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ABSTRACT: Here, we explore the chemical space of all
virtually possible organic molecules focusing on ring systems,
which represent the cyclic cores of organic molecules obtained
by removing all acyclic bonds and converting all remaining
atoms to carbon. This approach circumvents the combinatorial
explosion encountered when enumerating the molecules
themselves. We report the chemical universe database
GDB4c containing 916 130 ring systems up to four saturated
or aromatic rings and maximum ring size of 14 atoms and
GDB4c3D containing the corresponding 6 555 929 stereo-
isomers. Almost all (98.6%) of these ring systems are unknown
and represent chiral 3D-shaped macrocycles containing small
rings and quaternary centers reminiscent of polycyclic natural products. We envision that GDB4c can serve to select new ring
systems from which to design analogs of such natural products. The database is available for download at www.gdb.unibe.ch
together with interactive visualization and search tools as a resource for molecular design.

■ INTRODUCTION

Innovation at the level of molecular structures is essential to the
progress of chemistry.1 While over 100 million organic
molecules have already been synthesized, many more are in
principle possible, perhaps as many as 1060 below 500 Da.2−5

Beyond simple counting, the development of cheminformatics
methods such as SMILES to write 2D-molecular information in
compact format,6 and 3D-generators to convert 2D-structures
to 3D-models considering all possible stereoisomers and
conformers,7,8 has made it possible to explicitly enumerate
millions of virtual molecules.9 While most algorithms produce
lists of possible molecules following specific criteria on
demand,10−17 we have gained global insight into the entire
chemical universe by enumerating all possible molecules up to a
given size following simple rules of chemical stability and
synthetic feasibility.18−22 This strategy succeeded up to the
Generated DataBase GDB-17 containing 166.4 billion mole-
cules up to 17 atoms of C, N, O, S, and halogens.23,24

By visualizing GDB-17 in various property spaces, we found
that the chemical universe up to 17 atoms is mostly populated
by novel chiral 3D-shaped molecules, among which bioactive
compounds can be identified by virtual screening, synthesis,
and testing.25−34 However, we were unable to enumerate
molecules beyond 17 atoms due to the combinatorial explosion
of possibilities. Herein, we report an approach to overcome this
limitation by focusing on ring systems, which represent the
cyclic cores of organic molecules obtained by removing all
acyclic bonds and converting all remaining atoms to carbon, as
defined by Bemis and Murcko.35 Enumerating ring systems
leaves aside molecules arising from combinations of smaller
fragments such as those in virtual libraries listing the coupling
products of known building blocks with known reactions.36−42

Considering only a single representative for each ring system
furthermore reduces database size to manageable numbers
while retaining a central aspect of the structural identity of
molecules and therefore of their potential for novelty. Our
enumeration reveals that known ring systems as well as
previously reported collections of aromatic and heteroaromatic
rings43,44 only form a very small part of the chemical universe of
ring systems, which is strongly dominated by chiral and 3D-
shaped macrocycles. Such ring systems represent a defining
feature of natural products and an opportunity for expanding
chemistry into novel chemical space.45−47

■ RESULTS AND DISCUSSION
Database Assembly. We started our enumeration with the

3 282 214 777 graphs listed by the program GENG48 set to
produce all possible planar graphs up to 16 nodes with degree
two, three, or four, which was large enough to cover all
topological possibilities of tetracyclic ring systems yet small
enough for convenient handling. Next, we filtered this output to
retain only the 93 463 graphs up to four rings without acyclic
edges and converted them to saturated hydrocarbon SMILES.
We then used an iterative ring enlargement algorithm inserting
methylene groups in each single bond16 to exhaust the
possibilities under a set of maximum ring size criteria. This
procedure resulted in a total of 728 391 cyclic hydrocarbons up
to 30 atoms, which was the maximum size allowed by the
enumeration rules. The 151 largest ring systems allowed by
these rules featured all possible combinations of one 14-
membered, one seven-membered, and two six-membered rings
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connected by spiro centers. By contrast to our previous GDB
databases where many rules were applied to restrict ring strain,
the only rule used here was to remove tetracyclic ring systems
where an atom is shared by two small rings, which are frequent
but highly strained structures. We did not apply this rule up to
tricyclic ring systems because they form only a very small part
of the database, and such unusually strained ring systems might
be of interest for applications of our database related to
quantum chemistry calculations.49

We further diversified the ring systems by combinatorially
aromatizing all five- and six-membered rings, eliminating small
rings fused to aromatic rings in the process, which added
187 740 ring systems containing one to four aromatic rings. For
five-membered aromatic rings, we introduced a nitrogen atom
at the first possible position in the ring to form a pyrrole as one
of several possible chemically allowed forms of five-membered
aromatic rings, such as to obtain molecules that can be properly
handled by cheminformatics software. The complete database
of 916 130 ring systems was named GDB4c and stored as
SMILES (Figure 1).

We also generated a second database, GDB4c3D, listing the
3D-structures of our ring systems. We succeeded in converting
895 375 2D ring systems (97.7% of GDB4c) to 3D structures
representing 6 535 174 individual stereoisomers using the
program CORINA,7 which enumerates all possible stereo-
isomers of any given 2D molecule. This corresponds to an
average of 7.3 stereoisomers per 2D ring system. Additionally,
we found that the ChemAxon 3D builder with “fine” cleanup
mode was able to generate one 3D structure each for 20 755 of
the remaining 20 756 2D ring systems which had not been
accepted by CORINA. We also used the ChemAxon 3D builder
to optimize the geometry of the 6 535 174 3D structures
produced by CORINA and correct for some inaccuracies in
bond angles. The total size of the resulting GDB4c3D database
was 6 555 929 structures, stored in SDF and chiral SMILES
format. The database comprised 2 736 737 pairs of enantiomers
and 1 082 455 achiral ring systems.
For comparison purposes, we assembled a reference database

of known ring systems starting from all organic molecules in
the public databases DrugBank,50 ChEMBL,51 SureChEMBL,
ZINC,52 PubChem,53 and Reaxys.54 For each molecule, we
removed all acyclic atoms and bonds and converted all
remaining cyclic atoms to carbon and all nonaromatic bonds

to single bonds, which produced one or more ring systems for
each molecule. Five-membered aromatic rings were handled the
same way as when generating GDB4c, converting them all into
pyrroles. The ring systems were then combined, and doubles
were eliminated, leaving 79 502 ring systems. The frequency of
occurrence of ring systems in molecules followed a power law.
One ring system, benzene, accounted for 50% of the
occurrences, and the 10 most frequent ring systems accounted
for nearly 90% of all occurrences, which illustrates that the ring
system diversity of organic molecules is in fact quite low
(Figure 2, Table S1).

To form our reference database of known ring systems, here
called RDB, we only considered the 12 536 ring systems which
were also present in GDB4c, leaving out 57 637 ring systems
containing more than four rings (48 728) and/or rings larger
than 14 (16 629). We also generated a database of reference 3D
ring systems, here called RDB3D, by collecting the
corresponding 95 309 possible stereoisomers from GDB4c3D.
The restriction to RDB ring systems also found in GDB4c was
necessary because structural analysis (ring counts, etc.) as well
as 3D structure generation largely failed for RDB ring systems
not contained in GDB4c, mostly due to the presence of very
large rings.

GDB4c versus RDB. Here, we illustrate the composition
and novelty of GDB4c in comparison to known ring systems in
RDB by measuring the distribution of ring systems according to
various structural parameters (Figures 3 and 4, Table S2). Note
that since RDB only contains 12 536 ring systems following the
enumeration rules in Table 1, 98.6% of the 916 130 ring
systems in GDB4c are novel.
The heavy atom count (hac) histograms show that GDB4c

peaks at hac = 20, while RDB peaks at a smaller value of hac =
15 (Figure 3A). The larger size of GDB4c ring systems
compared to RDB reflects the fact that, compared to RDB,
GDB4c contains a much higher percentage of tetracyclic ring
systems (GDB4c, 98.8%; RDB, 74.6%; Figure 3B) and ring
systems containing at least one macrocycle (≥eight-membered
ring; GDB4c, 92.6%; RDB, 36.6%; Figure 3C). GDB4c is
overwhelmed by macrocycles because these offer more ring
connection possibilities than smaller rings and therefore
provide the largest number of ring systems in the exhaustive

Figure 1. Assembly procedure for GDB4c and GDB4c3D.

Figure 2. Frequency of occurrence of ring systems in known
molecules. Ring systems are sorted by decreasing frequency of
occurrence (logarithmic x axis) and the number of occurrences in
known molecules (left logarithmic y axis, blue curve), and the
cumulative coverage of known molecules by ring systems (right y-axis,
red curve) is shown.
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enumeration. By contrast, ring systems with a six-membered
ring as their largest ring are most abundant in RDB (34.1% of
the database) because six-membered rings dominate synthetic
chemistry, while macrocycles are generally more difficult to
synthesize and therefore more rarely explored.55

Both databases show a comparable distribution of ring
systems in terms of stereocenters, although GDB4c contains a
higher percentage of ring systems with stereocenters (856 692,
93.5%) compared to RDB (9969, 79.5%, Figure 3D). In both
cases, we observe an intriguing dominance of ring systems with

an even number of stereocenters (even/odd/no stereocenter,
GDB4c: 507 758/348 934/59 438, RDB: 7232/2738/2566)
reminiscent of the dominance of ring systems with even
numbers of carbon atoms in databases of known molecules.56

We believe that the dominance of ring systems with even
numbers of stereocenters in GDB4c and RDB reflects the fact
that a connection between two adjacent rings involves most
often zero (aromatic rings, spiro centers) or two stereocenters
(other bicyclic systems). The stronger dominance of ring
systems containing stereocenters in GDB4c compared to RDB

Figure 3. Property histograms for ring systems in GDB4c and RDB. Values (left axis, solid lines) and cumulative % (right axis, dashed lines) are
reported for GDB4c (red) and RDB (blue). (a) Heavy atom count; (b) ring count; (c) size of the largest ring; (d) number of stereocenters
(calculated from the 2D structure). See Figure S1 for the corresponding plots for GDB4c3D and RDB3D.

Figure 4. Pie charts of GDB4c and RDB as a function of the number of aromatic rings, number of small (three- or four-membered) rings, number of
quaternary centers, spiro centers. The value of each slice is in bold and the total number of ring systems is between parentheses. See Figure S2 for the
corresponding pie charts for GDB4c3D and RDB3D.
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reflects the smaller percentage of ring systems containing
aromatic rings in GDB4c (187 460, 20.5%) compared to RDB
(5707, 45.9%, Figure 4, Table S2). We further observe that,
compared to RDB, GDB4c has more ring systems containing at
least one quaternary center (GDB4c: 722 415, 78.9%; RDB:
6099, 48.6%) or at least one small (three- or four-membered)
ring (GDB4c: 520 043, 56.8%; RDB: 4015, 32.0%, Figure 4,
Table S2). Note that the higher abundance of quaternary
centers in GDB4c compared to RDB is partly caused by a
higher fraction of ring systems containing at least one spiro
center (GDB4c: 478 043, 52.2%; RDB: 3598, 28.7%).
Taken together, the above comparisons show that GDB4c

stands out by being more abundant than RDB in terms of
macrocycles as well as stereochemically rich ring systems
containing quaternary centers, including spiro centers, and
small rings. These differences reflect the difficulty in preparing
ring systems containing these structural elements but also

indicate opportunities for ring system novelty that can arise if
one is willing to synthesize these more challenging features.

GDB4c3D versus RDB3D. The trends observed in the
composition of GDB4c versus RDB are preserved when
comparing the 6 555 929 stereoisomers in GDB4c3D with the
95 309 stereoisomers in RDB3D (Figures S1 and S2, Table S3).
Note that for both GDB4c and RDB the enumeration of all
possible diastereomers in the corresponding 3D database
results in a smaller percentage of ring systems containing
aromatic rings or spiro centers because these structural features
are almost always nonstereogenic. An additional analysis in
terms of molecular shape as measured by the principal moment
of inertia57 (PMI) shows that both GDB4c3D and RDB3D
feature ring systems across the entire shape triangle (Figure
5A,B). Frequency histograms along the PMI axes show that
compared to RDB3D, GDB4c3D is slightly shifted away from
rod-shaped (lower PMI1 values) toward sphere-shaped (high
PMI1 values) and disk-shaped (lower PMI2 values) ring
systems, reflecting the higher frequency of ring systems with
quaternary centers and macrocycles (Figure 5C,D).

Strained Rings in GDB4c3D. To test whether the ring
systems enumerated in GDB4c contained strained rings, we
analyzed GDB4c3D in comparison to RDB3D and to organic
molecules up to 50 atoms in the Cambridge Structure Database
(CSD) in terms of the deviation of bond angle values from
their optimal values. Measuring all bond angles in GDB4c3D
(217 836 431 records), RDB3D (2 702 528 records), and in
CSD (4 776 156 records) and grouping them according to
atom hybridization (sp2/sp3), ring size (3, 4, 5, 6, > 6), and
position (endo/exocyclic) produced 10 different bond angle
categories. In each of these categories, the bond angles followed
a Gaussian-like distribution and mean value close to the
textbook value (Figure 6A). The distributions were very similar
between the three databases except in three cases, namely,

Table 1. Rules for Selecting Ring Systems in GDB4c

rule comment

(i) rules applied during ring
enlargement:

≤4 rings sets the maximum number of rings
to 4

≤2 rings larger than 6 atoms a maximum of two rings larger than 6
are allowed

≤1 ring larger than 7 atoms only one ring may be larger than 7
atoms

ring size ≤14 atoms rings allowed only up to 14-
membered

for tetracyclic systems only: no atom
in two small rings

restricts appearance of fused small
rings

(ii) rules for aromatization:
only 5- or 6-membered aromatic rings other ring sizes cannot be aromatic
no aromatic bonds in small rings excludes 3- and 4-membered rings

fused to aromatics

Figure 5.Molecular shape analysis of GDB4c3D against RDB3D. (a,b) PMI-plot of GDB4c3D (a) and RDB3D (b). Colors show the number of ring
systems per pixel and range from blue (smallest) to magenta (largest). In GDB4c3D, the range is between 1 and 800, and in RDB3D, it is between 1
and 20. (c) Normalized PMI1 frequency histogram. (d) Normalized PMI2 frequency histogram.
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angles at sp2 centers when they are in aliphatic rings or
exocyclic and angles at sp3 centers in at least seven-membered
rings, which occur in the more unusual and diverse structural
types.
To obtain a measure of ring strain from the bond angle value

distribution, we first fitted a normal distribution in each
category using as a guide the simplest molecules of each group,
from which a p value was computed for each angle (Table S4).
We then assigned a p value to each ring system by taking the
lowest p value across all its angles. This analysis showed a

comparable distribution of p values in all three databases, with
cases covering the entire p value range, including cases with
very low p values reflecting the presence of structures with
unusual bond angles. Both GDB4c3D and CSD molecules
peaked at p = 0.55, while RDB3D peaked at a higher value of p
= 0.65 (Figure 6B, note that for CSD the statistics is done per
molecule and not per ring system). Comparing p values with
the calculated heat of formation obtained from MOPAC for a
selection of 65 300 ring systems showed a good correlation
between both values, suggesting that bond angle deviation

Figure 6. Estimating ring system strain from bond angles. (a) Kernel density estimation (KDE) of the distribution of the angles in each of the 10
categories for the three databases: GDB4c3D, RDB3D, and CSD. The mean used for the normal distribution fitting is specified on a vertical dashed
black line (see Table S4 for more information). (b) KDE of the p value distribution in each database. (c) Scatter plot with regression line showing
the correlation between p value and heat of formation of a subsample of 3000 ring systems of GDB4c3D obtained from the bigger 65 300 ring
system sample. Notice that the linear regression test is from the whole 65 300 ring system sample and is significant with p value = 0.0, and the
Pearson’s correlation is −0.63. (d) Box plots of the heat of formation values categorized by binning the p value distribution in 0.1 intervals for a
sample of 65 300 ring systems in GDB4c3D.
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provides a good measure for overall ring system strain (Figure
6C,D). Since unusually strained ring systems are relatively rare
in the overall GDB4c, we have selected to leave them in the
databases and label all ring systems with the p value as a
structural warning. Ring systems with unusually strained
geometries might be of interest in the field of theoretical
chemistry.
Selected examples of ring systems with same ring sizes across

the p value range are shown in Figure 7. The difficulty to decide
on whether a ring system is synthetically possible or not on the
basis of the calculated numbers is illustrated by 1,1,1-propellane
(1) and bicyclo[1.1.1]pentane (2), which are both strained,
reactive yet synthetically accessible ring systems for which
practical synthetic routes have recently been discovered.58 On
the other hand, the spiro ring system 3 containing three four-
membered rings is unknown and probably not synthesizable as
it combines the difficult bicyclo[1.1.1]pentane with a strained
quaternary center at the spirocyclobutane. Among five-
membered ring systems, many innovative examples such as 4
and 5 do not present unusual ring strain; however, the
polycyclic aromatic five-membered ring system 6 has some of
the lowest p values and highest calculated energies in GDB4c
due to the presence of four very unusual exocyclic sp2 angles.
Among ring systems with six-membered rings, the highly
strained tricyclo[2.2.2.2]decane (7) is representative of ring
systems with pyramidalized quaternary centers that are clearly
not synthetically feasible. On the other hand, complex ring
systems such as 8 and 9 are not strained and constitute
attractive 3D-shaped scaffolds.
Interactive Chemical Space Maps. To facilitate the

understanding and exploration of GDB4c and GDB4c3D, we
have generated color-coded interactive chemical space maps in
the form of Java applets, called “mapplets,” following our

previously reported approach.31 These chemical space maps are
obtained by placing the databases in multidimensional chemical
spaces and performing dimensionality reduction.59,60 Here, we
consider chemical spaces whose dimensions correspond to the
individual bit values of atom-pair fingerprints counting the
number of atom pairs in different categories (here, aliphatic and
aromatic atoms) separated by increasing topological distances
for 2D structures61 or through-space distances for 3D
structures.62 These atom-pair fingerprints represent molecular
shape and pharmacophores, which are two key parameters
determining the biological activity of drug-like molecules.8 The
2D maps are produced by similarity mapping as a
dimensionality reduction method,63,64 calculating similarity
values to 173 reference ring systems, each selected randomly
from one of the 173 occupied value pairs (heavy atom count,
largest ring). The GDB4c-mapplet features interactive maps for
GDB4c, GDB4c3D, and the reference databases RDB and
RDB3D and can be downloaded at www.gdb.unibe.ch for
curiosity-driven exploration of the ring system universe.
The different color-coded similarity maps in the GDB4c

mapplet illustrate the structural diversity of GDB4c and
GDB4c3D (Figure 8). The map of GDB4c distributes ring
systems in concentric series of crescent-shaped groups of leaves
(Figure 8, left, and Figures S3 and S4). Each concentric group
of leaves contains ring systems with an increasing number of
nonaromatic rings, and each leaf contains a group of ring
systems of the same number of heavy atoms. GDB4c is most
densely populated in the upper right portion of the map,
representing nonaromatic ring systems with the largest rings.
By contrast, RDB mostly populates the lower left portion of the
map containing the smaller ring systems, in particular those
containing aromatic rings.

Figure 7. Examples of ring systems shown in 3D annotated with calculated p value and heat of formation. SMILES: (1) C1[C@]23C[C@]12C3.
(2) C1[C@H]2C[C@@H]1C2. (3) C1CC2(C1)[C@H]1C[C@@H]2C1. (4) C1C[C@]23C[C@H]1C[C@]21CC[C@@H](C1)C3. (5)
C1C[C@H]2CC3(C[C@H]2C1)C[C@H]1CCC[C@@H]1C3; (6) N1CC2NC3CNC4C3C2C1N4. (7) C1CC23CCC1(CC2)CC3.
(8) C1CC[C@@]23CCCC[C@]22CCCC[C@H]2CC[C@@H]3C1. (9) C1CC[C@@]23CC[C@@H]4CC[C@@H](C[C@@H]4[C@@H]-
2C1)C3.
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The map of GDB4c3D shows concentric crescent shaped
regions similar to the 2D ring system maps but with much
fewer geometrical features, reflecting the fact that the 3D atom
pair fingerprint is encoded from through-space distances
between atoms and does not perceive bond connectivity details
(Figure 8, right and Figure S5 and S6). As for the 2D ring
systems map, the largest crescent displays aliphatic ring
systems, while aromatic ring systems are grouped in the
smallest crescent at center. GDB4c3D is mostly occupying the
upper part of the outermost crescent containing nonaromatic
ring systems with large rings, while RDB3D has its highest
density in the left part of the third crescent featuring small ring
systems with a single aromatic six-membered ring.
Virtual Screening. Virtual screening guided by shape and

pharmacophore similarity is particularly successful in identifying
so-called “scaffold-hopping” analogs, which are molecules with
the same biological activity as the parent drug but with a very
different scaffold.65,66 Such similarity searching should be
possible for ring systems in GDB4c and GDB4c3D using the
atom-pair fingerprints Xfp or 3DXfp described above in the

context of our chemical space maps and might produce
interesting suggestions for new ring systems conserving
essential features of a known ring system as a help for
designing new analogs of known bioactive molecules.
To enable Xfp/3DXfp similarity searching in GDB4c/

GDB4c3D, we have created the corresponding Web-based
nearest neighbor search tools,33 which are accessible at www.
gdb.unibe.ch. The GDB4c browser takes any 2D structure as
input, extracts the largest parent ring system, and searches for
the Xfp-nearest neighbors of this ring system in GDB4c. The
GDB4c3D browser first generates a 3D structure from the
input molecule with CORINA using either the specified
stereochemistry or a single stereoisomer, extracts the largest
parent 3D ring system, and searches for 3DXfp-nearest
neighbors in GDB4c3D. Both browsers use the city-block
distance as a similarity measure because it enables preorganiza-
tion of the database for very fast searching.33 Note that the
geometry of the ring system is kept as in the parent functional
molecule; therefore if analogs of the ring system itself are
desired, the user should input the ring system directly and not

Figure 8. Color-coded chemical space maps of GDB4c (left) and GDB4c3D (right) obtained by similarity mapping. The maps are color coded
according to the indicated value from lowest (blue) to highest (magenta) value in the indicated value range. Interactive versions of these maps can be
downloaded as a “mapplet” Java application at www.gdb.unibe.ch. See Figures S3−S6 for all images available in the mapplet for GDB4c, RDB,
GDB4c3D, and RDB3D color-coded by HAC, frequency, aromatic ring count, aromatic atom count, stereocenter count, p value (ring strain), and
minimum ring count.
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the functionalized molecule. In both browsers, the search
results are displayed as a list of images, and the SMILES list can
be downloaded as a text file (Figure 9A,B).
These similarity browsers might help in designing new

analogs of known drugs, in particular polycyclic natural
products, as illustrated here with hasubanonine and vincadine
(Figure 9C,D). Starting with the chemical structures of these
natural products, we used the above-described browsers to
extract approximately 10 000 nearest neighbors of their parent
ring system from GDB4c and GDB4c3D. We then scored these
ring systems by similarity to the parent ring systems using the
ROCS shape Tanimoto,66 which is a more precise measure of
3D similarity than 3DXfp alone, and by Tanimoto similarity for
a binary 1024-bit Daylight type substructure fingerprint to
perceive bond connectivity details (Figures S7 and S8).67 We
identified in each case three new ring systems scoring relatively
high in both ROCS score and Tanimoto similarity but which
were not found either in our RDB or in Scifinder. We then
distributed the necessary atoms and functional groups to form
analogs of the reference natural products, placing these
functional groups manually at equivalent positions in the ring
system compared to the parent natural product. The resulting
virtual molecules 10−15 represent possible synthetic targets
with attractive natural product-like structures. While elegant,
these molecules would clearly be challenging to synthesize.

These examples are meant to illustrate how GDB4c or
GDB4c3D might serve as a source of inspiration for molecular
design.

■ CONCLUSION

In summary, we have enumerated all possible ring systems up
to four rings following a set of maximum ring size criteria and
obtained the databases GDB4c containing 916 130 ring systems
as 2D structures and GDB4c3D listing the corresponding
6 555 929 stereoisomers as 3D structures. By comparison,
known molecules exemplify only 79 502 ring systems, only
12 536 of which fall within the boundaries of GDB4c in terms
of ring count and sizes, implying that the vast majority of the
ring system chemical universe as enumerated in GDB4c is yet
unknown. The new ring systems in GDB4c are stereochemi-
cally rich tetracyclic macrocycles containing small rings and
quaternary centers including spiro centers. These features are
more challenging to synthesize than aromatic six-membered
rings which dominate in known ring systems. Tools for
interactive visualization and virtual screening of GDB4c and
GDB4c3D by similarity searching together with the databases
themselves are publicly available at www.gdb.unibe.ch. We hope
that these tools will serve as an aid and inspiration for synthetic
chemists to explore the vast and mostly unknown universe of
ring systems. Considering the vast number of possibilities to

Figure 9. Virtual screening of GDB4c3D. (a) GDB4c3D Web-browser search window interface for nearest 3DXfp-neighbor searching shown with
the natural product hasubanonine. (b) Browser results window showing the extracted parent scaffold of hasubanonine and the 3DXfp-nearest
neighbors. (c) Structure of hasubanonine, its ring system, ring system analogs identified by 3DXfp-similarity searching, and designed natural product
analogs 10−12. (d) Same as c for the natural product vincadine with design analogs 13−15. See methods and Supporting Information Figures S7
and S8 for details.
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design molecules from ring systems by building scaffolds with
various topologies,68,69 and functionalizing these scaffolds with
heteroatoms and substituents,35 exploring new ring systems
opens essentially unlimited opportunities to enrich the
structural diversity of drug-like compounds.

■ METHODS
Database Generation. All of the required software to

generate the 2D database was written in Java and uses the
JChem libraries by ChemAxon (www.chemaxon.com). For
GDB4c, exhaustive filtering using the tools specified before was
done after each step, to reduce to a minimum the number of
graphs/molecules to process at the next step. For GDB4c3D,
stereoisomers were obtained from CORINA (www.mn-am.
com/products/corina) in SDF form and all structures
optimized using the ChemAxon Fine 3D cleaner.
RDB was computed by grouping all molecules from

DrugBank, ChEMBL, SureChEMBL, ZINC, PubChem, and
Reaxys; stripping all molecules from acyclic bonds; converting
cyclic atoms to carbon; and reintroducing one N atom per five-
membered ring at the first available position (the aromatization
algorithm iteratively tries to add the nitrogen atom in each of
the positions: the first position that generates a valid pyrrole is
chosen, and the algorithm stops). All ring systems with a
maximum of 50 heavy atoms were retained in the database. The
RDB3D reference database containing 3D structures of ring
systems was created as follows: Xfp fingerprints were calculated
for ring systems in RDB and GDB4c databases (see below for
details of Xfp fingerprint). Each of the ring systems in the RDB
database was compared to ring systems in GDB4c by matching
their Xfp fingerprints. Whenever the Xfp fingerprint of the RDB
ring system was identical to the Xfp fingerprint of the ring
system in GDB4c, the respective ring system from GDB4c was
selected, and then all stereoisomers of that ring system in
GDB4c3D were extracted. In the case of comparisons, where
the Xfp fingerprint from RDB matched to more than one ring
system in GDB4c (due to fingerprint collision multiple rings
systems may have identical Xfp fingerprints), the GDB4c ring
systems that were considered were those that had the same
canonical smiles or, if none was found, the first one.
For the estimation of ring strain, the reference organic CSD

subset was created by considering all CSD molecules up to 50
heavy atoms composed of elements no other than C, H, N, O,
F, Br, or Cl. The counterions were removed, and ionization
states of molecules were adjusted to pH 7.4 using an in-house
built Java program as the starting point. If the compound was
available in complex form, only one of the largest fragments was
retained.
p Values. Calculations were done using the cluster

computing platform Apache Spark, with both Scala and Python
as programming languages. The chemistry libraries used were
RDKit in Python and ChemAxon JChem in Scala. For every
structure, each angle was measured and annotated with the
following properties: whether the angle is in a ring, angle ring
size, angle ring aromaticity, and carbon atom hybridization
state. The angles were then grouped in the categories specified
in Table S4. The fitted normal distributions of each category
had the mean obtained in one of three ways: (1) If there is a
minimal structure in which all angles are of that category, then
the mean of all these angles is considered; (2) if not, the
textbook value is used. (3) If there is no simple way of
determining the mean, the GDB4c3D mean is used (Table S4).
For the standard deviation, the value chosen was always 3 times

the standard deviation of all the molecules in GDB4c3D (Table
S4). Next, a z score was computed for each angle, and a two-
tailed p value was obtained. The angles were then grouped by
structure, and the lowest p value from all angles was selected.
The p value was annotated in the GDB4c3D SDF and SMILES
file.

Heat of Formation. The heat of formation of a sample of
65 300 ring systems extracted from GDB4c3D was calculated
using MOPAC2016 (openmopac.net). Hydrogen atoms were
first added to each ring system, and geometry was optimized
using ChemAxon fast. If the optimization failed, the hydrogens
were left at the default positions. Next, each structure was given
as input to MOPAC to compute the heat of formation using
the PM7 method with SYMMETRY and no structure
optimization (NOOPT). The output from MOPAC, alongside
information from each structure, was analyzed. Last, in the case
of structures with a heat of formation higher than 500 kcal/mol,
the energy was set to this value.

Fingerprint Calculation. To make the 2D database
searchable, we used a modified version of our previously
reported Xfp fingerprint61 considering only three atom
categories: all atoms, aromatic and aliphatic atoms, and a
maximum topological distance of 15 bonds, producing a 48-bit
fingerprint (including distance 0). These atom categories allow
the perception of aromaticity versus aliphatic rings and overall
molecular shape but exclude considering properties of the
nitrogen atom, which are only added in aromatic five-
membered rings to obtain valid SMILES for the ring systems.
For each atom category, atom pairs are summed for each
topological distance, and the sum values are divided by the
number of atoms in the category. The final bit values are
multiplied by 100 and rounded to the nearest integer value.
To make the 3D database searchable, we similarly adapted

our previously reported 3DXfp fingerprint62 considering only
two atom categories: all atoms and aromatic atoms and a
maximum through-space distance of 20 Å, resulting in a 32 bit-
fingerprint. For each of the atom pairs AB in the molecule, a
Gaussian function was generated centered at the atom pair
distance dAB with width of 0.18 × dAB, and the function was
sampled at 1.45, 1.71, 2.02, 2.38, 2.81, 3.32, 3.91, 4.62, 5.45,
6.43, 7.59, 8.96, 10.57, 12.47, 14.71, and 17.36 Å (16 bit values
at dn+1 = dn × 1.18). For each of the 16 bits, values were
summed across all atom pairs; the sum was divided by
hac(category)1.5, multiplied by 100, and rounded to the integer
value.

PMI-Maps Calculation. The shape analysis was carried out
after the protocol of Sauer and Schwartz with in-house software
written in Java.57

Principal Component Analysis (PCA) and Similarity
Maps Creation. For the GDB4c and GDB4c3D data sets,
principal component analysis (PCA) was performed using in-
house software written in Java which uses the JSci science
library (jsci.sourceforge.net/) to compute the eigenvalues and
eigenvectors. Similarity maps and the corresponding color
coded mapplets were generated as described previously.64

To generate a similarity fingerprint, we selected 173
reference ring systems by picking one compound randomly
from each of the 173 available (HAC, largest ring) value pair
bins. For each database compound, we then calculated the 173
city-block distances (CBD) using the modified Xfp and 3DXfp
described above and converted the CBD to a similarity value S
as Si = CBDi/(CBDi + X), where X is the median CBD across
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compound pairs in the database (obtained from sampling 1
million distance pairs randomly).
To obtain similarity maps, we the performed PCA of the

similarity fingerprint (S1, ...Si, ...S173) data set on the whole
GDB4c respectively on GDB4c3D. We then binned the (PC1,
PC2) values into a 500 × 500 pixel image and color-coded each
pixel by the average descriptor value for all compounds in that
pixel. The similarity maps of RDB and RDB3D were created
using the same eigenvectors obtained from the PCA of GDB4c
and GDB4c3D and binning the (PC1, PC2) plane into a 300 ×
300 pixel image.
Virtual Screening. The Web-based Xfp and 3DXfp

browsers for GDB4c and GDB4c3D were assembled as
previously reported for other databases.22,70 Three similarity
search examples (set 1−3), each for hasubanonine and
vincadine, were performed. Set 1: The similarity search was
performed using the full natural product as input to the GDB4c
browser. We retrieved 2500 analogs in the case of
hasubanonine and 4000 analogs in the case of vincadine.
Extracting the corresponding 3D stereoisomers from
GDB4c3D yielded approximately 10 000 ring systems in each
case. Sets 2 and 3: Searches were performed using the extracted
ring system of the natural product and full natural product
(preserves the geometry of the ring system as in the natural
product) as inputs to the GDB4c3D browser, respectively. For
each set 2 and 3, we collected 5000 analogs in the case of
hasubanonine and 6000 analogs in the case of vincadine,
yielding approximately 10 000 ring systems in each case when
considering both enantiomers of chiral ring systems. Set 4: A
control set of ∼10 000 randomly selected ring systems from
GDB4c3D within hac ± 2 of the ring system of the natural
product. For each of the four sets, ROCS similarity calculations
were performed using the ROCS shape Tanimoto and the
1024-bit Daylight type substructure fingerprint from JChem as
a similarity measure. The scatter plots of similarity values are
shown in Figures S3 and S4.
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