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METHODOLOGY

The polypharmacology browser:  
a web-based multi-fingerprint target prediction 
tool using ChEMBL bioactivity data
Mahendra Awale and Jean‑Louis Reymond*

Abstract 

Background:  Several web‑based tools have been reported recently which predict the possible targets of a small 
molecule by similarity to compounds of known bioactivity using molecular fingerprints (fps), however predictions in 
each case rely on similarities computed from only one or two fps. Considering that structural similarity and therefore 
the predicted targets strongly depend on the method used for comparison, it would be highly desirable to predict 
targets using a broader set of fps simultaneously.

Results: Herein, we present the polypharmacology browser (PPB), a web‑based platform which predicts possible tar‑
gets for small molecules by searching for nearest neighbors using ten different fps describing composition, substruc‑
tures, molecular shape and pharmacophores. PPB searches through 4613 groups of at least 10 same target annotated 
bioactive molecules from ChEMBL and returns a list of predicted targets ranked by consensus voting scheme and p 
value. A validation study across 670 drugs with up to 20 targets showed that combining the predictions from all 10 
fps gives the best results, with on average 50% of the known targets of a drug being correctly predicted with a hit 
rate of 25%. Furthermore, when profiling a new inhibitor of the calcium channel TRPV6 against 24 targets taken from 
a safety screen panel, we observed inhibition in 5 out of 5 targets predicted by PPB and in 7 out of 18 targets not pre‑
dicted by PPB. The rate of correct (5/12) and incorrect (0/12) predictions for this compound by PPB was comparable to 
that of other web‑based prediction tools.

Conclusion: PPB offers a versatile platform for target prediction based on multi‑fingerprint comparisons, and is freely 
accessible at www.gdb.unibe.ch as a valuable support for drug discovery.
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Background
The vast majority of small molecule drugs interact with 
multiple targets, a general phenomenon known as polyp-
harmacology and a key parameter to be addressed in the 
course of drug development [1–3]. Many computational 
tools have been developed that exploit databases con-
taining detailed structural information on the activity of 
small molecule drugs [4–8] and their protein targets [9] 
to predict the polypharmacology of any hit compound 
or drug candidate [10–37]. Several of these tools are 

accessible as target prediction websites (Table 1). Each of 
these websites returns a list of predicted targets based on 
similarity calculations using molecular fingerprints (fps) 
or on docking scores.

Ligand-based methods using fp comparisons are par-
ticularly versatile because they are applicable to any bio-
logical activity, i.e. the target may be a protein but also 
a cell line or a whole organism. Although some of these 
ligand based tools offer a selection of different fps, none 
of them permits the simultaneous use of more than 
one fp. Considering the fact that molecular similarity 
and therefore the predicted targets strongly depend on 
which fp is used for comparison, it would be highly desir-
able to predict targets using multiple fps simultaneously, 
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provided that each fp would perform well individually in 
virtual screening and target prediction test cases. Herein 
we present the polypharmacology browser (PPB), a multi-
fingerprint browser for target prediction which addresses 
this issue by performing target predictions searches using 
six different fps and four fused molecular fingerprints 
(Ffps) (Table 2). Similarities are measured using the city-
block distance because this similarity measure is rapidly 
computed and therefore well-suited for web-based simi-
larity searches in large databases [38–45]. PPB searches 
through 2.7 M ligand-target interactions extracted from 
ChEMBL 21 and generates a list of predicted targets, 
each linked to the lists of known actives used for the 
prediction. PPB validation is presented for 670 drugs of 

known polypharmacology as well as in a predictive appli-
cation of off-targets for a recently reported inhibitor of 
transient receptor potential vanilloid 6 (TRPV6) [46]. 
PPB is freely accessible at www.gdb.unibe.ch and works 
on computers, tablets and phones.

Methods
Dataset
We analyzed ChEMBL 21 and constructed the target 
database containing 4613 groups of at least 10 bioac-
tive molecules with documented activity against the 
same biological target. Briefly, target database was con-
structed as follows: initially all targets along with their 
ligands were retrieved from the ChEMBL version 21. 

Table 1 Publicly accessible web-based target prediction tools

Website Similarity method Database Ref.

www.gdb.unibe.ch 10 different fingerprints ChEMBL 21 This work

http://www.pharmaexpert.ru/passonline/ Multilevel neighbourhoods of atoms (MNA) 
descriptors

WDI and ACD [10]

http://www.dddc.ac.cn/tarfisdock/ Docking PDTD [12]

http://sea.bkslab.org ECfp4 CHEMBL 16, WOMBAT, MDDR and StarLite [14]

http://59.78.96.61/pharmmapper/ Receptor‑based pharmacophore models TargetBank, DrugBank, BindingDB, PDTD [17]

https://cpi.bio‑x.cn/drar/ Docking PDB, DrugBank [18]

www.cbligand.org/TargetHunter ECfp6, ECfp4 and Openbabel FP2 ChEMBL 11 and PubChem bioassay [22]

http://lilab.ecust.edu.cn/chemmapper/ Openbabel FP2, MACSS, SHAFT and USR ChEMBL 14, BindingDB, DrugBank, KEGG 
and PDB

[23]

http://mips.helmholtz‑muenchen.de/proj/
hitpick

Circular fingerprint FCFP STITCH [24]

http://modlab‑cadd.ethz.ch/software/spider/ CATS and MOE physiochemical descriptors COBRA [26]

www.swisstargetprediction.ch Openbabel FP2 and Electroshape descriptors ChEMBL 16 [28]

http://prediction.charite.de/index.php ECfp4 ChEMBL, SuperTarget and BindingDB [29]

www.dddc.ac.cn/tarpred ECfp4 BindingDB [33]

http://potentia.cbs.dtu.dk/ChemProt Sfp ChEMBL 14, BindingDB, DrugBank, 
PharmGKB, PubChem bioassay, WOMBAT, 
IUPHAR, CTD and STITCH

[37]

Table 2 Molecular fingerprints used for target prediction with PPB

Name Description Ref.

APfp 21‑D atom‑pair fingerprint, perceives molecular shape [43]

Xfp 55‑D atom category extended atom‑pair fingerprint, perceives pharmacophores [43]

MQN 42‑D Molecular Quantum Numbers, scalar fingerprint counting atoms, bonds, polarity and ring features, perceives constitution, 
topology and molecular shape

[38]

SMIfp 34‑D scalar fingerprint counting occurrence of characters in SMILES, perceives rings, aromaticity, and polarity [42]

Sfp 1024‑D binary daylight type substructure fingerprint, perceives detailed substructures [49]

ECfp4 1024‑D binary circular extended connectivity fingerprint, perceives detailed substructures and pharmacophores [50]

Ffp1 Fusion fingerprint, Xfp + SMIfp + Sfp This work

Ffp2 Fusion fingerprint, Xfp + MQN + SMIfp This work

Ffp3 Fusion fingerprint, Xfp + SMIfp + Sfp + ECfp4 This work

Ffp4 Fusion fingerprint, Xfp + MQN + SMIfp + Sfp + ECfp4 This work

http://www.gdb.unibe.ch
http://www.gdb.unibe.ch
http://www.pharmaexpert.ru/passonline/
http://www.dddc.ac.cn/tarfisdock/
http://sea.bkslab.org
http://59.78.96.61/pharmmapper/
https://cpi.bio-x.cn/drar/
http://www.cbligand.org/TargetHunter
http://lilab.ecust.edu.cn/chemmapper/
http://mips.helmholtz-muenchen.de/proj/hitpick
http://mips.helmholtz-muenchen.de/proj/hitpick
http://modlab-cadd.ethz.ch/software/spider/
http://www.swisstargetprediction.ch
http://prediction.charite.de/index.php
http://www.dddc.ac.cn/tarpred
http://potentia.cbs.dtu.dk/ChemProt
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For each target we retained the compounds having IC50, 
EC50, GI50, Ki, KD, or potency value of ≤10 µM or percent 
inhibition of >50%. All molecules were processed as non-
stereo SMILES and ionized at pH 7.4 using an in-house 
developed Java program utilizing the JChem chemistry 
library from ChemAxon Pvt. Ltd. Afterwards, duplicate 
molecules were removed in the context of each target. 
Finally, targets with at least 10 bioactive compounds were 
retained in database. In total, these 4613 targets repre-
sent 871,673 unique bioactive compounds and 2.7  M 
ligand-target interactions. Of these targets, 60% are sin-
gle protein type, 55% are human targets, and 45% have 
less than 50 bioactive compounds (Fig. 1a–c).

Fingerprints
For each of the 871,673 selected ChEMBL compounds 
we computed each of the six fingerprints described 
in Table  2. In short, APfp, Xfp, MQN and SMIfp were 
calculated by using an in house developed Java pro-
gram utilizing various calculator plugins from JChem 
chemistry library, in particular TopologyAnalyserPlugin 
to determine shortest topological path for atom-pair, 
HBDAplugins to determine hydrogen bond donor and 
acceptor atoms, and MajorMicrospeciesPlugin to adjust 
the ionization state of molecules. The detailed procedure 
for the generation of these fingerprints can be found in 
the respective publication [38, 42, 43]. For Sfp, a day-
light type 1024-bit hash fingerprint was computed using 
the ChemicalFingerprint class of the JChem library. The 
1024-bit extended connectivity fingerprint (ECfp4) was 
calculated with bond diameter of 4 using ECFP class of 
the JChem library. The source codes for computation of 
fingerprints are freely available for download at www.
gdb.unibe.ch.

Fused fingerprints (Data fusion)
To generate additional molecular fingerprint descriptions 
we further investigated data fusion between different 
combinations of these fingerprints [47]. Since we aimed 
at using the city-block distance (Eq. 1) as similarity meas-
ure, we scaled each fingerprint by analyzing the distance 
distribution of 50 M random pairs of compounds in each 
fingerprint space, and scaled values to adjust the most 
frequently occurring distance in each fp to the value for 
Xfp (Fig.  1d/e). We then performed enrichment studies 
of ligands against decoys in the directory of useful decoys 
(DUD) [48] and evaluated the average performance of 
57 different combinations of the scaled fingerprints in 
terms of area under the curve (AUC) and enrichment 
factor at 1% screening in the receiver operator charac-
teristic (ROC) curves (data not shown). We selected the 
four fusion fingerprints Ffp1–Ffp4 (Table 2) due to their 
good performance in this enrichment study (Fig.  1f/g), 

and computed the corresponding Ffp1–4 values for the 
871,673 ChEMBL compounds.

p value calculation
Each target prediction for a given query molecule is 
based on the city-block distance between the query mol-
ecule and the closest member of a group of compounds 
associated with this target. A p value can be computed 
for each prediction as the degree of randomness of the 
observed city block distance [51] and therefore the prob-
ability that the corresponding query–target association 
occurs at random. To compute the p value, we generated 
a random distance distribution for each of the 4613 tar-
gets in each of the ten fingerprint spaces by computing 
distances between the ChEMBL compounds associated 
with the target and randomly selected molecules from the 
ZINC database [52], taken as representative molecules of 
screening compounds for which target predictions might 
be carried out (Fig. 1h). For each target up to 1 M random 
pairs were considered. We then fitted each of the 46,130 
distance distributions using a negative binomial distribu-
tion function, and generated the corresponding cumula-
tive density functions giving the p value as a function of 
the city block distance (Fig. 1i). The choice of a negative 
binomial distribution function was based on the discrete 
nature of the city-block distance. As the p value calcu-
lation is specific for each target protein and fingerprint 
space it can only be used in this context, and should not 
be used to compare molecules from different targets or 
fingerprint spaces. The curve fitting was carried out using 
the R statistical package version 3.2.5 using the “fitdis-
trplus” library with default maximum likelihood method 
for parameters estimation.

Validation set
The validation set containing 670 drugs and their tar-
gets annotation was created as follows: (a) compounds 
labelled as approved drug or drug in clinical trial were 
extracted from ChEMBL database, (b) for each drug, tar-
get list was constructed by comparing SMILES string of 
drug to SMILES of bioactive compounds of targets used 
in the PPB. When the SMILES string was matched, cor-
rosponding PPB target was added to known target list for 
the drug and (c) retained the drugs with ≤20 targets in 
the list.

The PPB web‑interface
Given a query molecule, PPB computes each of the 10 
fps for this compound, sorts the 871,673 ChEMBL com-
pounds by city-block distance to the query using each fp 

(1)CBDA,B =

K
∑

j=1

∣

∣Aj − Bj

∣

∣

http://www.gdb.unibe.ch
http://www.gdb.unibe.ch
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independently, and collects a predefined number of com-
pound associated targets in each case. The p value for each 
target is calculated from the nearest neighbor found for 
that target. Finally, PPB merges the different target lists.

The graphical user interface of PPB starts with an initial 
page wherein the user can input the structure of a query 
molecule using the JavaScript based JSME molecular edi-
tor (http://peter-ertl.com/jsme/) [53]. The structure can 
be drawn or copy-pasted in SMILES or sdf file format. 
An option is available to extract the query molecule from 
the Protein Data Bank (PDB) using the PDB id of the pro-
tein–ligand complex of interest (the PDB ligand data was 

downloaded from http://ligand-expo.rcsb.org/ website 
in March 2016 and stored on our web server, and will be 
updated once a year). The option “No. of targets” allows 
the user to input the number of targets to be returned by 
each fp. By default this parameter is set to 20. Following 
the entry of a query molecule, the target search can be 
initiated by clicking on the “Submit” button. Typically, 
execution of a search takes less than 1 min.

The target prediction results are presented as list of tar-
gets annotated with a probability bar for each fp (Fig. 2a). 
The p value is shown by a green bar of decreasing length 
up to p = 0.01, with values above 0.01 written as number in 

(See figure on previous page.) 
Fig. 1 Overview of the data used for constructing PPB. Distribution of a target type as defined in ChEMBL and b source of targets. c Distribution 
of targets as per number of associated bioactive compounds. d Histogram of city block distances (log scale) calculated for 50 million random pairs 
of compounds from ChEMBL 21 using six molecular fingerprints. e APfp, MQN, SMIfp, Sfp and ECfp4 fingerprints were scaled with respect to Xfp 
to adjust to the value of the most frequent distance. Scaling factors are shown in parentheses. f, g Enrichment of 40 set of DUD actives from cor‑
responding decoys set by six different fingerprints (APfp, Xfp, MQN, SMIfp, Sfp and ECfp4) and four similarity fusion methods (Ffp1–4). City block 
distance was used as sorting function. Data is represented as average of f Area under ROC curve and g Enrichment factor at 1% of screen database 
for 40 targets from DUD. h, i Example of p value calculation. h Observed (red) and fitted (black) random distance distributions for the muscarinic 
acetylcholine receptor M1 (CHRM1, CHEMBL216) in MQN fingerprint space. City block distances were calculated for 1788 ligands of CHRM1 with 
respect to random compounds from ZINC database. Negative binomial distribution was used for curve fitting. i Cumulative density plot indicating 
area under fitted curve in h

Fig. 2 PPB web‑browser. a Result panel displaying the PPB predicted targets for the drug metaraminol. b List of molecules for the target selected in 
the result panel (row 5 ADRA1A)

http://peter-ertl.com/jsme/
http://ligand-expo.rcsb.org/
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the white probability bar. A grey bar indicates that the tar-
get was not found, and a red bar indicates that a molecule 
with distance = 0 (usually the identical molecule) is pre-
sent in the ChEMBL reference list. Each target is labelled 
with its short name and ChEMBL target id, and the num-
ber of compounds retrieved by the browser is indicated in 
the last column of the table. In the initial display the list of 
targets is sorted by frequency of occurrence and sum of p 
values across the 10 fps, which defines the target rank (first 
column). The list can also be sorted by ChEMBL target id, 
target name, and by the number of selected compounds by 
clicking on the corresponding column heading.

Clicking on the number of selected compounds per 
target (furthest right column) opens a new tab displaying 
the structures of these compounds labelled with finger-
prints, city-block distance and ChEMBL compound id 
(Fig. 2b). The selection of a row in the table displays the 
full name of the target in the “Target name” field, which is 
an active link to the parent ChEMBL database to obtain 
further information on this target. The result (targets and 
molecules) can be stored as text file using the “save” but-
ton provided in each window.

Results and discussion
The performance of PPB was evaluated by challenging 
its ability to recall the known targets of 670 compounds 
labelled as approved drug or drug in clinical trial and anno-
tated with up to 20 targets in ChEMBL (4794 drug–tar-
get interactions). Prior to evaluation these 670 drugs were 
removed from our target compound database. Among 
these drugs 71% had less than 10 associated targets and the 
remaining 29% had 10–20 associated targets (Fig. 3).

The 670 different searches were performed using PPB 
with the default search settings. The predicted targets 
were analysed for each fp considering (a) all targets, (b) 
targets with p value ≤0.01 and (c) targets with p value 

>0.01 (Fig.  4; Additional file  1: Fig. S1). When combin-
ing the results of the different fps (last column, “comb” in 
Fig. 4a–d) we only considered the targets voted by at least 
2 different fps. For each drug, we calculated the fraction 
of known targets in the results list, the total number of 
predicted targets and the hit rate (ratio of known targets 
found to predicted targets).

In terms of the fraction of correctly predicted known 
targets (Fig.  4a) the fusion fingerprints Ffp1, Ffp3 and 
Ffp4 showed the highest average value, followed by the 
binary fingerprints Sfp and ECfp4, the pharmacophore 
fingerprint Xfp, and finally MQN, SMIfp and APfp. To 
evaluate if the performance of these fingerprints signifi-
cantly differ from one another or not, the student t tests 
(at confidence interval of 0.95) were performed for all the 
possible pairs of fingerprints (Additional file 1: Tables S1 
and S2). Although most of the individual fingerprint pairs 
show significant differences in performance, no signifi-
cant differences were found between performance of Sfp, 
ECfp4, Ffp1 and Ffp2. Overall the performance trend fol-
lowed the complexity of each fingerprint and highlights 
that detailed structural encoding tends to increase pre-
diction performance.

These single fp approaches were outperformed by using 
the combination of all 10 results lists (combined method), 
however at the expense of a relatively low hit rate result-
ing from checking a larger number of targets for each 
drug as compared to individual fps (Fig. 4b/c). The com-
bined method also showed the highest success rate for 
finding at least one known target among the 5 top pre-
dicted targets for each fp (Fig. 4d). For all methods except 
SMIfp the predicted target list with p value ≤0.01 showed 
a significantly greater chance of success compared to the 
target lists with p value >0.01. The importance of a low p 
value for target prediction was particularly striking with 
the fused fingerprints Ffp1–4 and the combined method, 
for which more than 75% of all correct predictions origi-
nated from predicted targets with p value ≤0.01.

Although several of the fps were not statistically dif-
ferent in terms of performance, the pairwise overlap 
between predicted targets by each of the 10 different fps 
showed that on average less than 45% of targets were com-
mon between any two fps (Fig. 4f ). Furthermore each fp 
retrieved a significant number of unique targets which are 
not found by any other fp, further highlighting the utility 
of each fp. Interestingly, APfp and Xfp, which perceive 
the shape and pharmacophore patterns in molecules, 
returned the highest percentages of unique targets (52 
and 31% respectively). For fused fingerprints Ffp1–4 the 
percentages of unique targets were relatively low (3–10%) 
due to the considerable overlap among themselves.

A similar analysis performed by categorizing targets 
according to their p values (Fig.  4g/h) showed that the 
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pairwise overlap between high confidence (low p value) 
targets of different fingerprints were significantly higher 
(on average 47% overlap) as compared to low confi-
dence targets (high p value, on average 24% overlap). 
This can be explained by the fact that at high p values 
the structural similarity between a query and its nearest 

neighbour compound associated with the target becomes 
less obvious and difficult to capture (Fig. 4e).

Prediction of off‑targets of a new TRPV6 inhibitor
We recently reported the identification of CIS22a 
(Fig.  5a) as the first potent and selective inhibitor of 
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Fig. 4  Recovery statistics of targets of 670 drugs by various fingerprints and combined method used in PPB. The bar plots shows an average, a 
fraction of known targets found, b number of targets predicted and c hit rate calculated for 670 drugs (see Additional file 1: Fig. S1). For each drug 
analysis was performed at three different levels considering all targets (grey), targets with p value of ≤0.01 (green) and targets with p value of >0.01 
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results list. f–h Percentages of targets of one fingerprint found by another fingerprint and percentages of targets unique to this fingerprint, consid‑
ering three different targets lists as mentioned before
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TRPV6, a transmembrane calcium channel overex-
pressed in breast and prostate cancer [46]. We tested the 
polypharmacology of this inhibitor for 24 out of 44 tar-
gets present in the “safety screen” panel of Cerep Pvt. Ltd 
(Fig. 5b/c). To assemble this target list we first inspected 
the PPB results list and chose five targets selected by mul-
tiple fps considering in each case the target from human 
and rat origin as the same target. These were the adren-
ergic α1A receptor (ADRA1A), the dopamine receptor 
subtypes D1 (DRD1), D2 (DRD2), and D4 (DRD4), the 
5-hydroxytryptamine receptor 1A (HTR1A). We then 
added further subtypes of these five targets as well as all 

ion channels present in the safety screen panel, resulting 
in a list of 17 GPCRs and seven ions channels.

In-vitro profiling showed that CIS22a bound signifi-
cantly (>50% inhibition at 10 µM) to 12 targets of the 24 
selected targets (Fig.  5b). Five of these targets (ADR1A, 
DRD1, DRD2, DRD4 and 5HTR1A) were proposed by 
multiple fps in the PPB. Only two of the Ffps (Ffp1 and 
Ffp3) and the combined method were able to predict all 
of the five targets, illustrating the usefulness of similar-
ity fusion methods and combined data analysis. The 
analysis of bioactive compounds which linked these five 
targets to CIS22a showed that the linking compounds 
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were shared by different fps and closely related targets 
(1–8 in Fig. 5d). Interestingly, the linking compounds for 
three targets (DRD2, DRD4 and HTR1A) suggested by 
Xfp were not shared by any other fps, probably because 
of their relatively low substructure similarity to the query 
compound. On the other hand Xfp predicted an activity 
on ADRA2A, which was not confirmed experimentally 
(only 31% inhibition at 10 µM).

For comparison we successfully ran target predictions 
for CIS22a using six of the fourteen target prediction 
web-based tools listed in Table 1. Results comparable to 
PPB were obtained with SwissTarget, SuperPred, Target-
Hunter, ChemMapper and ChEMBLPred. On the other 
hand, SEA only returned a single, correct target, and 
PharmMapper did not predict any of the tested targets.

Conclusion
The PPB web tool features a unique, intuitive and exhaus-
tive search platform for target prediction. The compara-
tive view of target list from various fingerprint spaces 
provides a simple yet efficient way for selection of targets 
by consensus voting. PPB provides a valuable support to 
drug discovery projects.
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