore, the 
base mean counts for expressed miRNAs had to be ≥ 13 to be considered biologically relevant. 

Figure 2. Read length distribution and miRNA expression profile. (A) Read length distribution after
adapter and quality trimming for all 79 samples. The error bars indicate the standard error of the mean;
(B) Boxplots of the DESeq2 normalized read counts of the 20 most highly expressed known miRNAs in
all samples. For better representation of the data, the top expressed miRNA eca-miR-486-5p is shown
in a separate plot with a different scale on the y-axis.

3.3. Threshold Read Count Value Determination by KS-Test

A threshold value of 13 (DESeq2 mean normalized) read counts was set for biological significance
by applying the KS-test approach (see Materials and Methods for details). Therefore, the base mean
counts for expressed miRNAs had to be ≥13 to be considered biologically relevant.

3.4. MiRNA Expression Profile

We detected 515 miRNAs (189 novel predicted miRNAs and 326 known miRNAs) to be expressed
in our dataset. After filtering for low counts and mean threshold values of ≥13 normalized counts
across all samples, 91 miRNAs remained, which were later used for differential expression analysis.
Of the filtered miRNAs 61 (67%) were expressed at a low to moderate level (10–250 DESeq2 normalized
counts on average), 16 miRNAs (18%) were expressed at a moderate to high level (251 to 999 DESeq2
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normalized counts) while 14 miRNAs (15%) showed high expression levels of more than 1000 DESeq2
normalized counts. Of the total counts 86% were contributed by the top five most highly expressed
miRNAs (eca-miR-486-5p, eca-miR-92a, eca-miR-191a, eca-miR-423-5p, eca-miR-148a). The miRNA
with the highest expression counts was eca-miR-486-5p showing 63% of the total counts (Figure 2B).
A PCA plot was generated with the 50 most variable miRNAs. Even though no clear clusters of case
and control horses were formed, one outlier sample was detected and removed. This outlier was more
than three standard deviations away from the mean of the respective principal component loadings
on principal component 1 and 3 and was therefore excluded from further analyses (Figure A1). Thus,
the resulting dataset for the following downstream analyses consisted of 71 samples.

3.5. Hemolysis Effect on miRNA Expression Profile

Twenty-six miRNAs were significantly affected by the level of hemolysis at a FDR threshold of
0.05 according to DESeq2 (Table S5). Figure A2 depicts two miRNAs representing expression levels of
miRNAs that are either positively or negatively affected by the level of hemolysis. The analysis with
the tool edgeR showed following differenced in contrast to the analysis with DESeq2: four miRNAs
were not significantly affected by the level of hemolysis (eca-miR-744, eca-miR-128, eca-miR-28-3p and
eca-miR-125a-5p) and additionally five significantly affected miRNAs were reported: eca-miR-423-5p,
eca-let-7g, eca-miR-19b, eca-miR-425, eca-miR-7177b (Table S6). Hence the following linear model
was used to determine differentially expressed miRNAs between asthmatic and control horses which
accounts for the hemolysis effect and the underlying population structure:

∼ absorbance values + f amily1 + f amily2 + condition

The two binary covariates family1 and family2 encode the underlying population structure of three
cohorts: family1, family2 and an unrelated cohort.

3.6. Asthma Related miRNAs

Using DESeq2, we identified 11 miRNAs as statistically significant DEmiRs after accounting
for the level of hemolysis: eca-miR-128, eca-miR-744, eca-miR-197, eca-miR-103 and the closely
related eca-miR-107a, eca-miR-30d, eca-miR-140-3p, eca-miR-7, eca-miR-361-3p, eca-miR-148b-3p and
eca-miR-215. Eight of these eleven DEmiRs were also reported by edgeR (eca-miR-7, eca-miR-148b-3p
and eca-miR-215 missed the significance threshold) (Table 1). The log2 fold changes of statistically
significant DEmiRs varied between −0.49 and 0.47 (Figure A3).

Table 1. Asthma-dependent DEmiRs. The list of significantly differentially expressed miRNAs affected
by the asthmatic condition. The table includes mature equine miRNA ID, human mature miRNA
homologue ID, DESeq2 normalized mean expression values, fold change in logarithmic scale and the
false discovery rate (FDR) adjusted p-value reported by DESeq2 [51] and edgeR [52].

Mature Equine
miRNA

Human Mature
miRNA Homologue

Mean (DESeq2
Normalized) Expression

Log2 Fold
Change

Adjusted p
(DESeq2)

Adjusted p
(edgeR)

eca-miR-128 hsa-miR-128-3p 526 −0.49 8.65 × 10−4 1.66 × 10−3

eca-miR-744 hsa-miR-744 168 −0.27 0.028 0.044
eca-miR-197 hsa-miR-197 633 −0.36 0.028 0.044
eca-miR-103 hsa-miR-103a-3p 51 0.34 0.028 0.044

eca-miR-107a hsa-miR-107 51 0.34 0.028 0.044
eca-miR-30d hsa-miR-30d 2073 −0.41 0.028 0.044

eca-miR-140-3p hsa-miR-140-3p 251 0.37 0.033 0.044
eca-miR-7 hsa-miR-7-5p 70 0.47 0.035 0.06

eca-miR-361-3p hsa-miR-361-3p 216 −0.39 0.035 0.044
eca-miR-148b-3p hsa-miR-148b-3p 103 0.29 0.043 0.084

eca-miR-215 hsa-miR-215 823 0.44 0.05 0.11
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3.7. mRNA-miRNA Interactions

We retrieved 212 potential (predicted and experimentally known) target genes of the miRNA
with the lowest adjusted p-value, eca-miR-128 from the TargetScan database. The most significantly
enriched GO biological processes (release 106) were signal transduction (GO:0007165, corrected
hypergeometric p-value, Hyp* = 4.33 × 10−4) and regulation of transcription, DNA-dependent
(GO:0006355, Hyp* = 4.47 × 10−4) [56–59]. Of the 212 human target genes 174 genes (82%) are
annotated in the horse and 30 of them were previously reported to be differentially expressed in
PBMCs of asthmatic horses when stimulated with either Mock, LPS, recombinant cyathostomin
antigen or with hay dust extract in comparison to control horses (Figure 3) [31].
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Figure 3. The number of miR-128 target genes identified as differentially expressed genes (DEGs) in
peripheral blood mononuclear cells (PBMCs). The list of target genes of miR-128 was intersected with
the list of DEGs from a previous study analyzing mRNA expression in PBMCs. These PBMCs were
derived from the same blood samples as the serum analyzed in this study. The PBMCs were either
unstimulated (Mock) or stimulated with lipopolysaccharides (LPS), recombinant cyathostomin antigen
(RCA), or hay dust extract (HDE) [33].

3.8. Functional Enrichment of DEmiR Target Genes

For investigating functional enrichment of DEmiR target genes, we first constructed a high-
confidence set of experimentally validated target genes of all the DEmiRs using the DIANA-TarBase
database v. 7.0. This resulted in a set of 576 unique target genes. Table S8 illustrates all the target genes
for each DEmiR. The top 10 most enriched GeneGO pathway maps associated with the 576 target
genes regulated by DEmiRs are shown in Table 2.

Biological process networks in the GeneGo database analysis are networks of cellular functions and
regulations based on functionally interconnected pathways. Process network analysis showed statistically
significant enrichment for developmental networks (hedgehog signaling, epithelial-to-mesenchymal
transition), signal transduction (NOTCH signaling, WNT signaling), translation (regulation of initiation),
cell cycle (G1-S growth factor regulation, G1-S interleukin regulation, G1-S), cell adhesion (amyloid
proteins) and proliferation (positive regulation cell proliferation).
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Table 2. Top 10 enriched GeneGo pathway maps (based on MetaCore database). The pathway maps
with the number of total genes involved and the number of target genes enriched for the pathway and
the false discovery rate adjusted p-value (Adjusted p).

Maps Total Genes in
Pathway

Target
Genes Adjusted p

Development: Regulation of epithelial-to-mesenchymal transition (EMT) 64 11 1.024 × 10−4

Development: phosphatidylinositol (3,4,5)-triphosphate (PIP3) signaling in
cardiac myocytes 47 9 2.703 × 10−4

Translation: Regulation of eukaryotic initiation factor 2 (EIF2) activity 39 8 4.293 × 10−4

Neurophysiological process: Dynein-dynactin motor complex in axonal
transport in neurons 54 9 4.595 × 10−4

Regulation of glycogen synthase kinase 3 beta (GSK3β) in bipolar disorder 46 8 9.295 × 10−4

Development: hepatocyte growth factor (HGF)-dependent inhibition of
transforming growth factor beta(TGFB)-induced EMT 34 7 9.295 × 10−4

Cell cycle: Regulation of G1/S transition (part 1) 38 7 1.730 × 10−3

Translation: Insulin regulation of translation 42 7 2.997 × 10−3

Development: WNT signaling pathway. Part 1. Degradation of
beta-catenin in the absence WNT signaling 19 5 3.558 × 10−3

Development: Thrombopoietin-regulated cell processes 46 7 4.232 × 10−3

The enrichment for diseases resulted in an enrichment of respiratory tract related diseases
(lung neoplasms, respiratory tract neoplasms, thoracic neoplasms, respiratory tract diseases, lung
diseases, rectal neoplasms, genital neoplasms female, rectal disease, glioma, neoplasm neuroepithelial).
We then investigated the regulatory miRNA-protein interaction networks using GeneGo database with
homologous human miRNAs. This analysis showed nine of the eleven significant DEmiRs are part of
an interconnected network containing the following highly interconnected hubs: ATF/CREB (activating
transcription factor/cAMP response element modulator) family, polycomb repressive complex 1 (PRC1),
Cyclin E, c-Fos and RelA (p65 NF-κB subunit) and histone deacetylase class I (Figure 4).

Genes 2017, 8, 383  10 of 24 

 

Table 2. Top 10 enriched GeneGo pathway maps (based on MetaCore database). The pathway maps 
with the number of total genes involved and the number of target genes enriched for the pathway 
and the false discovery rate adjusted p-value (Adjusted p). 

Maps Total Genes 
in Pathway 

Target 
Genes 

Adjusted p 

Development: Regulation of epithelial-to-mesenchymal transition (EMT) 64 11 1.024 × 10−4 

Development: phosphatidylinositol (3,4,5)-triphosphate (PIP3) signaling in 
cardiac myocytes 

47 9 2.703 × 10−4 

Translation: Regulation of eukaryotic initiation factor 2 (EIF2) activity 39 8 4.293 × 10−4 
Neurophysiological process: Dynein-dynactin motor complex in axonal 
transport in neurons 

54 9 4.595 × 10−4 

Regulation of glycogen synthase kinase 3 beta (GSK3β) in bipolar disorder 46 8 9.295 × 10−4 
Development: hepatocyte growth factor (HGF)-dependent inhibition of 
transforming growth factor beta(TGFB)-induced EMT 

34 7 9.295 × 10−4 

Cell cycle: Regulation of G1/S transition (part 1) 38 7 1.730 × 10−3 
Translation: Insulin regulation of translation 42 7 2.997 × 10−3 
Development: WNT signaling pathway. Part 1. Degradation of beta-
catenin in the absence WNT signaling 

19 5 3.558 × 10−3 

Development: Thrombopoietin-regulated cell processes 46 7 4.232 × 10−3 

Biological process networks in the GeneGo database analysis are networks of cellular functions 
and regulations based on functionally interconnected pathways. Process network analysis showed 
statistically significant enrichment for developmental networks (hedgehog signaling, epithelial-to-
mesenchymal transition), signal transduction (NOTCH signaling, WNT signaling), translation 
(regulation of initiation), cell cycle (G1-S growth factor regulation, G1-S interleukin regulation, G1-
S), cell adhesion (amyloid proteins) and proliferation (positive regulation cell proliferation). 

The enrichment for diseases resulted in an enrichment of respiratory tract related diseases (lung 
neoplasms, respiratory tract neoplasms, thoracic neoplasms, respiratory tract diseases, lung diseases, 
rectal neoplasms, genital neoplasms female, rectal disease, glioma, neoplasm neuroepithelial). 
We then investigated the regulatory miRNA-protein interaction networks using GeneGo database 
with homologous human miRNAs. This analysis showed nine of the eleven significant DEmiRs are 
part of an interconnected network containing the following highly interconnected hubs: ATF/CREB 
(activating transcription factor/cAMP response element modulator) family, polycomb repressive 
complex 1 (PRC1), Cyclin E, c-Fos and RelA (p65 NF-κB subunit) and histone deacetylase class I 
(Figure 4). 

 
Figure 4. miRNA-protein network. Network built using MetaCore (Thomson Reuters) including nine 
interconnected significant DEmiRs (light blue circles). 
Figure 4. miRNA-protein network. Network built using MetaCore (Thomson Reuters) including nine
interconnected significant DEmiRs (light blue circles).



Genes 2017, 8, 383 11 of 24

4. Discussion

In the light of the constantly increasing number of allergies in humans [1] and also among
companion animals [64], there is an urgent need for non-invasive biomarkers to help predict the risk
of asthma development. We used a large cohort of 71 mature horses of different age, sex and country
of origin, to search for a non-invasive biomarker for asthmatic condition and a better understanding of
the pathology of the disease. Using the tool miRDeep2, we were able to identify 142 putative novel
equine miRNAs in serum. The high-confidence novel miRNAs were combined with the known equine
miRNAs from miRBase and expression profiling followed by differential expression analysis was
performed. In agreement with previous reports of plasma expressed miRNAs in horses, one of the top
expressed miRNAs across all samples was eca-miR-486-5p [65].

4.1. Hemolysis Effect on miRNA Expression Profile

MiRNAs that are affected by the level of hemolysis have been shown to be limited in their
applicability as disease biomarkers [32,66] and in line with these results, we report 26 miRNAs with
expression levels that are affected by the level of hemolysis (analysis performed with DESeq2). MiR-486
is known to be highly expressed in blood cells, mainly erythroid cells [67,68] and was one of the
26 miRNAs significantly affected by the level of hemolysis. From the four miRNAs commonly reported
as showing a hemolysis-affected expression (miR-451, miR-16, miR-92a and miR-486p) [32,39,66] only
eca-miR-486-5p (adjusted p = 2.5 × 10−4) and eca-miR-16 (adjusted p = 0.011) showed a fold-change
affected by the level of hemolysis. Some miRNAs show a decreased expression level with higher
levels of hemolysis which can possibly be explained by increased presence of nucleases or other
destabilizing agents released from lysed erythrocytes influencing miRNA turnover and thus leading
to the degradation of certain miRNAs [69]. We accounted for hemolysis in our linear model, however
lysis of other cell types could impact the results.

4.2. Asthma Related miRNAs

Differential miRNA expression analysis between asthmatic and control horses identified eleven
statistically significant miRNAs (Table 1). The differential expression of eca-miR-140-3p is considered
to be of low confidence, since the signal was mainly driven by just one sample and the differential
expression was not significant after the exclusion of the outlier individual (Figure A4). However, since
the specific outlier individual was not a global outlier (as shown by PCA) but rather only for this
one miRNA, this individual was still kept for differential expression analysis. Thus, the remaining
ten high-confidence DEmiRs between asthmatic and control horses were used for downstream
literature research to investigate their possible biological involvement in the pathophysiology of
severe equine asthma.

4.3. Biological Implications: Th2/Th17/Th1 Immune Response

The top differentially expressed miRNA (miR-128) has already been implicated in carcinomas [70,71]
and serum miR-128 was suggested as potential biomarker for e.g., glioma [72]. A potential role of
miR-128 in horse asthma may result from its pro-apoptotic properties [73,74]. This hypothesis is further
supported by previous studies on mRNA in asthmatic horses that showed disturbances in the cell
cycle [33,75–77].

MiR-128 has recently been shown to be downregulated in asthmatic bronchial epithelial cells and
to be part of a regulatory miRNA network that was confirmed to significantly increase the production
of interleukin 6 (IL6) and interleukin 8 (IL8) [78]. The increased presence of the pro-inflammatory
IL6 and IL8 were previously shown to be associated with the pathophysiology of asthma [79,80]. IL8
is a chemokine that is responsible for the recruitment and activation of neutrophil granulocytes and
multiple studies showed its overexpression in bronchoalveolar lavage cells and airway epithelium of
horses with severe equine asthma [81–83]. Consequently, airway neutrophilia is a prominent feature
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shown by horses suffering from severe equine asthma [13]. The pleiotropic cytokine IL6 is viewed as
a marker of airway inflammation in asthma (showed in humans and animal models) and has been
proposed as a therapeutic target in clinical trials [84,85].

The observed differences in the levels of several cytokines in equine asthma can most likely be
explained by alterations in the CD4+ T cell development pathway. Downregulated miR-128 has been
shown to positively regulate CD4+ T cell differentiation to T helper 2 (Th2) cells and to negatively
regulate Th1 cell maturation. Increased levels of IL6 as well as TGFβ are known to positively regulate
T cell maturation to T helper 17 (Th17) cells [26]. The differentially expressed miR-744 was shown to
target TGFβ, thus its downregulation in horses suffering from severe asthma, as shown in this study,
likely leads to increased levels of TGFβ [86].

Furthermore, increased levels of interleukin 17 (IL17A) in bronchoalveolar lavage cells of horses
suffering from severe equine asthma were reported, suggest the increased presence of Th17 cells [87].
It is known that Th17 cytokines (IL17A, interleukin 17F (IL17F), and interleukin 22 (IL22)) lead to
mucous cell metaplasia as well as increased levels of airway remodeling [88]. Also, differentially
regulated miR-197 was shown to be involved in the reciprocal regulation of the IL6/STAT3 pathway [89].
Interestingly, the STAT3 transcription factor is essential for Th17 cell differentiation [90,91].

It has previously been stated that an exaggerated Th2 response as well as a Th17 response is able
to explain a large portion of the pathophysiological events underlying severe equine asthma [13].

An enhanced Th17 response is also supported by a finding in a previous RNA sequencing study
investigating the transcriptome of unstimulated and stimulated PBMCs collected from the same horses
that this study covers. We showed a significant increase in C-X-C motif chemokine ligand 13 (CXCL13)
transcript abundance as well as a decrease in interferon gamma (IFNG) expression in horses affected by
severe equine asthma when compared to control horses [33]. CXCL13 is a B cell attracting chemokine
that was shown to be predominantly produced by Th17 cells but not Th1 or Th2 cells [92]. Increased
CXCL13 expression was linked with the formation of ectopic lymphoid structures like inducible
bronchus-associated lymphoid tissue (iBALT) [93]. The formation of iBALT was recently shown to
be dependent on Th2 as well as Th17 immunity in the course of a fungal infection of the lung in
mice [93]. Additionally, iBALT was shown to be present in 90–100% of human asthmatic individuals
and the abundance is correlating with asthma severity [94]. On the other hand IFNG is known to
be the hallmark cytokine of Th1 cells and its downregulation further supports a decline of Th1 cell
abundance [95].

An alternative hypothesis is that horses with severe asthma show dual positive Th2/Th17 cells
which were recently discovered and were already reported to be present in an elevated number in the
BAL fluid of individuals with severe asthma [96]. These striking concordances with this study further
strengthen the hypothesis of a predominant Th2 and Th17 immune response in severe equine asthma.

Accordingly, we also hypothesize that the significant deregulation of the ten miRNAs, as shown
in this study, might be a factor influencing the susceptibility of certain individuals to develop asthma
due to a deregulation in the T cell maturation pathway leading to polarization of the immune response
towards the Th2 and Th17 side and away from the Th1 side (Figure 5).

Rather than focusing on anti-IL6 agents to control the IL6 pathway (or other cytokines) as
a therapeutic approach for asthma and other disease as it has recently been proposed, a valid
novel approach could therefore be to consider the reported DEmiRs as potential therapeutic targets.
Following this approach, it might be able to prevent an amplified Th2/Th17 response and shift the
balance back to an increased Th1 cell differentiation [84].



Genes 2017, 8, 383 13 of 24

Genes 2017, 8, 383  13 of 24 

 

 
Figure 5. DEmiRs affecting CD4+ T cell development. Hypothetical network of DEmiRs affecting T 
helper (Th) cell maturation. Downregulated miR-128 is known to promote Th cell development 
towards the Th2 side while negatively regulating Th1 cell maturation. Additionally, IL6 production 
is increased by downregulated miR-128 while TGFβ production is enhanced by downregulated miR-
744. We hypothesize that this leads to an increased Th2/Th17 immune response upon antigen 
challenge rendering certain horses susceptible to develop severe equine asthma. This hypothesis is 
supported by a previous finding of downregulated interferon gamma (IFNG) and upregulated C-X-
C motif chemokine ligand 13 (CXCL13) in PBMCs of the same affected horses. 

4.4. Biological Implications: Asthma and Cell Cycle Regulators 

The closely related miRNAs miR-103 and miR-107a are known to pilot cell cycle arrest and their 
up-regulation in horses suffering from severe equine asthma support previous findings about cell 
cycle disturbances in equine asthma [33,97,98]. Compelling accordance with our results was provided 
by a recent study covering the autoimmune disease lupus erythematosus, a chronic inflammatory 
condition [99]. This study reported a deregulation of the cell cycle characterized by an upregulation 
of various miR-15/16 members, including miR-103 and miR-107a, as well as a downregulation of miR-
744. Hence, upregulation of miR-103 and miR-107 as well as downregulation of miR-744 in asthmatic 
horses highlight a potential role of this miRNA network in chronic inflammatory conditions. 

On the other hand, the significantly differentially expressed miR-361-3p is known to act as a 
tumor suppressor by interfering with the cell cycle. Interestingly this miRNA was recently shown to 
be significantly downregulated in patients affected by Sézary Syndrome, an aggressive CD4+ T-cell 
lymphoma [100]. Thus, the downregulation of eca-miR-361-3p in severe equine asthma might lead to 
the increased proliferation of CD4+ T-cells, or it might exhibit a yet unknown function in CD4+ T-cell 
differentiation. 

4.5. Known Biological Implications of the Remaining DEmiRs 

The epidermal growth factor receptor (EGFR)-mediated miRNA miR-7 is a known key player in 
multiple lung-related diseases and has previously been proposed as a biomarker in serum for chronic 
obstructive pulmonary disease and is thought to act by suppressing the coupling of SWI/SNF-related 
matrix-associated actin-dependent regulator of chromatin subfamily D member 1 (SMARCD1) with 
p53 [101,102]. MiR-148b-3p inhibits the expression of major histocompatibility complex (class I, G; 
HLA-G). HLA-G is a known susceptibility gene for asthma and therefore it has previously been 
proposed that miR-148b-3p might overtake a role in asthma susceptibility by interacting with HLA-
G [103,104]. The differentially expressed miR-215 has been shown to target IL17RS and IL21 [105,106]. 
Finally, miR-30d has previously been proposed as biomarker for asthma severity and is known to 
lead to airway smooth muscle hypertrophy [66,107]. 

Since all 11 DEmiRs detected in the course of this study showed a small log2 fold change between 
case and control horses, these miRNAs might not act as a non-invasive diagnostic biomarker for 
equine asthma due to the low specificity of a potential test. However, the DEmiRs of this study still 
provide novel insights about the possible underlying pathophysiology of severe equine asthma and 
thus highlight candidate pathways to target in future therapeutic approaches. 

Figure 5. DEmiRs affecting CD4+ T cell development. Hypothetical network of DEmiRs affecting
T helper (Th) cell maturation. Downregulated miR-128 is known to promote Th cell development
towards the Th2 side while negatively regulating Th1 cell maturation. Additionally, IL6 production is
increased by downregulated miR-128 while TGFβ production is enhanced by downregulated miR-744.
We hypothesize that this leads to an increased Th2/Th17 immune response upon antigen challenge
rendering certain horses susceptible to develop severe equine asthma. This hypothesis is supported
by a previous finding of downregulated interferon gamma (IFNG) and upregulated C-X-C motif
chemokine ligand 13 (CXCL13) in PBMCs of the same affected horses.

4.4. Biological Implications: Asthma and Cell Cycle Regulators

The closely related miRNAs miR-103 and miR-107a are known to pilot cell cycle arrest and their
up-regulation in horses suffering from severe equine asthma support previous findings about cell
cycle disturbances in equine asthma [33,97,98]. Compelling accordance with our results was provided
by a recent study covering the autoimmune disease lupus erythematosus, a chronic inflammatory
condition [99]. This study reported a deregulation of the cell cycle characterized by an upregulation
of various miR-15/16 members, including miR-103 and miR-107a, as well as a downregulation of
miR-744. Hence, upregulation of miR-103 and miR-107 as well as downregulation of miR-744 in
asthmatic horses highlight a potential role of this miRNA network in chronic inflammatory conditions.

On the other hand, the significantly differentially expressed miR-361-3p is known to act as a tumor
suppressor by interfering with the cell cycle. Interestingly this miRNA was recently shown to be
significantly downregulated in patients affected by Sézary Syndrome, an aggressive CD4+ T-cell
lymphoma [100]. Thus, the downregulation of eca-miR-361-3p in severe equine asthma might lead
to the increased proliferation of CD4+ T-cells, or it might exhibit a yet unknown function in CD4+

T-cell differentiation.

4.5. Known Biological Implications of the Remaining DEmiRs

The epidermal growth factor receptor (EGFR)-mediated miRNA miR-7 is a known key player
in multiple lung-related diseases and has previously been proposed as a biomarker in serum
for chronic obstructive pulmonary disease and is thought to act by suppressing the coupling of
SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1
(SMARCD1) with p53 [101,102]. MiR-148b-3p inhibits the expression of major histocompatibility
complex (class I, G; HLA-G). HLA-G is a known susceptibility gene for asthma and therefore it
has previously been proposed that miR-148b-3p might overtake a role in asthma susceptibility by
interacting with HLA-G [103,104]. The differentially expressed miR-215 has been shown to target
IL17RS and IL21 [105,106]. Finally, miR-30d has previously been proposed as biomarker for asthma
severity and is known to lead to airway smooth muscle hypertrophy [66,107].

Since all 11 DEmiRs detected in the course of this study showed a small log2 fold change between
case and control horses, these miRNAs might not act as a non-invasive diagnostic biomarker for
equine asthma due to the low specificity of a potential test. However, the DEmiRs of this study still
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provide novel insights about the possible underlying pathophysiology of severe equine asthma and
thus highlight candidate pathways to target in future therapeutic approaches.

4.6. mRNA-miRNA Interactions

For further in-silico downstream analysis we focused on the most significant DEmiR eca-miR-128.
Potential target genes of miR-128 are involved in signal transduction, an indisputable part of immune
response. Signal transduction was also the most enriched biological process by the differentially
expressed Genes (DEGs) related to asthma in equine PBMCs [33].

All three up-regulated DEGs (RAB20, member RAS oncogene family (RAB20), bromodomain
adjacent to zinc finger domain 2B (BAZ2B), H2.0 like homeobox (HLX)) in mock stimulated control
and asthmatic PBMCs derived from the same blood sample collection as the serum samples used
in this study are potential targets of miR-128 and were previously implicated in human asthma-like
diseases [108,109]. A single nucleotide polymorphism (SNP) in RAB20 has been associated with
childhood asthma in European-American and Hispanic-American populations using genome wide
association study (GWAS) [110]. Using the same technique, an SNP within BAZ2B was associated
with longitudinal changes in lung function and mean rates of decline by smoking pattern [111,112].
However, little is known about the BAZ2B function.

The third gene, HLX, is a Th1 specific transcription factor (TF) that interacts with another Th1
specific TF, T-box 21 (TBX21) required for the Th1 cells maturation and Th1-specific cytokine expression,
including high expression of IFNG and repression of IL4 expression [113–115]. Variation in the genes
of both the TFs have been associated with childhood asthma and variation within HLX significantly
decreased its activity [116–118]. It is likely that an increased expression of HLX in asthmatic horses
is maintained due to the decreased activity of the TF enforced by silencing of the HLX transcript by
miR-128. Whereas childhood asthma is thought to be a Th2-related type of asthma [119], severe asthma
in humans is characterized by high levels of Th1 cells [120]. Therefore, the decreased expression of
miR-128 and increased expression of its target, the HLX serve as potential therapeutic targets for equine
as well as human asthma.

4.7. Functional Enrichment of DEmiR Target Genes and Network Analysis

Functional pathway enrichment using MetaCore (Table 2) revealed that the most significantly
enriched pathway map was the regulation of epithelial-to-mesenchymal transition (EMT) (adjusted p
= 1.02 × 10−4). EMT has been proposed to be a key player in airway remodeling in asthma [121,122].
The second most significant pathway map, PIP3 signaling, takes over a prominent function in airway
inflammation. PIP3 is produced by PI3K and leads to the stimulation of several downstream targets
including the Akt kinase. The PI3K pathway overtakes a major role in CD4+ T cell differentiation
and activation, supporting our hypothesis of an altered CD4+ T cell development in severe equine
asthma [123]. Blocking the PI3K/Akt signaling pathway has previously been proposed as a therapeutic
approach for early stages of airway remodeling induced by the abnormal epithelial-to-mesenchymal
transition [124].

Phosphorylation of EIF2 function pathway (adjusted p = 4.29× 10−4) is required for the activation
of NF-κB which in turn leads to increased lung inflammation in response to an allergen challenge [125].
The regulation of GSK3β functional pathway (adjusted p = 0.29× 10−4) is essential for regulatory T cell
function and has been proposed as a therapeutic target against allergic airway inflammation [126,127].

The biological process networks enrichment analysis resulted in a significant enrichment in the
NOTCH signaling pathway, which is of special interest, since it was shown that the NOTCH pathway
is crucial for Th17 cell differentiation [128].

The miRNA-gene network analysis revealed multiple hubs like ATF/CREB, PRC1, Cyclin E, c-Fos
and RelA (p65 Nuclear Factor-κB subunit) and histone deacetylase class I (Figure 4).

Several of these most prominent hubs were previously implicated in asthma pathophysiology. The
autoimmune disease modulating ATF/CREB pathway has been shown to promote Th17 differentiation
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together with CRTC2 [129]. Increased c-Fos expression in T lymphocytes has been shown to be involved
in corticosteroid-resistant bronchial asthma [130]. The well-characterized NF-κB is a key regulator of
adaptive and innate immune response that plays a pivotal role in allergic airway diseases [131]. Besides,
the histone deacetylase class I hub confirms recent findings in human and murine model asthma
research where histone deacetylases were reported to play an important role in asthma pathogenesis
and histone deacetylate inhibitors showed promising results in asthma treatment studies in animal
models [132]. PRC1 is responsible for gene silencing by post-translational modification of histones
and exerts important functions in T cell differentiation. PRC1 recognizes H3K27me3 epigenetic
modifications and condenses chromatin, thus leading to stabilized Th2 cell function and restricting the
plasticity of the cells towards the Th1 side [133].

5. Conclusions

Using small RNA sequencing data from 71 individual horses, we identified 11 significantly
differentially expressed miRNAs in the serum of asthmatic horses compared to controls. Several of the
DEmiRs have previously been implicated in cell cycle control and some of them are known modulators
of CD4+ cell differentiation and airway remodeling. This confirms a previous finding of our group
reporting an impaired cell cycle control in RAO horses. We hypothesize that the immune response
underlying the pathophysiology of severe equine asthma follows a Th2/Th17 driven manner rather
than one of type Th1. This is backed by the fact that downregulated miR-128 was shown to negatively
regulate T cell maturation towards Th1 but to also positively regulate the maturation towards Th2
cells. Additionally, a modulated cytokine profile towards the IL6 and TGFβ side caused by decreased
levels of miR-128 and miR-197, as well as increased levels of miR-744 positively affect the maturation
of T cells towards the Th17 side.

Therefore, we propose that the decreased levels of serum miR-128 might yield insights into
the molecular mechanisms underlying asthma and might also provide room for novel therapeutic
strategies. Rather than focusing on anti-interleukin agents for therapeutic approaches we propose
that the identified differentially expressed miRNAs might act as novel therapeutic target to tackle
severe equine asthma pathophysiology. However, to evaluate the potential of the DEmiRS to act as
a non-invasive biomarker further research is needed. The 11 DEmiRs constitute future targets for
future asthma research, helping to shed light on the still unknown molecular mechanisms underlying
the disease. Since miRNAs are highly conserved and equine asthma shares striking similarities to
human asthma, these new insights about the miRNA profile in the serum of asthmatic horses offers
novel avenues for investigating the molecular pathology of human asthma [134,135].
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Figure A4. Expression of significantly differentially expressed miRNAs between asthmatic and control
horses. Boxplots showing the DESeq2 normalized read counts for the significant DEmiRs. The respective
FDR-adjusted p-value (adjusted p) is indicated. The first plot indicates the borderline significant
eca-miR-215 followed by the boxplot for eca-miR-140-3p which clearly indicates that the signal for that
miRNA is predominantly driven by one extreme outlier individual. After the exclusion of that outlier,
eca-miR-140-3p did not show significant differential expression anymore (last plot; adjusted p = 0.106).
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