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Abstract

In the restricted three-body problem, consecutive collision orbits are
those orbits which start and end at collisions with one of the primaries.
Interests for such orbits arise not only from mathematics but also from
various engineering problems. In this article, using Floer homology, we
show that there are either a periodic collisional orbit, or infinitely many
consecutive collision orbits in the planar circular restricited three-body
problem on each bounded component of the energy hypersurface for Jacobi
energy below the first critical value.

1 Introduction

In this note we explain that below the first critical value for any mass ratio in
each bounded component of the circular restricted three body problem there
are infinitely many consecutive collision orbits.

We first give some motivation for this question. In his lectures “Hamiltonian
dynamics and symplectic rigidity” held at the workshop “J-holomorphic Curves
in Symplectic Geometry, Topology and Dynamics” at the CRM in Montréal
2013, Helmut Hofer strongly emphazised the importance of finding symplectic
relevant sets in order to solve the old dynamical problem of travelling from A to
B. In [2], it was shown that below the first critical value, the Moser-regularized
bounded components of the planar circular restricted three body problem can
be interpreted as fiberwise starshaped hypersurfaces in the cotangent bundle
over the two dimensional sphere. Moser regularization [12] first interchanges
the role of fiber and base, i.e., momentum is interpreted as position and po-
sition as momentum, and then adds a fiber at infinity which corresponds to
collisions where the momentum explodes. In symplectic geometry, Lagrangian
submanifolds are important submanifolds of symplectic manifolds in this sense.
A natural class of Lagrangians in a cotangent bundle are the fibers. Since Moser
regularization interchanges the role of position and momentum, fibers have a
slightly strange meaning in the original coordinates, namely they correspond to
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a fixed momentum at an arbitrary location. Chords from one fibre to another
one correspond to the problem of starting with a given momentum at an arbi-
trary place and ending up with another given momentum at an arbitrary place.
We do not know if this kind of issue arises anywhere in engineering problems.

However, if we take our two base points both as the point at infinity, such
a chord then corresponds to a consecutive collision orbit, which starts and ends
in collisions. At a first glance, one might think that such a problem is only
of interest to people tired of life. Nevertheless this problem is of use in engi-
neering problems, see for example [14]. Indeed, with a slight perturbation, one
obtains from such a consecutive collision orbit an orbit which slightly avoids
collisions, which are of broad use in engineering problems. A first application
is the Oberth maneuver [13] which is basically a very clever application of the
binomial formula. Indeed, comparing the kinetic energy before and after a burn
∆v one obtains

1
2 (v +∆v)2 − 1

2v
2 = 1

2∆v2 + v ·∆v.

The term of interest is the mixed term v ·∆v. It shows that if the velocity is high
with a small ∆v-burn one can gain an enormous amount of energy. Different
applications are gravitational slingshots which were for example used in the
Voyager missions, see [6, Chapter 8.9].

As has been explained by M. Hénon [7], such orbits are useful as well for
space mission designs with a space explorer: with such an orbit, it is direct to
reclaim the space explorer, or, with a slight modification of this orbit so that
it does not collide but stay very close to the Earth, the recorded informations
of the observation maybe transmitted back to the Earth with radio signals in
the best condition. The interest of these orbits is more evident for spaceships,
where as one can always command a spaceship on any orbit to turn back, there
is always a risk of failure for tele-commanding, and the consummation of fuel is
inevitable for such a turning-back, which could also be a problem some times.
These orbits are thus optimal in this perspective also for these spaceships.

M. Hénon made a detailed analysis on the existence of such orbits in the
limiting case of a zero-mass Earth and a unit-mass Sun in a fixed reference
frame. Finally, Hénon has remarked that such orbits can be interpreted as the
limiting case of the periodic orbits of second species of Poincaré in the restricted
three-body problem.

2 Consecutive collision orbits

We consider the planar restricted circular three-body problem, in a proper ro-
tating frame with a further shift of one of the primaries to locate at the origin O.
We denote by E := (1, 0) ∈ R2 the position of the other primary. The masses
of the primary are 1 − µ, µ respectively with 0 < µ < 1. The Hamiltonian of
the system is given by

H(p, q) =
‖p‖2

2
+ (p1q2 − p2(q1 − µ)) +

µ

‖q − E‖
+

1− µ

‖q‖
,
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where (p, q) ∈ R2 × (R2 \ {O,E}).

Definition 2.1 An orbit x(t) : (0, τ) ⊂ R → R2 \ {O,E} is called consecutive
collision orbit if it satisfies

lim
t→0

x(t) = lim
t→τ

x(t) = O.

This simply means that the orbit goes from a collision with O to another colli-
sion with O, whence the name. Note that since our system is autonomous, we
have put in our definition starting time instant 0 to avoid multiple counting of
time shifts of one orbit.

We know that in our system, two body collisions can be regularized. Therefore
an orbit ending in a collision can be continued over the collision as a collision-
ejection orbit. It might even happen that after a collision it collides again and
gets continued further. This even does not rule out the possibility that one gets
in this way a periodic orbit. We refer to a periodic orbit containing at least one
collision with O as a periodic collision orbit.

In this paper, we shall show that

Theorem 2.2 For any 0 < µ < 1, there exist a periodic collision orbit or in-
finitely many consecutive collision orbits in the planar circular restricted three-
body problem for any energy hypersurface, for Jacobi energy below the first crit-
ical value.

Remark 2.3 By interchanging the roles of O and E it follows that as well in the
bounded component containing E there is a periodic collision orbit or infinitely
many consecutive collision orbits.

To prove the Theorem we shall realize such orbits as chords in phase space
in the sense of contact geometry via Moser regularization. A crucial ingredient
is the fact that one can interpret the Hamiltonian flow in phase space as a Reeb
flow [2], and the collision set is transformed into a Legendrian submanifold.
Our result thus follows from the existence of infinitely many Reeb chords in this
context, which is a well-known fact from contact geometry and will be recalled
in the sequel to complete the proof.

In our setting, a Reeb chord connection the Legendrian of collisions corre-
sponds to an orbit which starts and ends in a collision, and might go in between
to additional collisions. Should a periodic collision orbit exist, then by iterating
this orbit orbit one also obtains infinitely many Reeb chords, and in this case,
with our normalization, we get only a periodic collision orbit. However this is a
degenerate case, since the collision set is a one dimensional Legendrian subman-
ifold in the three dimensional energy hypersurface in four dimensional phase
space. Since periodic orbits are one dimensional objects, they generically avoid
this Legendrian. This means that after a proper arbitrarily small perturbation
of the contact form defining the Reeb flow of the restricted three body problem
there are no periodic collision orbits left and one gets in this case infinitely many
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consecutive collision orbits. In our concrete systems, however, it seems to be a
delicate issue to exclude the existence of periodic collision orbits.

Our study is limited to the case where the Jacobi energy lies below the first
critical value, so that the component of the (regularized) energy hypersurface
containing the singularity O does not contain any other singularities, thus is a
priori irrelevant to the periodic orbits of the second species which wind around
the other primary. On the other hand, we do not impose any conditions on the
masses of the primaries, and this result can be also obtained for more general
Stark-Zeeman systems with the same approach.

We note that the existence of a continuum of such orbits in the planar circular
restricted three-body problem may also be obtained by first going back to the
fixed reference frame in which the two primaries undergo circular motion. Such
orbits may be obtained by minimizing the action functional with initial and
end configurations corresponding to consecutive collisions, and with arbitrary
time interval. By Marchal’s theorem for the massless body as stated in [11], the
minimizers will be collision-free and thus give rise to classical solutions of our
system outside the initial and end configurations. Note that with this approach
we do not get any information on the Jacobi energy of these orbits in the rotating
frame.

3 The Moser regularization

The singularity of H at q = O can be regularized with the following method of
Moser [12].

We first fix an energy hypersurface

Σf := {H + f = 0}

and change time on this hypersurface by multiplying H+f with ‖q‖, thus obtain

K(p, q) := ‖q‖(H+f) =
‖q‖(‖p‖2 + 1)

2
+(p1q2−p2(q1−µ)+f−1/2)‖q‖+

µ‖q‖

‖q − 1‖
+(1−µ).

The flow of K in {K = 0} agrees with that of

Ǩ := |K−(1−µ)|2/2 =
(‖q‖(‖p‖2 + 1)

2
+(p1q2−p2(q1−µ)+f−1/2)‖q‖+

µ‖q‖

‖q − 1‖

)

2

/2

in the energy hypersurface

{Ǩ = (1− µ)2/2}

up to constant reparametrization of time. We may now pull-back the function
Ǩ by the stereographic projection from the north pole N of the sphere S2 ∈ R3

to R2 × {0} ∈ R3 while regarding p as the positions and −q the conjugate
momenta. It is seen that with the energy restricted to (1 − µ)2/2, the pull-
backed flow extends smoothly through the fibre T ∗

NS
2 over N in T ∗

S
2. The

completion of the flow thus gives a regularization of the flow of H in Σf .
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Let us denote the relevant connected component of this completed energy
hypersurface in T ∗Sd by Σ̌. The intersection Σ̌∩T ∗

NSd corresponds to all physical
collisions q = O within Σ̌.

In [2], it is shown that up to the first critical value of H , the hypersurface
Σ̌ is fibrewise star-shaped with respect to the zero-section and thus admit a
contact 1-form which is simply the restriction of the Liouville 1-form of T ∗Sd to
this hypersurface. It follows that Σ̌∩ T ∗

NSd is a Legendrian submanifold inside
Σ̌. Up to time parametrization, a consecutive collision orbit is thus realized
in Σ̌ as a Reeb orbit connecting this Legendrian submanifold with itself. The
existence of infinitely many consecutive collision orbits thus follows from the
existence of infinitely many Reeb chords. In the next section, we shall explain
this result on Reeb chords.

4 Existence of Reeb chords

4.1 Reeb chords

Assume that N is a closed connected manifold and

Σ ⊂ T ∗N

is a closed fiberwise starshaped hypersurface. Fiberwise starshaped means that
the Liouville vector field p∂p is transverse to Σ so that the restriction of the
Liouville one-form λ = pdq to Σ is a contact form on Σ. We further pick a base
point q0 ∈ N . Then the cotangent fibre T ∗

q0
N is a Lagrangian submanifold of

T ∗N with respect to the standard symplectic form ω = dλ = dp∧dq. Moreover,
the restriction of the Liouville one-form λ to T ∗

q0
N vanishes. Further note that

L := Σ ∩ T ∗
q0
N ⊂ Σ

is a Legendrian submanifold. Abbreviate by

λΣ := λ|Σ ∈ Ω1(Σ)

the contact form on Σ obtained by restriction of the Liouville one-form to Σ.
Define the Reeb vector field R ∈ Γ(TΣ) by

λΣ(R) = 1, ιRdλΣ = 0.

Definition 4.1 A Reeb chord (x, τ) ∈ C∞([0, 1],Σ)× (0,∞) from L to L is
a solution of the problem

{
∂tx(t) = τR(x(t)) t ∈ [0, 1],
x(0), x(1) ∈ L .

5



If one reparametrizes a Reeb chord (x, τ) and defines

xτ : C
∞([0, τ ],Σ), t 7→ x

(
t
τ

)

one obtains a solution of the problem
{

∂txτ (t) = R(xτ (t)) t ∈ [0, τ ],
xτ (0), xτ (τ) ∈ L .

In view of this fact we refer to τ as the period of the Reeb chord.

The following theorem is known to experts in Floer homology.

Theorem 4.2 There exist infinitely many Reeb chords from L to L .

The existence of infinitely many consecutive collision solutions follows di-
rectly from this theorem.

For the readers’ convenience we explain a proof of this result in terms of
Rabinowitz Floer homology. Alternative proofs could be provided by the use of
wrapped Floer homology.

4.2 Rabinowitz Floer homology

We first explain how Reeb chords from L to L can be interpreted variationally
as critical points of Rabinowitz action functional. For a smooth function H ∈
C∞(T ∗N,R) the Hamiltonian vector field XH ∈ Γ(TT ∗N) is defined implicitly
by the condition

dH = ω(·, XH).

We pick a smooth function H on the cotangent bundle of N meeting the fol-
lowing conditions

(i) The differential dH has compact support, i.e., H is locally constant outside
a compact subset of T ∗N .

(ii) Σ = H−1(0), i.e., Σ is the level set of H to the value 0.

(iii) XH |Σ = R, i.e., the restriction of the Hamiltonian vector field of H coin-
cides with the Reeb vector field on Σ. In particular, in combination with
(ii) it follows that 0 is a regular value of H .

We mention, that although the chain complex for Rabinowitz Floer homology
depends on the choice of the Hamiltonian H , the homology is independent of
this choice and just depends on Σ and L . Abbreviate

P := Pq0 :=
{
x ∈ C∞([0, 1], T ∗N) : x(0), x(1) ∈ T ∗

q0
N
}

the space of paths in T ∗N which start and end in the cotangent fibre over
q0 ∈ N . Rabinowitz action functional is defined as

AH : P × (0,∞) → R, (x, τ) 7→

∫ 1

0

x∗λ− τ

∫ 1

0

H(x(t))dt.
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The first term is just the area functional and τ can be interpreted as a Lagrange
multiplier, so that Rabinowitz action functional is the Lagrange multiplier func-
tional of the area functional to the constraint given by the vanishing of the mean
value ofH . Critical points ofAH are solutions (x, τ) ∈ P×(0,∞) of the problem

{
∂tx(t) = τXH(x(t)) t ∈ [0, 1],∫ 1

0 H(x(t))dt = 0.
(1)

The first equation is obtained by differentiating AH with respect to the first
variable, namely the path, while the second equation one gets by differentiating
Rabinowitz action functional with respect to the second variable, namely the
Lagrange multiplier. However note, that in view of the first equation by preser-
vation of energy the Hamiltonian H is constant along x. Combining this fact
with the second equation we see that solutions of problem (1) are in one-to-one
correspondence with solutions of the following problem

{
∂tx(t) = τXH(x(t)) t ∈ [0, 1],

H(x(t)) = 0, t ∈ [0, 1],
(2)

i.e., the mean value constraint is equivalent to a pointwise constraint. However,
in view of properties (i) and (ii) of H we observe, that solutions of (2) are
precisely Reeb chords from L to L . In particular, we have proved the following
proposition

Proposition 4.3 Critical points of AH are in one-to-one correspondence with
Reeb chords from L to L .

Given a critical point (x, τ) of AH , i.e., a Reeb chord from L to L we compute
its action value as

AH(x, τ) =

∫ 1

0

x∗λ =

∫ 1

0

τλΣ(R(x(t)))dt = τ.

Hence we obtain the following proposition

Proposition 4.4 The action value of Rabinowitz action functional at a critical
point (x, τ) is τ , namely the period of the Reeb chord.

To construct the chain complex of Rabinowitz Floer homology we need an ad-
ditional assumption on Σ. We denote for t ∈ R by φt

R : Σ → Σ the flow of the
Reeb vector field on Σ.

Definition 4.5 Σ is called regular if for every Reeb chord (x, τ) from L to L

it holds that
dφτ

R(x(0))Tx(0)L ∩ Tx(1)L = {0}.

If Σ is regular, the kernel of the Hessian of Rabinowitz action functional is
trivial at every critical point, and hence Rabinowitz action functional is Morse.
In particular, its critical points are isolated. We define a graded vector space

CM∗(A
H) := crit(AH)⊗ Z2,
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i.e., the Z2-vector space generated by critical points of Rabinowitz action func-
tional. The grading is obtained by the transversal Maslov index at a chord. One
defines a boundary operator

∂ : CM∗(A
H) → CM∗−1(A

H)

by counting the number of gradient flow lines modulo two between critical points
of index difference one as in finite dimensional Morse homology. Here the gra-
dient of Rabinowitz action functional is defined as in classical Floer theory via
a metric obtained from a family of ω-compatible almost complex structures on
T ∗N . We define Rabinowitz Floer homology as

RFH+
∗ (Σ,L ) := HM∗(A

H) :=
ker∂

im∂
.

As the notation suggests the resulting homology is independent of the choice of
the Hamiltonian H as well as on the choice of the family of ω-compatible al-
most complex structures needed to define the gradient [4, 10]. The superscript
+ is added, because we suppose that τ only takes positive values. In the full
Rabinowitz Floer homology RFH∗(Σ,L ) the Lagrange multiplier τ is allowed
to assume any real value. In the full case critical points with τ = 0 correspond
to constant chords, i.e., points on L , and critical points with τ < 0 correspond
to chords traversed backwards.

Abbreviate
Ωq0 :=

{
q ∈ C∞([0, 1], N) : q(0) = q(1) = q0

}

the based loop space of N . Note that q0 interpreted as a constant loop becomes
itself an element of Ωq0 . We abbreviate byH∗(Ωq0 , q0) the homology of the based
loop space relative to the constant loop q0 with Z2-coefficients. The following
result is due to Merry [10].

Theorem 4.6 (Merry) Assume that Σ is regular, then

RFH+
∗ (Σ,L ) = H∗(Ωq0 , q0),

i.e., there is a canonical isomorphism

ζΣ : RFH+
∗ (Σ,L ) → H∗(Ωq0 , q0).

A Corollary of Merry’s theorem is the following.

Corollary 4.7 Assume that Σ is regular, then

dim(RFH+
∗ (Σ,L )) = ∞.

Proof: In the case that the fundamental group π1(N) is infinite, the based loop
space has in view of the equality π1(N) = π0(Ωq0) infinitely many connected
components and therefore already the zeroth Betti number satisfies b0(Ωq0 , q0) =
∞.
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If N is simply connected, then dim(H∗(Ωq0 , q0)) = ∞ follows from Serre’s
spectral sequence. Finally if N has finite fundamental group, its universal cover
Ñ is still closed. Moreover, the based loop space ofN decomposes into connected
components indexed by the fundamental group each one homotopic to the based
loop space of the universal cover Ñ , and the result follows again from Serre’s
spectral sequence. �

To obtain infinitely many consecutive collision orbits for the planar case one
just needs the case N = S2, where the Z2-Betti numbers satisfy

bk(Ωq0 , q0) = 1, k ∈ N.

In view of Proposition 4.3 and Corollary 4.7 in the case that Σ is regular
Theorem 4.2 follows now immediately from the Morse inequalities for Rabi-
nowitz Floer homology. To prove the theorem as well in the case where Σ is not
necessarily regular, so that Rabinowitz action functional does not need to be
Morse and Rabinowitz Floer homology cannot be defined directly, we introduce
spectral invariants.

4.3 Spectral invariants

We first define spectral invariants under the hypothesis that Σ ⊂ T ∗N is a
regular closed fiberwise starshaped hypersurface and then get rid in a second
step of the regularity assumption. If Σ is regular, Rabinowitz action functional
AH is Morse and for k ∈ Z a vector ξ ∈ CMk(A

H) is a sum

ξ =
∑

(x,τ)∈crit(AH )
µ(x,τ)=k

ξ(x,τ)(x, τ)

where µ(x, τ) is the Maslov index of the Reeb chord (x, τ). The coefficients
ξ(x,τ) belong to the field Z2 and only finitely many coefficients are 1. We set

σ(ξ) := max{τ : ξ(x,τ) = 1}.

By Proposition 4.4 this corresponds to the maximal action value of AH on the
formal sum of its critical points contributing to ξ. If α ∈ RFH+(Σ,L ) we set

σ(α) := min
{
σ(ξ) : α = [ξ]

}
.

Abbreviate

S :=
{
Σ ⊂ T ∗N : Σ closed and fiberwise starshaped

}

and
Sreg :=

{
Σ ∈ S : Σ regular

}
.

We endow S with the C0-topology. By Sard’s theorem it holds that

Sreg ⊂ S
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is dense. We fix an element

β ∈ H∗(Ωq0 , q0).

For Σ ∈ Sreg, let
ζΣ : RFH+(Σ,L ) → H∗(Ωq0 , q0)

be the isomorphism from Theorem 4.6. We define

ρβ : Sreg → (0,∞)

for Σ ∈ Sreg by
ρβ(Σ) = σ(ζ−1

Σ (β)).

One can show [1] that the function ρβ is locally Lipschitz continuous. Because
Sreg ⊂ S is dense there exists a unique continuous extension

ρβ : S → (0,∞),

i.e., ρβ is characterized by the properties
(i) ρβ |Sreg

= ρβ ,

(ii) ρβ is continuous.

For Σ ∈ S define the spectrum of Σ by

S(Σ) =
{
τ : (x, τ) Reeb chord fromL toL

}
.

Note that by Proposition 4.4 the spectrum of Σ coincides with the action spec-
trum of the Rabinowitz action functional. We refer

S := {(Σ, τ) : Σ ∈ S , τ ∈ S(Σ)
}
⊂ S × (0,∞)

as the spectral bundle over S , with the canonical projection

π : S → S , (Σ, τ) 7→ Σ.

The following lemma justifies our terminology spectral invariant for ρβ .

Lemma 4.8 The map ρβ is a section from S to Σ, i.e.,

ρβ(Σ) ∈ S(Σ), ∀ Σ ∈ S . (3)

Proof: If Σ ∈ Sreg, then ρβ(Σ) = ρβ(Σ) and (3) follows from the definition
of ρβ . For the general case, there exists a sequence Σν ∈ Sreg, for ν ∈ N, which
converges to Σ. Because Σν ∈ Sreg we have

ρβ(Σν) = ρβ(Σν) ∈ S(Σν), ν ∈ N.

In particular, there exists a sequence of Reeb chords (xν , τν) for Σν such that

ρβ(Σν) = τν .

10



Because ρβ is continuous and Σν converges, we conclude that the sequence τν is
bounded. Therefore by the Theorem of Arzela-Ascoli there exists a subsequence
νj of ν and a Reeb chord (x, τ) of Σ such that

lim
j→∞

(xνj , τνj ) = (x, τ).

Again by continuity of ρβ we obtain

τ = lim
j→∞

τνj = lim
j→∞

ρβ(Σνj ) = ρβ(Σ).

We have shown that ρβ(Σ) ∈ S(Σ). This finishes the proof of the Lemma. �

If Σ ∈ S we define the homological spectrum by

H(Σ) =
{
ρβ(Σ) : β ∈ H∗(Ωq0 , q0)

}
.

By Lemma 4.8 we have
H(Σ) ⊂ S(Σ). (4)

The following result was proved by Kang [8] using Corollary 4.7.

Theorem 4.9 (Kang) For every Σ ∈ S its homological spectrum H(Σ) is un-
bounded.

We are now in position to prove existence of infinitely many Reeb chords.

Proof of Theorem 4.2: By Theorem 4.9 the homological spectrum of Σ
is unbounded. By (4) it follows that the spectrum of Σ is unbounded. In par-
ticular, there are infinitely many Reeb chords. �

Proof of Theorem 2.2: In view of Theorem 4.2 it remains to show that
the existence of infinitely many chords in the absence of a periodic collision or-
bit implies the existence of infinitely many consecutive collision orbits. Because
the orbit of a first order ODE is uniquely determined by its initial condition in
the absence of periodic collision orbits the same consecutive collision orbit can
occur at most one in a given orbit. Therefore there have to exist infinitely many
consecutive collision orbits in order to guarantee the existence of infinitely many
chords. �

5 Some Remarks

We finish by remarks.

Remark 5.1 The existence of consecutive collision orbits is manifested in the
rotating Kepler problem, as a limiting case of the restricted three-body problem,
as all collisional orbits give rise to consecutive collision orbits. With our current
approach, the result holds also true for Hill’s problem, thanks to the result of J.
Lee [9] on fiberwise convexity (and thus star-shapedness) with respect to the zero
section of its regularization.
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Remark 5.2 The planar restricted three-body problem is a special case in the
family of Stark-Zeeman systems [5]. Similar results may be obtained also for
other Stark-Zeeman systems, as long as the fibrewise starshapedness with respect
to the zero section of the corresponding component of the regularized energy
hypersurface can be established.

Remark 5.3 A practical way to find such orbits is to use the shooting method
of Birkhoff [3], by properly choosing initial positions on the axis of the primaries
and initial velocity perpendicular to this axis. If such an orbit encounters a col-
lision, it will have to encounter a collision in the past by the reflection symmetry
with respect to the axis.
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