
Mathematical Programming
https://doi.org/10.1007/s10107-020-01604-z

FULL LENGTH PAPER

Series A

Equilibrium computation in resource allocation games

Tobias Harks1 · Veerle Timmermans2

Received: 6 April 2018 / Accepted: 4 December 2020
© The Author(s) 2021

Abstract
We study the equilibrium computation problem for two classical resource alloca-
tion games: atomic splittable congestion games and multimarket Cournot oligopolies.
For atomic splittable congestion games with singleton strategies and player-specific
affine cost functions, we devise the first polynomial time algorithm computing a pure
Nash equilibrium. Our algorithm is combinatorial and computes the exact equilib-
rium assuming rational input. The idea is to compute an equilibrium for an associated
integrally-splittable singleton congestion game in which the players can only split
their demands in integral multiples of a common packet size. While integral games
have been considered in the literature before, no polynomial time algorithm computing
an equilibrium was known. Also for this class, we devise the first polynomial time
algorithm and use it as a building block for our main algorithm. We then develop a
polynomial time computable transformationmapping amultimarket Cournot competi-
tion game with firm-specific affine price functions and quadratic costs to an associated
atomic splittable congestion game as described above. The transformation preserves
equilibria in either game and, thus, leads – via our first algorithm– to a polynomial time
algorithm computing Cournot equilibria. Finally, our analysis for integrally-splittable
games implies new bounds on the difference between real and integral Cournot equi-
libria. The bounds can be seen as a generalization of the recent bounds for single
market oligopolies obtained by Todd (Math Op Res 41(3):1125–1134 2016, https://
doi.org/10.1287/moor.2015.0771).

Keywords Atomic splittable congestion games · Multimarket cournot competition ·
Equilibrium computation

An extended abstract of parts of this paper appeared in the Proceedings of the 19th International IPCO
Conference on Integer Programming and Combinatorial Optimization under the title “Equilibrium
Computation in Atomic Splittable Singleton Congestion Games”.

B Veerle Timmermans
veerletimmermans@gmail.com

1 Department of Mathematics, Augsburg University, Augsburg, Germany

2 Department of Management Science, RWTH Aachen, Aachen, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-020-01604-z&domain=pdf
http://orcid.org/0000-0001-8768-7973
https://doi.org/10.1287/moor.2015.0771
https://doi.org/10.1287/moor.2015.0771

T. Harks, V. Timmermans

Mathematics Subject Classification 91A10 · 91A46 · 91B32

1 Introduction

One of the core topics in computational economics, operations research and opti-
mization is the computation of equilibria. As pointed out by several researchers (e.g.
[11,15]), the computational tractability of a solution concept contributes to its credi-
bility as a plausible prediction of the outcome of competitive environments in practice.
The most accepted solution concept in non-cooperative game theory is the Nash equi-
librium – a strategy profile, from which no player wants to unilaterally deviate. While
a Nash equilibrium generally exists only in mixed strategies, the practically important
class of congestion games admits pure Nash equilibria, see Rosenthal [41]. In the clas-
sical model of Rosenthal, a pure strategy of a player consists of a subset of resources,
and the congestion cost of a resource depends only on the number of players choosing
the same resource.

While the complexity of computing equilibria for (discrete) congestion games has
been intensively studied over the last decade (cf. [2,9,10,12,18,43]), the equilibrium
computation problem for the continuous variant, that is, for atomic splittable con-
gestion games is much less explored. In such a game, a player is associated with a
positive demand and a collection of allowable subsets of the resources. A strategy
for a player is a (possibly fractional) distribution of the player-specific demand over
the allowable subsets. This quite basic model has been extensively studied, starting
in the 80’s in the context of traffic networks (Haurie and Marcotte [24]) and later for
modeling communication networks (cf. Orda et al. [38] and Korilis et al. [27,28]),
and logistics networks (Cominetti et al. [13]). Regarding polynomial time algorithms
for equilibrium computation, we are only aware of four works: (1) For affine player-
independent cost functions, there exists a convex potential whose global minima are
pure Nash equilibria, see Cominetti et al. [13]. Thus, for any ε > 0 one can compute an
ε-approximate equilibrium in polynomial time by convex programming methods. (2)
Huang [25] also considered affine player-independent cost functions, and he devised
a combinatorial algorithm computing an exact equilibrium for routing games on sym-
metric s-t graphs that are so-calledwell-designed. This condition ismet for instance by
series-parallel graphs. His proof technique also uses the convex potential. (3) After the
initial publication of the conference version of this article, Bhaskar and Lolakapuri
[6] proposed two algorithms with exponential worst-case complexity that compute
approximate Nash equilibria in games with convex costs, when set systems consist
of singletons only. (4) Klimm and Warode [26] recently proved that computing a
pure Nash equilibrium for atomic splittable and integer-splittable network congestion
games with affine player-specific costs is PPAD-complete (see [39]). In light of these
hardness results, it becomes clear that some restrictions on the strategy space are likely
to be necessary to obtain polynomial time algorithms for equilibrium computation.

123

Equilibrium computation in resource allocation games

1.1 Our results and techniques

Atomic Splittable Congestion Games. We study atomic splittable congestion games
as defined above, where the set systems consist of singletons only, and cost func-
tions are player-specific, increasing and affine. We call these games atomic splittable
singleton congestion games and for these games we develop the first polynomial
time algorithm computing a pure Nash equilibrium. From now on we use equilib-
rium as shortcut for pure Nash equilibrium. Our algorithm is purely combinatorial
and computes an exact equilibrium. The main ideas and constructions are as fol-
lows. By analyzing the first order necessary optimality conditions of an equilibrium,
it can be shown that any equilibrium is rational as it is a solution to a system of
linear equations with rational coefficients (assuming rational input). Using that equi-
libria are unique for singleton games (see Richmann and Shimkin [40] and Bhaskar
et al. [5]), we further derive that the constraint matrix of the equation system is non-
singular, allowing for an explicit representation of the equilibrium by Cramer’s rule
(using determinants of the constraint- and their sub-matrices). This way, we obtain an
explicit lower bound on the minimum demand value for any used resource in the equi-
librium. We further show that the unique equilibrium is also the unique equilibrium
for an associated integrally-splittable game in which the players may only distribute
the demands in integer multiples of a common packet size of some value k∗ ∈ Q>0
over the resources. While we are not able to compute k∗ exactly, we can efficiently
compute some sufficiently small k0 ≤ k∗ with the property that an equilibrium for the
k0-integrally-splittable game allows us to determine the set of resources on which a
player will put a positive amount of load in the atomic splittable equilibrium. Once
these support sets are known, an atomic splittable equilibrium can be computed in
polynomial time by solving a system of linear equations. This way, we can reduce the
problem of computing the exact equilibrium for an atomic splittable game to comput-
ing an equilibrium for an associated k0-integrally-splittable game.

The class of integrally-splittable congestion games has been studied before by Tran-
Thanh et al. [47] for the case of player-independent convex cost functions and later by
Harks et al. [23] (for the more general case of polymatroid strategy spaces and player-
specific convex cost functions). In particular, Harks et al. devised an algorithm with
running time n2m(δ/k0)3,where n is the number of players,m the number of resources,
and δ is an upper bound on the maximum demand of the players (cf. Theorem 5.2
[23]). As δ is encoded in binary, however, the algorithm is only pseudo-polynomial
even for player-specific affine cost functions.

We devise a polynomial time algorithm for integrally-splittable singleton conges-
tion games with player-specific affine cost functions. Our algorithm works as follows.
For a game with initial packet size k0, we start by finding an equilibrium for packet
size k = k0 · 2q for some q of order O(log(δ/k0)), satisfying only a part of the
player-specific demands. Then we repeat the following two actions:

1. We halve the packet size from k to k/2 and construct a k/2-equilibrium using
the k-equilibrium. Here, a k-equilibrium denotes an equilibrium for an integrally-
splittable game with common packet size k. We show that this can be done in

123

T. Harks, V. Timmermans

polynomial time by repeatedly performing the following operations given a k-
equilibrium:

(a) Among players who can improve, we find the player that benefits most by moving
one packet of size k/2;

(b) If necessary, we perform a sequence of backward-shuffles of packets to correct
the load decrease caused by the first packet movement (this is called a backward
path);

(c) If necessary, we perform a sequence of forward-shuffles of packets to correct the
load increase caused by the first packet movement (this is called a forward path);

(a)–(c) is iterated until a k/2-equilibrium for the currently scheduled demand is
reached. For strategy profile x we define Δ(x) to be a vector that contains the cost for
moving one packet to the currently cheapest resource, for each combination of a player
and resource. We show that after each iteration Δ(x) lexicographically increases,
which implies that we converge to a k/2-equilibrium.

2. For each player i we repeat the following step: if the current packet size k is smaller
than the currently unscheduled demand of player i , we add one more packet for
this particular player to the game and recompute the equilibrium. This part of the
algorithm has also been used in the algorithm by Tran-Thanh et al. [47] and Harks
et al. [23].

3. After q iterations, we have scheduled all demands and obtain an equilibrium for
the desired packet size k0.

Key to the analysis of the correctness and the running time of the algorithm are
several structural results on the sensitivity of equilibriawith respect to different integral
packet sizes k ∈ Q>0 and k/r ∈ Q>0 for some r ∈ N. Specifically, we derive bounds
on the difference of resulting global load vectors as well as individual load vectors of
players in any respective equilibrium. These sensitivity results may be of independent
interest as they show how equilibria gradually behave in terms of the discretization
granularity.

We use these structural insights to show that Δ(x) reaches a lexicographical maxi-
mum in a polynomial number of steps. Overall, compared to the existing algorithms of
Tran-Thanh et al. [47] and Harks et al. [23], our algorithm has two main innovations:
packet sizes are decreased exponentially (yielding polynomial running time in δ) and
k-equilibrium computation for an intermediate packet size k is achieved via a careful
construction of a sequence of single packet movements (backward- and forward paths)
from a given 2k-equilibrium (ensuring its polynomial length).

Multimarket Cournot Oligopolies. We then study the equilibrium computation prob-
lem for Cournot oligopolies. In the basic model of Cournot [14] introduced in 1838,
firms produce homogeneous goods and sell them in a common market. The selling
price of the goods depends on the total amount of goods that is offered in the market.
Each firm aims to maximize its profit, which is equal to the revenue minus the pro-
duction costs. In a multimarket oligopoly (cf. Bulow [8]), firms compete over a set of
markets and each firm has access to a firm-specific subset of the markets.

For multimarket oligopolies, we develop a poly-time computable isomorphism
mapping a multimarket Cournot competition game to an associated atomic splittable

123

Equilibrium computation in resource allocation games

singleton congestion game. The isomorphism is payoff invariant (up to constants) and
thus preserves equilibria in either games. As a consequence, we can apply the isomor-
phism and the polynomial time algorithm for atomic splittable congestion games to
efficiently compute Cournot equilibria for models with firm-specific affine price func-
tions and quadratic production costs. In addition, our analysis for integrally-splittable
games also implies new bounds on the difference between real and integral Cournot
equilibria complementing and extending recent results of Todd [44]. The case of affine
price functions with quadratic cost functions is a well-studied model in economics,
see Moulin et al. [35] and further references therein.

1.2 Related work

Discrete Congestion Games. As the first seminal work regarding the computational
complexity of equilibrium computation in congestion games, Fabrikant et al. [18]
showed that the problem of computing a pure Nash equilibrium is PLS-complete for
network congestion games. Ackermann et al. [2] strengthened this result to hold even
for network congestion games with linear cost functions. On the other hand, there are
polynomial algorithms for symmetric network congestion games (cf. Fabrikant et al.
[18]), for matroid congestion games with player-specific cost functions (Ackermann
et al. [2,3]) and for so-called total unimodular congestion games (see Del Pia et al.
[16]).

In particular, there is a pseudo-polynomial time algorithm that computes pure Nash
equilibria for polymatroid congestion games with player-specific cost functions and
polynomially bounded demands (Harks et al. [23]). As mentioned in Sect. 1.1, their
results plays a significant role in this paper. The algorithm by Harks et al. starts with
the trivial equilibrium for the game where all player-specific demands are zero. Then,
they sequentially add packets to the game. After a packet is added, additional packet
exchanges might be executed to recompute the equilibrium. For the special case of
affine cost functions and singleton strategy spacesweconstruct an alternative algorithm
that can compute equilibria in polynomial time.

Further results regarding the computation of approximate equilibria in congestion
games can be found in Caragiannis et al. [9,10], Chien and Sinclair [12] and Skopalik
and Vöcking [43].

Atomic SplittableCongestionGames.Atomic splittable congestion games on networks
with player-independent cost functions have been studied (seemingly independently)
by Orda et al. [38] and Haurie and Marcotte [24] and Marcotte [31]. Both lines of
research mentioned that Rosen’s existence result for concave games on compact strat-
egy spaces implies the existence of pure Nash equilibria via Kakutani’s fixed-point
theorem. Cominetti et al. [13] presented the first upper bounds on the price of anarchy
in atomic splittable congestion games. These were later improved by Harks [21] and
finally shown to be tight by Schoppmann and Roughgarden [42].

For the computation of equilibria, Marcotte [31] proposed four numerical algo-
rithms and showed local convergence results. Meunier and Pradeau [32] developed a
pivoting-algorithm (similar to Lemke’s algorithm) for nonatomic network congestion
games with affine player-specific cost functions. Polynomial running time was, how-

123

T. Harks, V. Timmermans

ever, not shown and seems unlikely to hold. Gairing et al. [19] considered nonatomic
routing games on parallel links with affine player-specific cost functions. They devel-
oped a convex potential function that can be minimized within arbitrary precision in
polynomial time. Deligkas et al. [17] considered general concave games with com-
pact action spaces and investigated algorithms computing an approximate equilibrium.
Roughly speaking, they discretized the compact strategy space and use the Lipschitz
constants of utility functions to show that only a finite number of representative strat-
egy profiles need to be considered for obtaining an approximate equilibrium (see also
Lipton et al. [30] for a similar approach). The running time of the algorithm, however,
depends on an upper bound of the norm of strategy vectors, thus, implying only a
pseudo-polynomial algorithm for our setting.

Note that the problem of computing pure Nash equilibria in atomic splittable con-
gestion games with singleton strategies and affine cost functions can be written as
a linear complementary problem, but does not seem to fall in any of the classes for
which a solution can be found in polynomial time.

Multimarket Cournot OligopoliesThe existence of equilibria in single market Cournot
models (beyond quasi-polynomial utility functions) has been studied extensively in
the past decades (see Vives [49] for a good survey). E.g., Novshek [37] proved that
equilibria exists whenever the marginal revenue of each firm is decreasing in the
aggregate quantities of the other firms. Then, several works (cf. Topkis [45], Amir
[4], Kukushkin [29], Milgrom and Roberts [33], Milgrom and Shannon [34], Topkis
[46] and Vives [48]) proved existence of equilibria when the underlying game is
supermodular, i.e., when the strategy space forms a lattice and the marginal utility
of each firm is increasing in any other firm’s output. Using supermodularity, one can
obtain existence results without assuming that the utility functions are quasi-convex.
Very recently, Todd [44] consideredCournot competition on a singlemarket, where the
price functions are linear and cost functions are quadratic. For such games, he proved
that equilibria exist and can be computed in time O(n log(n)), where n denotes the
number of firms. Additionally, he analyzed the maximum differences of production
quantities of real and integral equilibria, respectively.

Abolhassani et al. [1] devised several polynomial time algorithms for multimarket
Cournot oligopolies, partly using algorithms for solving nonlinear complementarity
problems. In contrast to our work, they assume that price functions are firm-
independent.Bimpikis et al. [7] provided a characterizationof the productionquantities
at the unique equilibrium, when price functions are player-independent and concave,
and cost functions are convex. They study the impact of changes in the competition
structure on the firm’s profit. This framework can be used to either identify opportu-
nities for collaboration and expanding in new markets. Harks and Klimm [22] studied
the existence of Cournot equilibria, under the condition that each firm can only sell
its items to a limited number of markets simultaneously. They proved that equilib-
ria exist when production cost functions are convex, marginal return functions strictly
decrease for strictly increased own quantities and non-decreased aggregated quantities
and when for every firm, the firm specific market reaction functions across markets
are identical up to market-specific shifts.

123

Equilibrium computation in resource allocation games

2 Preliminaries

Atomic Splittable Singleton Games. An atomic splittable singleton congestion game
is defined by a tuple: G := (

N , E, (di)i∈N , (Ei)i∈N , (ci,e)i∈N ,e∈Ei

)
, where E =

{e1, . . . , em} is a finite set of resources and N = {1, . . . , n} is a finite set of players.
Each player i ∈ N is associated with a demand di ∈ Q≥0 and a set of allowable
resources Ei ⊆ E . A strategy for player i ∈ N is a (possibly fractional) distribution
of the demand di over the singletons in Ei . Thus, one can represent the strategy space
of every player i ∈ N by the polytope:

Si (di) :=
⎧
⎨

⎩
xi ∈ R

|Ei |
≥0 |

∑

e∈Ei

xi,e = di

⎫
⎬

⎭
.

The combined strategy space is denoted by S := Ś

i∈N Si (di) and x = (xi)i∈N
is the overall strategy profile. We define xi,e := (xi)e as the load of player i on
e ∈ Ei and xi,e = 0 when e ∈ E\Ei . The total load on resource e is given as
xe := ∑

i∈N xi,e. Resources have player-specific affine cost functions ci,e(xe) =
ai,exe + bi,e with ai,e ∈ Q>0 and bi,e ∈ Q≥0 for all i ∈ N and e ∈ E . The total
cost of player i in strategy distribution x is defined as: πi (x) = ∑

e∈Ei
ci,e(xe) xi,e.

We write S−i (d−i) = Ś

j �=i S j (d j) and we write x = (xi , x−i) for each i ∈ N ,
meaning that xi ∈ Si (di) and x−i ∈ S−i (d−i). A strategy profile x is an equilibrium
if πi (x) ≤ πi (yi , x−i) for all i ∈ N and yi ∈ Si (di). A pair

(
x, (yi , x−i)

) ∈ S × S
is called an improving move of player i , if πi (xi , x−i) > πi (yi , x−i). We define
μi,e(x) = ci,e(xe) + xi,ec′

i,e(xe) = ai,e(xe + xi,e) + bi,e to be the marginal cost for
player i on resource e. We obtain the following sufficient and necessary equilibrium
condition.

Lemma 1 (cf. Harks [21]) Strategy profile x is an equilibrium if and only if the fol-
lowing holds for all i ∈ N: if xi,e > 0, then μi,e(x) ≤ μi, f (x) for all f ∈ Ei .

Using that the strategy space is compact and cost functions are convex, Kakutani’s
fixed point theorem implies the existence of an equilibrium. Uniqueness is proven by
Richmann and Shimkin [40] and Bhaskar et al. [5].

Game G is called symmetric whenever Ei = E for all i ∈ N . We can project any
asymmetric game G on a symmetric game G∗ by for all i ∈ N and e ∈ E\Ei setting
c∗
i,e(xe) to ci,e(xe) whenever e ∈ Ei , and to xe + (n + 2)(amax)

2 otherwise. Here,

amax := max{{ai,e, bi,e | i ∈ N , e ∈ Ei }, {di | i ∈ N }, 1}.

In this case μi,e(0) ≥ μi, f (xe) for any e ∈ E\Ei , f ∈ Ei , i ∈ N and x ∈ S. Thus,
in an equilibrium y for game G∗ no player i puts load on any resource e ∈ E\Ei .
Hence, y is also an equilibrium for game G. In the rest of this paper we project every
asymmetric game on a symmetric game using the construction above.

Integral Singleton Games. A k-integral singleton game is compactly defined by the
tuple Gk := (

N , E, (di)i∈N , (ci,e)i∈N ,e∈E
)
with k ∈ Q>0. Here, players cannot split

123

T. Harks, V. Timmermans

their load fractionally, but only in multiples of k. Assume di is a multiple of k, then
the strategy space for player i is the following set:

Si (di , k) :=
{
xi ∈ Q

|E |
≥0 | xi,e = kqi,e, qi,e ∈ N≥0,

∑
e∈E xi,e = di

}
.

In this game, k is also called the packet size. When k and di are clear from the context,
we refer to Si (di , k) as Si . When E, N and (ci,e)i∈N ,e∈E are clear from the context,
we also refer to the game as Gk((di)i∈N). For player-specific affine cost functions the
(discrete) marginal increase and decrease are defined as follows:

μ+k
i,e (x) = (xi,e + k)ci,e(xe + k) − xi,eci,e(xe), (1)

μ−k
i,e (x) =

{
xi,eci,e(xe) − (xi,e − k)ci,e(xe − k),we half the if xi,e > 0

−∞, if xi,e ≤ 0.
(2)

Here, μ+k
i,e (x) is the cost for player i to add one packet of size k to resource e and

μ−k
i,e (x) is the gain for player i of removing a packet from resource e. Assuming cost

functions are affine, we write μ+k
i,e (x) = k(ai,e(xe + xi,e + k) + bi,e) and μ−k

i,e (x) =
k(ai,e(xe + xi,e − k) + bi,e) if xi,e > 0.

Lemma 2 (cf. Groenevelt [20]) Strategy profile x is an equilibrium in a k-integral
congestion game if and only if for all i ∈ N it holds that if xi,e > 0, then also
μ−k
i,e (x) ≤ μ+k

i, f (x) for all f ∈ E.

Define μ+k
i,min(x) := mine∈E {μ+k

i,e (x)} and μ−k
i,max(x) := maxe∈E {μ−k

i,e (x)}. Then x is

an equilibrium in a k-integral game if and only if μ−k
i,max(x) ≤ μ+k

i,min(x) for all i ∈ N .

We also introduce some new notation. For two vectors xi , yi ∈ R|E |, we define

H(xi , yi) :=
∑

e∈E
|xi,e − yi,e|

to be their Hamming distance. For two strategies x, y, we write H(x, y) :=∑
e∈E |xe − ye|. For two resources e−, e+ ∈ E , we denote yi = (xi)e−→e+ if it holds

that yi,e = xi,e for all e ∈ E\{e−, e+}, yi,e− = xi,e− − k and yi,e+ = xi,e+ + k.
If x is a strategy profile for some game Gk and yi = (xi)e−→e+ , we denote
(yi , x−i) = xi :e−→e+ .

We define a restricted improving move and a restricted best response as follows:

Definition 1 Let x be a strategy profile for game Gk((di)i∈N).

1. A strategy x ′
i is called a restricted improving move to x for player i , if

x ′
i ∈ {yi ∈ Si (di , k) | H(xi , yi) = 2k and πi (yi , x−i) < πi (xi , x−i)}.

2. A strategy x ′
i is called a restricted best response to x for player i , if

x ′
i ∈ arg min

yi∈Si (di ,k)
{πi (yi , x−i) | H(xi , yi) = 2k}.

123

Equilibrium computation in resource allocation games

Note that both a restricted improving move and a restricted best response can be
executed by moving a single packet.

3 Sensitivity results for equilibria

In Sect. 4, we show that computing an equilibrium for atomic splittable games can
be reduced to the problem of computing an equilibrium of an associated integrally-
splittable game with small enough packet size. For such a class of discrete games, we
will develop a polynomial time scaling algorithm, where we write the total demand as
a power of two and then iteratively scale down the allowed packet size and recompute
equilibria for the resulting integrally-splittable games.Thekey for thewell-definedness
and further analysis of this algorithm is a structural result on the sensitivity of equilibria
for integrally-splittable games with respect to changed packet sizes. In the following,
we derive such sensitivity results between equilibria of an integrally-splittable game
Gk with packet size k ∈ Q>0 and those of a game G k

r
with r ∈ N. These results may

be of independent interest in the area of comparative statics, where the influence of
parameters w.r.t. to resulting equilibria are analyzed.

Theorem 1 Let xk be an equilibrium for game Gk , and xk/r be an equilibrium for game
Gk/r . Then |(xk)e − (xk/r)e| < (1 + 1

r)mk for all e ∈ E.

Proof In order to prove the theorem we need to show that both:

1. (xk)e − (xk/r)e < (1 + 1
r)mk and

2. (xk/r)e − (xk)e < (1 + 1
r)mk.

As the proofs for both statements are very similar, we only prove the first statement
here. On the contrary, assume that there exists a resource e1 with (xk)e1 − (xk/r)e1 ≥
(1 + 1

r)mk. We introduce two player sets N+
e , N−

e for every resource e ∈ E , where:

N+
e = {i ∈ N |(xk)i,e > (xk/r)i,e} and N−

e = {i ∈ N |(xk)i,e ≤ (xk/r)i,e}.

Note that for every i ∈ N+
e1 , we have:

(xk/r)e1 + (xk/r)i,e1 < (xk)e1 + (xk)i,e1 − (1 + 1
r)mk. (3)

Using the player sets, we obtain:

∑

i∈N+
e1

((xk)i,e1 − (xk/r)i,e1)

+
∑

i∈N−
e1

((xk)i,e1 − (xk/r)i,e1) = (xk)e1 − (xk/r)e1 ≥ (1 + 1
r)mk.

123

T. Harks, V. Timmermans

As
∑

i∈N−
e1

((xk)i,e1 − (xk/r)i,e1) ≤ 0, we have:

∑

i∈N+
e1

((xk)i,e1 − (xk/r)i,e1) ≥ (1 + 1
r)mk.

The total load distributed by a player does not change, therefore:

∑

f �=e1

∑

i∈N+
e1

((xk)i, f − (xk/r)i, f) ≤ −(1 + 1
r)mk.

For every resource f ∈ E\{e1} we further subdivide N+
e1 in two parts N+

e1 ∩ N−
f and

N+
e1 ∩ N+

f and obtain:

∑

f �=e1

∑

i∈N+
e1∩N−

f

((xk)i, f − (xk/r)i, f) +
∑

i∈N+
e1∩N+

f

((xk)i, f − (xk/r)i, f) ≤ −(1 + 1
r)mk.

Using the definition of N+
f , we obtain:

∑

f �=e1

∑

i∈N+
e1∩N−

f

((xk)i, f − (xk/r)i, f) ≤ −(1 + 1
r)mk. (4)

As (xk)e1 − (xk/r)e1 ≥ (1+ 1
r)mk, we have

∑
f �=e1((xk) f − (xk/r) f) ≤ −(1+ 1

r)mk.
Therefore:

∑

f �=e1

∑

i∈N+
e1∩N−

f

((xk) f − (xk/r) f) ≤ −|N+
e1 ∩ N−

f |(1 + 1
r)mk.

We add this to Eq. (4) to obtain the following:

∑

f �=e1

∑

i∈N+
e1∩N−

f

((xk) f − (xk/r) f) + ((xk)i, f − (xk/r)i, f)

≤ −(|N+
e1 ∩ N−

f | + 1)(1 + 1
r)mk.

By using the pigeonhole principle on the number of resources f ∈ E\{e1}, there exists
an f ∈ E\{e1} such that:

∑

i∈N+
e1∩N−

f

((xk) f − (xk/r) f) + ((xk)i, f − (xk/r)i, f) < −(|N+
e1 ∩ N−

f | + 1)(1 + 1
r)k.

123

Equilibrium computation in resource allocation games

Using the pigeonhole principle again on the number of players in N+
e1 ∩ N−

f , there

exists an i ∈ N+
e1 ∩ N−

f such that

((xk) f − x f) + ((xk)i, f − xi, f) < (1 + 1
r)k. (5)

We combine Eqs. (3, 5) and the fact that xk is an equilibrium for packet size k to
obtain:

μ
+k/r
i,e1

(xk/r) <
1

r
μ−k
i,e1

(xk) ≤ 1

r
μ+k
i, f (xk) ≤ μ

−k/r
i, f (xk/r). (6)

Hence, we have found a player i that has a restricted improving move in xk/r , which
contradicts the fact that xk/r is an equilibrium strategy. �

With

lim
k→0

1

k
μ+k
i,e (x) = lim

k→0

1

k
μ−k
i,e (x) = μi,e(x),

we immediately obtain the following statement from Theorem 1.

Corollary 1 Let x be the unique equilibrium for an atomic splittable game, and xk be
an equilibrium for a k-integral splittable game. Then |(xk)e − xe| < mk for all e ∈ E.

We obtain a similar result for player-specific load differences:

Theorem 2 Let xk be an equilibrium for game Gk , and xk/r be an equilibrium for game
Gk/r . Then |(xk)i,e − (xk/r)i,e| < (1 + 1

r)m
2k for all e ∈ E.

Proof In order to prove the theorem we need to show that both:

1. (xk)i,e − (xk/r)i,e < (1 + 1
r)m

2k and
2. (xk/r)i,e − (xk)i,e < (1 + 1

r)m
2k

We again only prove the first statement here. Assume by contradiction that there exists
a resource e1 with (xk)i,e1 − (xk/r)i,e1 ≥ (1 + 1

r)m
2k. By Theorem 1, we know that

for all i ∈ N and e ∈ E it holds that (xk/r)e ≤ (xk)e + (1 + 1
r)mk. Thus:

(xk/r)e1 + (xk/r)i,e1 ≤ (xk)e1 + (xk)i,e1 − (m − 1)(1 + 1
r)mk. (7)

The total load distributed by all player is the same in both xk/r and xk . Thus, we obtain:

∑
e �=e1((xk/r)e + (xk/r)i,e) ≥ ∑

e �=e1((xk)e + (xk)i,e) + (m − 1)(1 + 1
r)mk.

By the pigeonhole principle, there must exist at least one resource f ∈ E such that:

(xk/r) f + (xk/r)i, f ≥ (xk) f + (xk)i, f + (1 + 1
r)mk. (8)

123

T. Harks, V. Timmermans

Note that (xk/r)i, f > 0, as (xk/r)i, f = 0 implies (xk/r) f > (xk) f +(1+ 1
r)mk, which

contradicts the fact that |(xk) f − (xk/r) f | ≤ (1 + 1
r)mk. We obtain:

μ
+k/r
i,e1

(xk/r) <
1

r
μ−k
i,e1

(xk) ≤ 1

r
μ+k
i, f (xk) ≤ μ

−k/r
i, f (xk/r). (9)

As (xk/r)i, f > 0, player i has a restricted improving move from resource f to
resource e1. This contradicts the fact that xk/r is an equilibrium strategy. Hence, it
cannot happen that (xk)i,e1 − (xk/r)i,e1 ≥ (1 + 1

r)m
2k. Similarly, we can find a

restricted improving move whenever (xk/r)i,e − (xk)i,e ≥ (1 + 1
r)m

2k. Thus, for
any equilibrium xk for game Gk , and equilibrium xk/r for game Gk/r , we have that
|(xk)i,e − (xk/r)i,e| < (1 + 1

r)m
2k for all e ∈ E . �

Again, we immediately obtain the following statement from Theorem 2.

Corollary 2 Let x be the unique equilibrium for an atomic splittable game, and xk be an
equilibrium for the corresponding k-integral splittable game. Then |(xk)i,e − xi,e| <

m2k for all i ∈ N and e ∈ E.

To complement Theorems 1 and 2, we provide a lower bound example where

|(xk)i,e − (xk/r)i,e| = |(xk)e − (xk/r)e| = (m − 1)
k

r
.

Example 1 Consider a k−splittable congestion game Gk with player set N = {1} and
resource set {e1, . . . , em}. Let d1 = (m − 1)k, and the cost functions are defined as
follows:

c1,e(xe) :=
{

xe
2(r−1)(m−1) if e = em,

xe otherwise.

In game Gk , a best response xk for player 1 is to put all m − 1 packets on resource em .
Alternatively, if the packet size is k

r instead of k, strategy

xk/r := (kr , . . . ,
k
r , (m − 1)(k − k

r)),

is an equilibrium strategy for player 1.

We end this section with a corollary that follows from the proof of Theorem 1. We
need this specific statement in Sect. 6.

Corollary 3 Let xk be an equilibrium for game Gk , and xk/2 be an arbitrary strategy
profile for game Gk/2. If for some e ∈ E it holds that (xk)e − (xk/2)e ≥ 3

2mk, then
there exists a player i ∈ N that has a restricted improving move in game Gk/2, where
a packet of size k/2 is moved from some resource f to resource e. If for some e ∈ E, it
holds that (xk/2)e−(xk)e ≥ 3

2mk, then there exists a player i ∈ N that has a restricted
improving move in game Gk/2, where a packet of size k/2 is moved from resource e to
another resource f .

123

Equilibrium computation in resource allocation games

Proof Recall that the proof of Theorem 1 was done by contradiction: For any resource
e for which (xk)e − (xk/r)e ≥ (1+ 1

r)mk holds, we showed that there is a player i that
has a restricted improving move in xk/r moving a single packet of size k/r to resource
e from some other resource f . Similarly, whenever (xk/r)e − (xk)e ≥ (1 + 1

r)mk
holds, there is a player i that has a restricted improving move in xk/r moving a single
packet of size k/r from e to some other resource f . If we take r = 2, the corollary
follows. �

4 Reduction to integrally-splittable games

We show that the problem of finding an equilibrium for an atomic splittable game
reduces to the problem of finding an equilibrium for a k0-integral game for some
k0 ∈ Q>0.

Theorem 3 Let x be the unique equilibrium of an atomic splittable singleton game
G. Then, there exists a k∗ ∈ Q>0 such that x is also the unique equilibrium for the
k∗-integral splittable game Gk∗ .

Proof We define the support set Ii := {e ∈ E | xi,e > 0} for each player i ∈ N .
Lemma1 implies that if x is an equilibrium, and xi,e, xi, f > 0, thenμi,e(x) = μi, f (x).

Define p := ∑
i∈N |Ii | ≤ nm. Then, if the correct support set Ii of each player

is known, the equilibrium can be computed by solving the following set of p linear
equations on p variables.

1. For every player we have an equation that makes sure the demand of that player is
satisfied. Thus, for each player i ∈ N we have

∑
e∈Ii xi,e = di .

2. For every player i ∈ N , there are |Ii | − 1 equations of type μi,e(x) = μi, f (x) for
e, f ∈ Ii , which we write as ai,e(xe + xi,e) − ai, f (x f + xi, f) = bi,e − bi, f . Note
that xe is not an extra variable, but an abbreviation for

∑
i∈N xi,e.

We refer to this set of equalities as Ax = b, where A is a p× p matrix. Note that as
the equilibrium exists and is unique, matrix A is non-singular. Then, using Cramer’s
Rule, the unique solution of this system is given by: xi,e = det(Ai,e)/ det(A) =
| det(Ai,e)|/| det(A)|, where Ai,e is the matrix formed by replacing the column that
corresponds to value xi,e in A by b.We define Q := {{ai,e, bi,e | i ∈ N , e ∈ Ei }∪{di |
i ∈ N } ∪ {1}} as the set of input values and agcd := max{a ∈ Q>0 | ∀q ∈ Q, ∃� ∈
N such that q = a · �} as the greatest common divisor of Q.

Then, as all values in A and b depend on adding and subtracting values in Q,
| det(Ai,e)| is an integermultiple of (agcd)p and, hence, an integermultiple of (agcd)nm .
Thus, all player-specific loads are integer multiples of (agcd)nm/| det(A)| and, hence,
if we define k∗ = (agcd)nm/| det(A)|, x is an equilibrium for the k∗-integral splittable
game. Note that we can compute agcd in running time O(nm log amax).

It is left to prove that x is the unique equilibrium for the k∗-integral splittable
game. Assume, on the contrary, that there are two different equilibria x and y,
where x is the equilibrium for the atomic splittable game. We define two differ-
ent resource sets: E+ := {e ∈ E |xe > ye} and E− := {e ∈ E |xe ≤ ye},
and two corresponding player sets N+ := {i ∈ N | ∑e∈E+

(
xi,e − yi,e

)
> 0} and

123

T. Harks, V. Timmermans

N− := {i ∈ N | ∑e∈E−
(
xi,e − yi,e

)
< 0}. Clearly N+ �= ∅, and as each player

distributes the same amount of load in x and y we have N+ = N−. Choose a player
i ∈ N+ = N−, then there exist resources e and f such that xe > ye, xi,e > yi,e,
x f ≤ y f and xi, f < yi, f . Then, we have:

μ+k∗
i,e (y) < μ+k∗

i,e (x) − (k∗)2ai,e (as xe ≥ ye + k∗ and xi,e ≥ yi,e + k∗)
= k∗ · μi,e(x) (by rewriting)
≤ k∗ · μi, f (x) (as x is the atomic splittable equilibrium)
= μ−k∗

i, f (x) + (k∗)2ai, f (by rewriting)

≤ μ−k∗
i, f (y). (as x f ≤ y f and xi, f ≤ yi, f − k∗)

This contradicts the fact that y is an equilibrium. Thus, x is the unique k∗-integral
splittable equilibrium. �

Note that we do not know matrix A beforehand, but we do know that 2amax is an
upper bound on the values occurring in A. Using Hadamard’s inequality we find that
| det(A)| ≤ (2amax)

nm(nm)nm/2. Hence, we can find a lower bound of k∗:

k∗ ≥ anmgcd/((2amax)
nm(nm)nm/2).

By Corollaries 1 and 2, we know that for any atomic splittable equilibrium x and
any k-integral-splittable equilibrium xk , there exist bounds on |xe − (xk)e| and |xi,e −
(xk)i,e| in terms of k and m. Thus, if we compute an equilibrium for a sufficiently
small k0, this k0-integral-splittable equilibrium should be fairly similar to the unique
k∗-integral splittable equilibrium. Hence, it enables us to find the correct support sets.
Then, given the equilibrium for some sufficiently small k0, we are able compute the
correct support set of each player and compute the exact atomic splittable equilibrium
by solving system Ax = b as described earlier.

Theorem 4 Given an atomic splittable congestion game G and an equilibrium xk0
for k0-splittable game Gk0 , where: k0 := (anmgcd)/(2m

2�(2amax)
nm(nm)nm/2�). We can

compute in O((nm)3) the unique atomic splittable equilibrium x for game G.
Proof First note that all demands di are integer multiples of k0, as di is an integer
multiple of agcd, and both 2m2 and �(2amax)

nm(nm)nm/2� are integers. Theorem 3
implies that there exists a k∗ such that the atomic splittable equilibrium is also an
equilibrium for the k∗-integral splittable game. In the following we show that there is
a load-thresholdm2k0 that enables us to decide whether or not a resource receives any
demand from player i in the equilibrium of the atomic splittable game.

1. If (xk0)i,e < m2k0, then xi,e = 0. Assume by contradiction that xi,e > 0. Remem-
ber that the atomic splittable equilibrium is also a k∗-equilibrium and thus, if
xi,e > 0, then the inequality xi,e ≥ k∗ must hold. We obtain xi,e − (xk0)i,e >

k∗ − m2k0 ≥ m2k0, which contradicts Corollary 2. Thus, xi,e = 0.
2. If (xk0)i,e ≥ m2k0, then we prove that xi,e > 0. On the contrary, we assume that

xi,e = 0. In this casewe have (xk0)i,e−xi,e ≥ m2k0, which contradicts Corollary 2.
Thus, xi,e > 0.

123

Equilibrium computation in resource allocation games

Hence, given an equilibrium (xk0) for k0-splittable game Gk0 , we can compute the
correct support sets Ii = {e ∈ E | (xk0)i,e ≥ m2k0} for all i ∈ N . Given the
correct support sets, we can easily compute the correct, exact equilibrium by solving
the system Ax = b of at most nm linear equations in running time O((nm)3) using
Gaussian elimination [36]. �

It is left to compute an equilibrium xk0 for integral game Gk0 . Such integral games
have been studied in the literature before, see Harks et al. [23]. In particular, [23,
Algorithm 1] has running time O(nm(δ/k0)3). Here, δ is an upper bound on the
player-specific demands. In general, δ is not bounded in k0, thus, the running time is
not polynomially bounded in the size of the input.

5 A polynomial algorithm for integral games

The goal of this section is to develop a polynomial time algorithm that computes an
equilibrium for any k-integral splittable singleton gamewith player-specific affine cost
functions. We use elements of [47, Algorithm 1] and [23, Algorithm 1] to construct
a new algorithm with polynomial running time O(n2m14 log(δ/k)). This algorithm
works as follows. For a game with initial packet size k0, we start by finding an equi-
librium for packet size k = k0 · 2q for some q of order O(log(δ/k0)), satisfying only
a part of the player-specific demands. Then we repeat the following two actions:

1. Subroutine Restore. We half the packet size from k to k/2 and construct a k/2-
equilibrium using the k-equilibrium. Here, a k-equilibrium denotes an equilibrium
for an integrally-splittable game with common packet size k.

2. Subroutine Add. For each player i we repeat the following step: if the current
packet size k is smaller than the currently unscheduled demand of player i , we
add one more packet for this particular player to the game and recompute the
equilibrium. This part of the algorithm has also been used in the algorithm by
Tran-Thanh et al. [47] and Harks et al. [23].

3. After q iterations, we have scheduled all demands and obtain an equilibrium for
the desired packet size k0.

We describe the two subroutines Add and Restore.

5.1 ADD

The first subroutine, Add, is described in Algorithm 1 and consists of lines 4-10
of [23, Algorithm 1]. Given an equilibrium xk for game Gk((di)i∈N), it computes an
equilibrium for the game, where the demand for some player j is increased by a packet
of size k. First it decides on the best resource f for player j to put her new packet.
In effect, the load on resource f increases and only those players with xi, f > 0 can
potentially decrease their cost by a deviation. In this case, Harks et al. proved in [23,
Theorem 3.2] that a best response yi can be obtained by a restricted best response
moving a packet away from f . Formally, if player i can potentially decrease her cost,

123

T. Harks, V. Timmermans

then there exists a resource e ∈ E such that

(xi) f→e ∈ arg min
x ′
i∈Si (di ,k)

{πi (x
′
i , x−i)}

Thus, only one packet is moved throughout, preserving the invariant that only players
using a resource to which the packet is moved may have an incentive to profitably
deviate.

Algorithm 1: Subroutine Add(x, j,Gk((di)i∈N))

Input: equilibrium xk for Gk ((di)i∈N), player j
Output: equilibrium x ′

k for Gk ((d ′
i)i∈N), where d ′

j ← d j + k; d ′
i ← di for all i ∈ N \ { j}

1 x ← xk ; d
′
j ← d j + k;S ′

j ← S j (d
′
j , k); d

′
i ← di for all i ∈ N \ { j}

2 Choose f ∈ argmin{μ+k
j ,e(x)};

3 x j, f ← x j, f + k;
4 while ∃i ∈ N who can improve in Gk do
5 Compute a restricted best response yi ∈ S ′

i ;
6 xi ← yi ;
7 end
8 x ′

k ← x ;
9 return x ′

k

5.2 RESTORE

The second subroutine, Restore, takes as input an equilibrium x2k for packet size
2k and game Gk((di)i∈N), and constructs an equilibrium for packet size k. In this
algorithm, we compute backward/forward paths of restricted best responses. In a
backward path (Algorithm 2), we are given a resource e−

1 and a strategy profile b1.
In iteration q, we decide if there exists a player i that has a restricted best response
from some e−

q+1 to e−
q , and if so, we define bq+1 ← (bq)i :e−

q+1→e−
q
. If no player has

a restricted best response to resource e−
q , and if (bq)e−

q
> (x2k)e−

q
− 2mk, we end

our backward path. Else, we look for a player that has a restricted improving move in
which she shifts one packet from some e−

q+1 to e−
q , and then continue the backward

path. Note that in each step we preserve the invariant that H(b1, bq) ∈ {0, 2k}.
A forward path is very similar to a backward path, but we change the perspective.

Thus, given a resource e+
q and a strategy profile fq , we check in iteration q if there

exists a player that has a restricted best response from e+
q to some e+

q+1.
We are now ready to define subroutine Restore. The vector x is initialized by an

equilibrium x2k and, while x is not an equilibrium for Gk , we iterate the following:
Among players who can improve, we find the player j that benefits most from a
restricted best response. We carry out a restricted best response for player j and move
a packet from some resource e−

1 to some e+
1 . Then we compute a backward path,

starting in resource e−
1 . If the resulting strategy profile has Hamming distance zero

123

Equilibrium computation in resource allocation games

Algorithm 2: BP(x2k, b1, e
−
1) : A backward path of restricted best responses.

Input: equilibrium x2k for game G2k , strategy profile b1 for game Gk and a resource e−1 .

Output: Strategy profile bq for game Gk and resource e−q .
1 Initialize q ← 1;

2 while {i ∈ N | e−q ∈ argmin{μ+k
i,e (bq)} and μ+k

i,e−q
(bq) < maxe∈E {μ−k

i,e (bq)}} �= ∅ ∨
((bq)e−q ≤ (x2k)e−q − 2mk) do

3 if {i ∈ N | e−q ∈ argmin{μ+k
i,e (bq)} and μ+k

i,e−q
(bq) < maxe∈E {μ−k

i,e (bq)}} �= ∅ then

4 Choose i ∈ {i ∈ N | e−q ∈ argmin{μ+k
i,e (bq)} and μ+k

i,e−q
(bq) < maxe∈E {μ−k

i,e (bq)}}
5 else
6 Choose i ∈ {i ∈ N | μ+k

i,e−q
(bq) < maxe∈E {μ−k

i,e (bq)}}
7 end

8 Choose e−q+1 ∈ argmax{μ−k
i,e (bq)};

9 bq+1 ← (bq)i :e−q+1→e−q ;

10 q ← q + 1;
11 end
12 return (bq , e−q)

Algorithm 3: FP(x2k, f1, e
+
1): A forward path of restricted best responses.

Input: equilibrium x2k for game G2k , strategy profile f1 for game Gk and a resource e+1 .

Output: Strategy profile fq for game Gk and resource e−q .
1 Initialize q ← 1;

2 while (∃i ∈ N with e+q ∈ argmax{μ−k
i,e (fq)} and μ−k

i,e+q
(fq) < mine∈E {μ+k

i,e (fq)}) ∨
((fq)e+q ≥ (x2k)e+q + 2mk) do

3 if {i ∈ N | e+q ∈ argmax{μ−k
i,e (bq)} and μ−k

i,e+q
(bq) > mine∈E {μ+k

i,e (bq)}} �= ∅ then

4 Choose i ∈ {i ∈ N | e+q ∈ argmax{μ−k
i,e (bq)} and μ−k

i,e+q
(bq) > mine∈E {μ+k

i,e (bq)}}
5 else
6 Choose i ∈ {i ∈ N | μ+k

i,e−q
(bq) < maxe∈E {μ−k

i,e (bq)}}
7 end

8 Choose e+q+1 ∈ argmin{μ+k
i,e (fq)};

9 fq+1 ← (fq)i :e+q →e+q+1
;

10 q ← q + 1;
11 end
12 return (fq , e−q)

with x , we stop this iteration and overwrite x by the resulting strategy profile. Else,
we compute a forward path, starting in e+

1 and overwrite x by the resulting strategy
profile. The pseudo-code of subroutine Restore can be found in Algorithm 4.

123

T. Harks, V. Timmermans

Algorithm 4: Subroutine Restore(x2k,Gk((d ′
i)i∈N)).

Input: equilibrium x2k for G2k ((di)i∈N)

Output: equilibrium xk for Gk ((di)i∈N)

1 x ← x2k ;
2 while x not an equilibrium for Gk ((di)i∈N) do
3 Choose j ∈ argmini∈N {μ+k

i,min(x) − μ−k
i,max(x)};

4 Choose e−1 ∈ argmax{μ−k
j ,e(x)} and e+1 ∈ argmin{μ+k

j ,e(x)};
5 b1 ← x j :e−1 →e+1

;

6 (br , e
−
r) ← BP(x2k , b1, e

−
1);

7 if e+1 �= e−r then
8 f1 ← br ;

9 (fs , e
+
s) ← FP(x2k , f1, e

+
1);

10 x ′ ← fs ;
11 else
12 x ′ ← br ;
13 end
14 x ← x ′;
15 end
16 xk ← x ;
17 return xk ;

5.3 PACKETHALVER

Using the subroutines Add and Restore, we develop algorithm PacketHalver,
which computes an equilibrium xk0 for the k0-splittable game Gk0((di)i∈N)). In this
algorithm, we start with an equilibrium xk for Gk((d ′

i)i∈N)), where d ′
i = 0 for all

i ∈ N , k = 2q1k0 and q1 = argminq∈N{2qk0 > maxi∈N di }. Note that this game
has a trivial equilibrium, where (xk)i,e = 0 for all i ∈ N and e ∈ E . We repeat the
following two steps:

1. Given an equilibrium xk for Gk((d ′
i)i∈N), we construct an equilibrium for

Gk/2((d ′
i)i∈N) using subroutine Restore and set k to k/2.

2. For each player i ∈ N we check if di − d ′
i ≥ k. If so, we increase d ′

i by k and
recompute equilibrium xk using subroutine Add.

After q1 iterations PacketHalver returns an equilibrium xk0 for Gk0((di)i∈N)). The
pseudo-code of PacketHalver can be found in Algorithm 5.

6 Correctness

In this section, we prove that PacketHalver indeed returns an equilibrium for game
Gk0((di)i∈N). In order to do so, we first need to verify that the two subroutinesAdd and
Restore are correct. Harks, Klimm and Peis [23, Thm. 5.1] proved that subroutine
Add indeed returns an equilibrium strategy for the new game with increased demand.
It is left to verify correctness of Restore and PacketHalver.

123

Equilibrium computation in resource allocation games

Algorithm 5: Algorithm PacketHalver(Gk0((di)i∈N))

Input: Integral splittable congestion game Gk0 = (N , E, (di)i∈N , (ci,e)i∈N ,e∈E).
Output: An equilibrium xk0 for Gk0 .

1 Initialize q1 = argminq∈N{2qk0 > maxi∈N di }; k ← 2q1k0; d
′
i ← 0; xk ← (0)e∈E,i∈N ;

2 for 1, . . . , q1 − 1 do
3 k ← k/2;
4 xk ← Restore(x2k ,Gk ((d ′

i)i∈N)));
5 for i ∈ N do
6 if di − d ′

i > k then
7 xk ← Add(xk , i,Gk ((d ′

i)i∈N)));
8 d ′

i ← d ′
i + k;

9 end
10 end
11 end
12 return xk ;

6.1 CorrectnessRESTORE

In Restore, the packet size k does not change. Hence, we shorten the notation of the
marginal cost μ+k

i,e (x) and μ−k
i,e (x) to μ+

i,e(x) and μ−
i,e(x). To verify that Restore is

correct, we need to show that the following three properties hold:

1. In the algorithm that constructs the backwardpath,weneed for eachq ∈ {1, . . . , r},
that whenever (bq)e−

q
≤ (x2k)e−

q
− 2mk, there exists a player that has a restricted

improving move to resource e−
q .

2. In the algorithm that constructs the forward path, we need for each q ∈ {1, . . . , s},
that whenever (fq)e+

q
≥ (x2k)e+

q
+ 2mk, there exists a player that has a restricted

improving move from resource e+
q .

3. Restore terminates.

The first two properties follow directly from Corollary 3. Note that the corollary
already implies the existence of a restricted improving move for a load difference of
order 3

2mk, but for the sake of a cleaner analysis of the running timeof the algorithm,we
work with a load imbalance of order 2mk. In order to prove that Restore terminates,
we need to check that we enter the while loop in line 2 only a finite number of times,
and, that within the while loop, strategies do not cycle. We define:

Δi,e(x) := μ+
i,min(x) − μ−

i,e(x)), i ∈ N , e ∈ E .

Let Δmin(x) be the minimum value in Δ(x) := (Δi,e(x))i∈N ,e∈E . When all elements
in Δ(x) are non-negative, or, equivalently, when Δmin(x) is non-negative, x is an
equilibrium. In general, under the hypothesis that the backward and forward paths end
after a finite number of steps, we obtain the following (finite) sequence of strategy
profiles within a while-loop:

x → b1 → b2 → · · · → br = f1 → f2 → · · · → fs = x ′. (10)

123

T. Harks, V. Timmermans

We aim to prove that after each iteration in the while loop of Restore, either
Δmin(x) increased, or the value Δmin(x) occurs less often. We define

#(Δ(x)) := |{(i, e) ∈ N × E | Δi,e(x) = Δmin}|,

as the number of times the value Δmin(x) occurs in Δ(x), and:

Φ(Δ(x)) := (Δmin(x), #(Δ(x))).

For two strategies, y, y′ ∈ ∏
i∈N Si (di , k), we write that Φ(Δ(y)) < lex Φ(Δ(y′))

if either: (I) Δmin(y) < Δmin(y′) or (II) Δmin(y) = Δmin(y′) and #(Δ(y)) >

#(Δ(y′)).
We aim to prove the following theorem.

Theorem 5 Let x and x ′ be defined as in the while-loop (lines 2–15) of Restore, then
Φ(Δ(x)) <lex Φ(Δ(x ′)).

As the strategy space is finite, Theorem 5 implies that we can only enter the while
loop in line 2 of Restore a finite number of times. In order to prove Theorem 5, we
need to keep track of the single packet exchanges described in Eq. (10). We remark
that there is no monotonicity of the form:

Φ(Δ(x)) ≤ lex Φ(Δ(b1)) ≤ lex Φ(Δ(b2)) ≤ lex · · · ≤ lex Φ(Δ(fs)) = Φ(Δ(x ′)).

For example, a single packet exchange for some player i as described in lines
3-5 of Restore can increase mine∈E {(Δ(x))i,e} but at the same time decrease
mine∈E {(Δ(x)) j,e} for another player j , which can cause Δmin(x) > Δmin(b1) over-
all.

Therefore, we introduce slightly different vectors Δ̃(b1), . . . , Δ̃(fs), where we add
a correcting term to some entries of Δ(b1), . . . , Δ(fs). Let us discuss this corrective
term and Δ̃(·) in more detail. In strategy bq , we correct the marginal costs μ−

i,e(bq)

and μ+
min(bq), as we know that the total load on resource e−

q will increase by k after

the next single packet exchange. On resource e+
1 , the total load will decrease by k once

we start with the forward path. We call these corrected marginal costs: μ̃−
i,e(bq) and

μ̃+
i,e(bq). Thus, for all q ∈ {1, . . . r} we define:

μ̃−
i,e(bq) :=

⎧
⎪⎨

⎪⎩

μ−
i,e(bq) + k2ai,e, if e−

q �= e+
1 and e = e−

q ,

μ−
i,e(bq) − k2ai,e, if e−

q �= e+
1 and e = e+

1 ,

μ−
i,e(bq), otherwise.

(11)

Similarly, we define μ̃+
i,e(bq) and μ̃+

i,min(bq) := mine∈E {μ̃+
i,min(bq)} for all q ∈

{1, . . . r}. Then, we define

Δ̃(bq) := (μ̃+
i,min(bq) − μ̃−

i,e(bq))i∈N ,e∈E .

123

Equilibrium computation in resource allocation games

Fig. 1 In this figure, we visualize the lexicographical ordering of potential valuesΦ(Δ(x)),Φ(Δ̃(b1)), . . .,
Φ(Δ̃(br)), Φ(Δ̃(f1)), . . ., Φ(Δ̃(fs)), Φ(Δ(x ′)). This potential vector is lexicographically increasing,
except from br to f1 and from fs to x ′. Still, we can show that Φ(Δ(x)) < lex Φ(Δ(x ′))

In strategy fq , we only correct marginal costs μ−
i,e(fq) and μ+

min(fq) for the fact
that we know that the total load on resource e+

q will decrease by k after the next single
packet exchange. Thus, for all q ∈ {1, . . . s} we define:

μ̃−
i,e(fq) :=

{
μ−
i,e(fq) − k2ai,e, if e = e+

q ,

μ−
i,e(fq), otherwise.

(12)

Similarly, we define μ̃+
i,e(fq) and μ̃+

i,min(fq) := mine∈E {μ̃+
i,min(fq)} for all q ∈

{1, . . . s}. Then, we define

Δ̃(fq) := (μ̃+
i,min(fq) − μ̃−

i,e(fq))i∈N ,e∈E .

Under these corrected vectors Δ̃(bq), Δ̃(fq), values only change for the player
that executed the restricted best response in that iteration. It can still happen that
Φ(Δ̃(br)) ≥ lex Φ(Δ̃(f1)) and Φ(Δ̃(fs)) ≥ lex Φ(x ′). Though, besides these two
exceptions, the potential value is lexicographically increasing (see Fig. 1 for a visu-
alization of the lexicographical ordering of the potential values). In order to prove
Theorem 5, we first prove the following three statements:

i) Φ(Δ(x)) < lex Φ(Δ̃(b1)) (Lemma 3).
ii) Φ(Δ̃(bq)) ≤ lex Φ(Δ̃(bq+1)) for all q ∈ {1, . . . , r − 1} (Lemma 4).
iii) Φ(Δ̃(fq)) ≤ lex Φ(Δ̃(fq+1)) for all q ∈ {1, . . . , s − 1} (Lemma 5).

Lemma 3 Let x and b1 be defined as in the while-loop (lines 2–15) of Restore, then
Φ(Δ(x)) < lex Φ(Δ̃(b1)).

123

T. Harks, V. Timmermans

Proof Assume we obtain b1 from strategy x as player j is moving a single packet
from resource e−

1 to e+
1 . Using Eq. (11), we know that for all players i ∈ N\{ j} and

all resources e ∈ E : Δ̃(b1)i,e = Δ(x)i,e. Furthermore, as

• μ+
j,e+

1
(x) = μ+

j,e+
1
(b1) − 2k2a j,e+

1
< μ̃+

j,e+
1
(b1),

• μ+
j,e+

1
(x) < μ−

j,e−
1
(x) = μ+

j,e−
1
(b1) < μ̃+

j,e−
1
(b1) and,

• μ+
j,e+

1
(x) ≤ μ+

j,e(x) = μ̃+
j,e(b1) for all e ∈ E\{e−

1 , e+
1 },

we obtain:

μ+
j,e+

1
(x) ≤ μ̃+

j,min(b1). (13)

This implies

Δmin(x) = μ+
j,e+

1
(x) − μ−

j,e−
1
(x) < μ̃+

j,min(b1) − μ̃−
j,e−

1
(b1). (14)

Hence, at least one value in Δ(x) that was equal to Δmin(x) increased in Δ̃(b1). It is
left to show that if there exists a resource e for player j , where Δ j,e(x) decreased, it
does not decrease to a value equal to or lower than Δmin(x). Thus, assume there exists
an e ∈ E\{e−

1 } such that Δ j,e(x) > Δ̃ j,e(b1). By Eq. (13), we get that μ̃−
j,e(b1) >

μ−
j,e(x), which is only possible if e = e+

1 . We obtain:

μ̃+
j,min(b1) − μ̃−

j,e+
1
(b1)

≥ μ+
j,e+

1
(x) − μ̃−

j,e+
1
(b1) (By Eq. (13))

= (μ+
j,e+

1
(b1) − 2k2a j,e+

1
)

−(μ−
j,e+

1
(b1) − k2a j,e+

1
) (By construction and Eq. (11))

= μ+
j,e+

1
(b1) − μ−

j,e+
1
(b1) − k2a j,e+

1
(Simplification)

= k2a j,e+
1

> 0 (By definition of μ+
j,e(·) and μ−

j,e(·))

Hence, for at least one resource withΔ j,e(x) = Δmin(x)we haveΔ j,e(x) < Δ̃ j,e(b1)
and for any resource for which Δ j,e(x) > Δ̃ j,e(b1), we have Δ̃ j,e(b1) > Δmin(x).
Hence, with Δmin(x) ≤ 0 this completes the proof. �

Next, we show that Φ(Δ̃(bq)) ≤ lex Φ(Δ̃(bq+1)) for all q ∈ {1, . . . , r − 1} by
showing that Δ̃(x) is sorted lexicographically increasing. Given two vectors u, v ∈
Rn , we say that v is sorted lexicographically larger than u, if there is an k ∈ {1, . . . , n}
such thatuφ(i) = vψ(i) for all i < k anduφ(k) < vψ(k), whereφ andψ are permutations
that sort u and v non-decreasingly. We write u < slex v. If uφ(i) = vψ(i) for all
i ∈ {1, . . . , n}, we write u = slex v.

Lemma 4 Let x and bq be defined as in the while-loop (lines 2-15) of Restore with
q ∈ {1, . . . , r − 1}. Then Φ(Δ̃(bq)) ≤ lex Φ(Δ̃(bq+1)).

123

Equilibrium computation in resource allocation games

Proof Note that it is sufficient to prove that Δ̃(bq) < slex Δ̃(bq+1) for all q ∈
{1, . . . , r − 1}. In Lemma 3 we knew that the single packet exchange was a restricted
best response, but here we only know it is a restricted improving move. Still, similar
to the proof of Lemma 3, we know that for all players j ∈ N\{i} and all resources
e ∈ E : Δ̃ j,e(bq+1) = Δ̃ j,e(bq).

Note that as

μ̃+
i,e(bq+1) ≥ μ̃+

i,e(bq)

for all e ∈ E\{e+
q+1}, and

μ̃+
i,e+

q+1
(bq+1) = μ̃−

i,e+
q+1

(bq) > μ̃+
i,e+

q
(bq),

we obtain that:

μ̃+
i,e+

q+1
(bq) ≤ μ̃+

i,min(bq+1).

μ̃+
i,min(bq) ≤ μ̃+

i,min(bq+1).

Now, for all e �= e+
q , e+

q+1 we have μ̃−
i,e(bq) = μ̃−

i,e(bq+1) and thus Δ̃i,e(bq) ≤
Δ̃i,e(bq+1). For e+

q , we get μ̃−
i,e+

q
(bq) > μ̃−

i,e+
q
(bq+1) and hence Δ̃i,e+

q
(bq) <

Δ̃i,e+
q
(bq+1). Finally, for e+

q+1 we have μ̃−
i,e+

q+1
(bq) < μ̃−

i,e+
q+1

(bq+1), but still

Δ̃i,e+
q+1

(bq+1) > Δ̃i,e+
q
(bq). Thus, we get that Δ̃(bq) < slex Δ̃(bq+1) and altogether

we have Φ(Δ̃(bq)) ≤ lex Φ(Δ̃(bq+1)) for all q ∈ {1, . . . , r − 1}. �

As we only use the fact that player i executes a restricted improving move from bq

to bq+1, we obtain a similar statement during the execution of the forward path:

Lemma 5 Let x and bq be defined as in the while-loop (lines 2–15) of Restore with
q ∈ {1, . . . , s − 1}. Then Φ(Δ̃(fq)) ≤ lex Φ(Δ̃(fq+1)).

Finally, we can prove Theorem 5.

Proof (Theorem 5) By Lemma 3 we know that Φ(Δ(x)) < lex Φ(Δ̃(b1)) and
Lemma 4 implies that Φ(Δ̃(bq)) ≤ lex Φ(Δ̃(bq+1)) for all q ∈ {1, . . . , r −1}. Hence,
Φ(Δ(x)) < lex Φ(Δ̃(br)). Next we claim that Φ(Δ(x)) < lex Φ(Δ̃(f1)). If we have

μ̃+
i,min(br) − μ̃−

i,e(br) ≤ μ̃+
i,min(f1) − μ̃−

i,e(f1),

for all i ∈ N and e ∈ E , then Φ(Δ(x)) < lex Φ(Δ̃(f1)) and our claim follows. Thus,
assume that for some i ∈ N and e ∈ E it holds that:

μ̃+
i,min(br) − μ̃−

i,e(br) > μ̃+
i,min(f1) − μ̃−

i,e(f1). (15)

123

T. Harks, V. Timmermans

This implies that e−
r �= e+

1 . Using Eqs. (11) and (12) we obtain:

μ̃−
i,e(f1) =

{
μ̃−
i,e(br) − ai,ek, if e = e−

r ,

μ̃−
i,e(br), otherwise.

(16)

And a similar statement as (16) holds for μ̃+
i,e(f1) and μ̃+

i,e(br). Therefore, we get

e−
r ∈ argmine∈E μ̃+

i,e(br) and, hence, e
−
r ∈ argmine∈E μ+

i,e(br), which in turn implies

e−
r ∈ argmine∈E μ̃+

i,e(f1). We obtain:

μ̃+
i,min(br) − μ̃−

i,e(br) > μ̃+
i,e−

r
(f1) − μ̃−

i,e(f1) ≥ μ+
i,e−

r
(f1) − μ−

i,e(br) ≥ 0.

Here, the first inequality holds true as e−
r ∈ argminμ+

i,e(br), the second inequality

as e−
r �= e+

1 and the third as e−
r is the last resource of the backward path. Thus, for

all resources e ∈ E for which Eq. (15) is true (thus Δ̃i,e(br) > Δ̃i,e(f1)), we have
Δ̃i,e(f1) ≥ 0. As x is not an equilibrium, Δmin(x) < 0. Thus, as Φ(Δ(x)) < lex
Φ(Δ̃(br)), also Φ(Δ(x)) < lex Φ(Δ̃(f1)).

Using Corollary 5 we know that Φ(Δ̃(fq)) ≤ lex Φ(Δ̃(fq+1)) for all q ∈
{1, . . . , s − 1} and thus Φ(Δ(x)) < lex Φ(Δ̃(fs)).

Lastly, we claim that Δ(x) < lex Δ̃(fs) ≤ lex Δ(x ′). If for all i ∈ N and e ∈ E we
have:

μ̃+
i,min(f1) − μ̃−

i,e(fs) ≤ μ+
i,min(fs) − μ−

i,e(fs),

then Δ(x) < lex ˜Δ(fs) ≤ lex Δ(x ′) and the theorem follows. Therefore, assume that
for some i ∈ N and e ∈ E , we have:

μ̃+
i,min(f1) − μ̃−

i,e(fs) > μ+
i,min(fs) − μ−

i,e(fs). (17)

Equation (12) implies that in this case e = e+
s . As e

+
s is the end of the backward path,

for all i ∈ N , we have either that (I) e+
s /∈ argmax{μ−

i,e(fs)} or that (II) μ+
i,min(fs) −

μ−
i,max(fs) ≥ 0. In the first case, it holds for any e′ ∈ argmax{μ−

i,e(fs)} that:

μ+
i,min(fs) − μ−

i,e+
s
(fs)

> μ+
i,min(fs) − μ−

i,e′(fs) (as e′ ∈ argmax{μ−
i,e(fs)})

≥ μ̃+
i,min(fs) − μ̃−

i,e′(fs) (as e+
s �= e′)

≥ Δmin(x). (as Φ(Δ(x)) < lex Φ(Δ̃(fs)))

In the second case, as Δmin(x) < 0, we also have μ+
i,min(fs) − μ−

i,e+
s
(fs) ≥ 0 >

Δmin(x).
Hence, in both cases, μ+

i,min(fs) − μ−
i,e+

s
(fs) > Δmin. Thus, if Δ̃i,e(fs) >

Δi,e(x ′)), then we still have Δi,e(x ′)) > Δmin. As Φ(Δ(x)) < lex Φ(Δ̃(fs)), we
get Φ(Δ(x)) < lex Φ(Δ(x ′)). �

123

Equilibrium computation in resource allocation games

6.2 Correctness PACKETHALVER

It is left to prove that PacketHalver returns an equilibrium for Gk0((di)i∈N .
Theorem 6 Given a k0-integral splittable singleton game with affine player-specific
cost functions Gk0 := (

N , E, (di)i∈N , ((ci,e)e∈E)i∈N
)
, PacketHalver returns an

equilibrium for Gk0 .
Proof We initialize xi,e = 0 for all i ∈ N and e ∈ E , which is an equilibrium
for the game G2q1k0((0)i∈N). Assume that in iteration q we enter the for-loop in
PacketHalverwith an equilibrium x for gameG2q1−q+1k0 with demands d ′

i = di−(di
mod 2q1−q+1k0). First, Restore computes an equilibrium for demands demands
d ′
i = di−(di mod 2q1−qk0) and packet size 2q1−qk0. In lines 5-10 ofPacketHalver
we check for each player i ∈ N if her unscheduled load satisfies di − d ′

i ≥ 2q1−qk0.
If so, we schedule one extra packet for player i using subroutine Add. Thus, after the
q’th iteration in the for-loop, we obtain an equilibrium for demands d ′

i = di − (di
mod 2q1−qk0) and packet size 2q1−qk0. Hence, after the q1’th iteration, we obtain
an equilibrium for the desired packet size 20k0 = k0 and demands d ′

i = di − (di
mod k0) = di , which is an equilibrium for game Gk0((di)i∈N). �

7 Running time

We prove that the running time of PacketHalver is polynomially bounded in n, m,
log k and log δ, where δ is the upper bound on player-specific demands di . For this,
we first need to analyze the running time of the two subroutines Add and Restore.

7.1 Running timeADD

In [23, Corollary 5.2] Harks et al. proved that it takes time nm(δ/k)2 to executeAdd. If
their algorithm is applied to games with singleton strategy spaces and player-specific
affine cost functions, we show next that the running time reduces to O(nm4). The
main reason for this is that equilibria are not very sensitive under small changes in
demands.

Lemma 6 Let xk be an equilibrium for game Gk((di)i∈N) and let xq be the strategy
profile after the q’th iteration of the while-loop described in lines 4–7 of subroutine
Add. Then |(xk)i,e − (xq)i,e| < 2mk for all i ∈ N and e ∈ E.

Proof On the contrary, assume q is the first iteration where |(xq)i,e − (xk)i,e| = 2mk
for some i ∈ N and e ∈ E . There are two cases: either (I)(xq)i,e − (xk)i,e = 2mk or
(II)(xk)i,e − (xq)i,e = 2mk. We prove that the first case leads to a contradiction. For
the second case a contradiction can be obtained in a similar manner.

Harks, Klimm and Peis [23] proved that only the players using a resource whose
load increased in the previous iteration may have an improving move, and if so,
a best response consists in moving one packet from this resource to another one.
This implies that (xk)e ≤ (xq)e ≤ (xk)e + k for all e ∈ E . Thus, when assuming

123

T. Harks, V. Timmermans

(xq)i,e = (xk)i,e + 2mk, we obtain:

(xq)e + (xq)i,e ≥ (xk)e + (xk)i,e + 2mk. (18)

Remember that the total load distributed in xq by player i exceeds the total load
distributed in xk by at most k, and hence

∑
f ∈E (xq)i,e ≤ k + ∑

f ∈E (xk)i,e. We
obtain:

∑
f �=e(xq)i,e ≤ ∑

f �=e(xk)i,e + (1 − 2m)k <
∑

f �=e(xk)i,e − 2(m − 1)k.

The pigeonhole principle implies there exists an f ∈ E such that (xq)i, f < (xk)i, f −
2k and thus (xq)i, f ≤ (xk)i, f − 3k. Combined with the fact that (xq) f ≤ (xk) f + k,
this implies:

(xq)i, f + (xq) f ≤ (xk)i, f + (xk) f − 2k. (19)

As q is the first iteration in which (xq)i,e − (xk)i,e = 2mk, we have that xq =
(xq−1)i :e′→e for some e′ ∈ E . Using inequalities (18, 19), m > 1 and the fact that xk
is an equilibrium for packet size k, we obtain:

μ−k
i,e (xq) > μ+k

i,e (xk) ≥ μ−k
i, f (xk) ≥ μ+k

i, f (xq).

This, combined with the fact that (xq)i,e > (xk)i,e ≥ 0 and that (xk)i, f ≥ (xq)i,e +
3k > 0, implies player i can decrease her cost by moving a packet from e to f . This
contradicts the fact that in strategy profile xq−1 moving a packet to e is a restricted
best response for player i . �

Lemma 7 Algorithm Add has running time O(nm4).

Proof Let xq be the strategy profile after line 5 of the algorithm has been executed for
the q’th time, where we use the convention that x0 denotes the preliminary strategy
profile when entering the while-loop. Note that there is a unique resource e0 such
that (x0)e0 = xe0 + k and (x0)e = xe for all e ∈ E\{e0}. Furthermore, because we
choose in Line 5 a restricted best response, a simple inductive argument shows that
after each iteration q of the while-loop, there is a unique resource eq ∈ E such that
(x0)eq = xeq + k and (x0)e = xe for all e ∈ E\{eq}.

We assume that players move packets according to a Last In First Out (LIFO)
principle. Thus, whenever player i removes packet i j from eq , she moves the packet
that was placed on this resource last. We keep track of the marginal cost of a packet i j
at the moment it is moved. Assume that packet i j is moved in p iterations q1, . . . qp.
Then:

μ−k
i,eq1

(xq1) > μ+k
i,eq1+1

(xq1) = μ−k
i,eq1+1

(xq1+1) = μ−k
i,eq2

(xq2).

Here, the first equality is true as moving packet i j is an improving move for player i ,
the second by construction of xq1+1 and the third as eq2 = eq1+1 and by LIFO principle
(xq2)i,eq2 = (xq1+1)i,eq2 .

123

Equilibrium computation in resource allocation games

Via similar arguments, we obtain: μ−k
i,eq1

(xq1) > μ−k
i,eq2

(xq2) > · · · > μ−k
i,eqp

(xqp).

Note that in iterations q1, . . . qp, marginal cost value μ−k
i,eq�

(xq�
) does not depend on

the aggregated load (xq�
)eq� , as (xq�

)eq� = (xq)eq� + k for each � ∈ {q1, . . . , qp}.
Instead it only depends on the player-specific load (xq�

)i,eq� . Lemma 6 implies that
each player i ∈ N will move at most 2m packets from each resource and hence there
will occur at most 4m different values of (xq�

)i,eq� . Thus, each packet visits each

resource at most 4 times. As each player i moves at most 2m2 packets, and each
packet visits each resource (m resources) at most 4m times, the running time of Add
is bounded by O(nm4). �

7.2 Running timeRESTORE

We analyze the running time of Restore. The crucial idea is that for each strategy
profile y (for a game with packet size k) obtained during the execution of Restore,
we have both |(ye − (x2k)e| ≤ 2mk and |yi,e − (x2k)i,e| < 2m2k for all i ∈ N and
e ∈ E . Hence, for each player at most 2m2 packets are moved.

Lemma 8 Let x2k be an equilibrium for game G2k . Then, for any strategy y obtained
in any step of algorithm Restore, we have that |ye − (x2k)e| ≤ 2mk for all e ∈ E.

Proof In Restore we iterate between a restricted best response, a backward path
of restricted best responses and possibly a forward path of restricted best responses.
Within one iteration, we obtain a sequence of strategies as described in Eq. (10)

x → b1 → b2 → · · · → br = f1 → f2 → · · · → fs = x ′.

We first show that if |xe − (x2k)e| < 2mk, then |x ′
e − (x2k)e| < 2mk.

If x ′
e = (x2k)e for all e ∈ E the lemma follows trivially. Thus, assume that there

exists an e such x ′
e �= (x2k)e. By construction of x ′, we have that x ′

e−
r

= xe−
r

− k,

x ′
e+
s

= xe+
s

+ k and x ′
e = (x2k)e for all e ∈ E\{e−

r , e+
s }. Thus, it remains to check that

(I) x ′
e−
r

> (x2k)e−
r

−2mk and (II) x ′
e+
s

< (x2k)e+
s

+2mk. For the first case we note that

x ′
e−
r

= (br)e−
r
. Any strategy br that is returned by Algorithm 2 has the property that

(br)e−
r

> (x2k)e−
r

− 2mk and, hence, x ′
e−
r

> (x2k)e−
r

− 2mk. For the second case we

note that x ′
e−
r

= (fs)e+
s
. For any strategy fs that is returned by Algorithm 3 it holds that

(fs)e+
s

< (x2k)e+
s

+ 2mk. Hence, x ′
e+
s

< (x2k)e+
s

+ 2mk. Thus, if |xe − (x2k)e| < 2mk

for all e ∈ E , then |x ′
e − (x2k)e| < 2mk.

In each strategy that is obtained during one iteration in thewhile loop, there is atmost
one resourcewhere the total load increase by k and atmost one resourcewhere the total
load decreased by k. Hence, we obtain that H(x, bq) ∈ {0, 2k} for all q ∈ {1, . . . , r}
and H(x, fq) ∈ {0, 2k} for all q ∈ {1, . . . , s}. We combine this observation with the
fact that at the beginning of the while-loop of Restore |xe − (x2k)e| < 2mk and the
lemma follows. �

123

T. Harks, V. Timmermans

Lemma 9 Let x2k be an equilibrium for game G2k . Then, for any strategy y obtained
in any step of algorithm Restore, we have that |yi,e − (x2k)i,e| < 2m2k for all i ∈ N
and e ∈ E.

Proof By Lemma 8 we know that for any strategy y obtained in any step of algorithm
Restore, we have that |ye − (x2k)e| ≤ 2mk for all e ∈ E . Basically, in Restore we
find a sequence of single packet exchanges that transforms an equilibrium for packet
size 2k in an equilibrium for packet size k. Clearly, after zero single packet exchanges,
y = x2k and hence |yi,e − (x2k)i,e| < 2m2k for all i ∈ N and e ∈ E .

Assume that the lemma does not hold and let y′ = ye1→e2 be the first single packet
exchange such that either

(I) (x2k)i,e1 − y′
i,e1 = 2m2k or (II) y′

i,e2 − (x2k)i,e2 = 2m2k,

(or both). Then, by definition of Restore, if (I) holds, we have e1 ∈ argmaxμ−
i,e(y).

Furthermore, Theorem 2 implies that there exist a resource e2 ∈ E with

μ−k
i,e2

(y′) > μ+k
i,e1

(y′) = μ−k
i,e1

(y).

As μ−k
i,e (y) ≥ μ−k

i,e (y
′) for all e ∈ E\{e1}, we obtain that μ−k

i,e2
(y) > μ−k

i,e1
(y),

which contradicts the fact that e1 ∈ argmaxμ−
i,e(y). Similarly, if (II) holds, e2 ∈

argminμ+
i,e(y). From the proof of Theorem 1 for r = 2, it follows that there exist a

resource e1 ∈ E with

μ+k
i,e1

(y′) < μ−k
i,e2

(y′) = μ+k
i,e2

(y).

As μ+k
i,e (y) ≤ μ+k

i,e (y
′) for all e ∈ E\{e2}, this contradicts the fact that e2 ∈

argminμ+
i,e(y). Hence, neither (I) or (II) can be true, and |yi,e − (x2k)i,e| < 2m2k for

all i ∈ N and e ∈ E . �

The bounds on the total and player-specific load enable us to prove that Algorithm 2

runs in polynomial time.

Lemma 10 Let x2k be an equilibrium for packet size 2k. And let x be a strategy profile
for packet size k such that |(x2k)e − xe| < 2mk for all e ∈ E. Then Algorithm 2 has
a running time of O(nm6).

Proof Lemmas 8 and 9 imply that for each player i ∈ N and each resource e ∈ E ,
at most 4m2 different values xi,e can occur whenever a packet i j of player i is moved
within a path of restricted best responses.Using the sameargumentation as inLemma7,
and assuming packets are moved according to LIFO, the marginal cost of packet i j
decreases each time it is moved. This implies that each unit of demand for player i
(m · 2m2 units) visits each resource (m resources) at most 4m2 times. Therefore the
running time of finding a backward or forward path of restricted best responses is
bounded by O(nm6). �

We combine all previous results to prove Lemma 11.

123

Equilibrium computation in resource allocation games

Lemma 11 Restore has running time O(n2m14).

Proof The running time of Restore is dominated by the number of times we enter
the while-loop, and the running time of computing a forward and backward path of
restricted best responses, which can both be found in time O(nm6). Hence, the running
time of a complete iteration in the while-loop is O(nm6).

Note that Lemmas 8 and 9 imply that on each resource e at most O(m3) different
valuesμ−k

i,e (·) can occur and O(m4) different valuesμ+k
i,min(·). Thus, for each player at

most O(m7) different valuesμ+k
i,min(·)−μ−k

i,e (·) can appear on a resource, thus O(nm8)

different values in total. In Lemma 5, we proved that Φ(Δ(x)) lexicographically
increases after each iteration in the while-loop. Hence, we enter the while-loop at
most O(nm8) times. As we enter the while-loop at most O(nm8) times, and each
iteration runs in O(nm6), PacketHalver runs in O(n2m14). �

7.3 Running time PACKETHALVER

Finally, we prove the following theorem.

Theorem 7 PacketHalver runs in time O(n2m14 log(δ/k0)).

Proof Note that we picked q1 ∈ N to be the smallest number such that 2q1k0 > di
for all player-specific demands di . This implies that q1 is bounded in O(log(δ/k0)),
where δ is an upper bound on the player-specific demands. Thus, we execute lines
3-10 O(log(δ/k0)) times. In line 4 we call Restore, which runs in O(n2m14). In line
5 − −9 we execute Add (which runs in O(nm6)) at most n times. Thus, the compu-
tation time of lines 5− −10 is O(n2m6). This implies that it takes time O(n2m14) to
go through a complete iteration in the for loop. Thus, PacketHalver runs in time
O(n2m14 log(δ/k0)). �

It is left to show that in an atomic splittable game G, log(1/k0) is polynomially
bounded in the input.

O
(
log

(
2m2(2amax)

nm(nm)nm/2)/(anmgcd)
))

= O
(
logm + log (det(A)) + log

(
1/(anmgcd)

))

= O
(
logm + log((2amax

√
nm)nm) + log

(∏
i∈N ,e∈Ei

di · ai,e · bi,e
))

= O
(
nm log(nmamax) + ∑

i∈N ,e∈Ei

(
log(di) + log(ai,e) + log(bi,e)

))
.

Which is indeed polynomial in the size of the input. Remember that if we are
computing an atomic splittable equilibrium, we first compute the k0 splittable equi-
librium using the algorithm above. Second, we compute the exact equilibrium in time
O((nm)3).

Theorem 8 Given game G, we can compute an atomic splittable equilibrium for G in
running time: O

(
(nm)3 + n2m14 log (δ/k0)

)
.

123

T. Harks, V. Timmermans

8 Multimarket cournot oligopoly

In this section, we derive a strong connection between atomic splittable singleton
congestion games with affine cost functions and multimarket Cournot oligopolies
with affine price functions and quadratic costs. Such a game is compactly represented
by the tuple M = (N , E, (Ei)i∈N , (pi,e)i∈N ,e∈Ei , (Ci)i∈N), where N is a set of n
firms and E a set of m markets. Each firm i only has access to a subset Ei ⊆ E
of the markets. Each market e is endowed with firm-specific, non-increasing, affine
price functions pi,e(t) = si,e − ri,et, i ∈ N . In a strategy profile, a firm chooses
a non-negative production quantity xi,e ∈ R≥0 for each market e ∈ Ei . We denote
a strategy profile for a firm by xi = (xi,e)e∈Ei , and a joint strategy profile by x =
(xi)i∈N . The production costs of a firm are of the form Ci (t) = ci t2 for some ci ≥ 0.
The goal of each firm i ∈ N is to maximize its utility, which is given by ui (x) =
∑

e∈Ei
pi,e(xe)xi,e − Ci

(∑
e∈Ei

xi,e
)
, where xe := ∑

i∈N xi,e. In the rest of this

section we prove that several results that hold for atomic splittable equilibria and
k-splittable equilibria carry over to multimarket oligopolies.

A strategic game G = (N , (X)i∈N , (ui)i ∈ N) is defined by a set of players N , a
set of bigfeasible strategies Xi for each player i ∈ N and a pay-off function ui (x) for
each i ∈ N , where x ∈ Ś

i∈N Xi .

Definition 2 Let G = (N , (Xi)i∈N , (ui)i ∈ N),H = (N , (Yi)i∈N , (vi)i ∈ N) be two
strategic games with identical player set N . Then, G and H are called isomorphic, if
for all i ∈ N there exists a bijective function φi : Xi → Yi and Ai ∈ R such that:
ui (x1, . . . xn) = νi (φ1(x1), . . . , φn(xn)) + Ai .

LetG = (N , (Xi)i∈N , (ui)i ∈ N) andH = (N , (Yi)i∈N , (vi)i ∈ N) be isomorphic
games. Then, (xi)i∈N is an equilibrium of game G if and only if (φi (xi))i∈N is an
equilibrium of game H. This implies that (xi)i∈N is the unique equilibrium of game
G if and only if (φi (xi))i∈N is the unique equilibrium of game H.

We prove that for each multimarket oligopoly, there exists an isomorphic atomic
splittable game. Moreover, we can construct the isomorphism in polynomial time.

Theorem 9 Given a multimarket oligopolyM, there exists an atomic splittable game
G that is isomorphic to M.

Proof Given multimarket oligopoly M, we construct an atomic splittable singleton
game G. For every firm i ∈ N we create a player i and we define her demand di
as an upper bound on the maximal quantity that firm i will produce, that is, di :=∑

e∈Ei
max{t | pi,e(t) = 0}. Note that if we limit the strategy space for each player

i ∈ N in game M to strategies x satisfying
∑

e∈Ei
xi,e ≤ di , all equilibria are

preserved. Then, for every player i we introduce a special resource ei , and define the
set of allowable resources for this player as: Ẽi = Ei ∪ {ei } with ei �= e j for i �= j .
The cost functions of special resources ei are defined as ci,ei (t) := ci (t − 2di) for all
i ∈ N and the cost functions of resources e ∈ Ei as: ci,e(t) := −pi,e(t) = ri,et − si,e
for all i ∈ N .

In order to guarantee that the affine cost functions are non-negative, one can add a
sufficiently large positive constant cmax to every cost function on each resource. We

123

Equilibrium computation in resource allocation games

define: cmax = max
{{si,e | for all i ∈ N , e ∈ Ei } ∪ {2cidi | for all i ∈ N }} . Note

that adding cmax to every cost function does not change the equilibrium, it only adds
di cmax to the total cost of each player. The total cost of a strategy x for player i in
game G is: πi (x ′) = ∑

e∈Ẽi
ci,e(x ′

e)x
′
i,e, which is equal to

πi (x
′) = ∑

e∈Ei
−pi,e(x ′

e)x
′
i,e + x ′

i,ei
ci (x ′

i,ei
− 2di). (20)

As maximizing pay-off equals minimizing costs, the payoff function of player i in
x ′ is defined by: vi (x ′) = −πi (x ′). It is left to prove that game G is isomorphic
to game M. Let x be a feasible strategy in M. For each player i ∈ N , we define
bijection φi : Ei → Ẽ as: φi (xi,1, . . . , xi,m) = (xi,1, . . . , xi,m, di − ∑

e∈Ei
xi,e) =:

(x ′
i,1, . . . , x

′
i,m, x ′

i,m+1). As we limited the strategy space for each i ∈ N in game M
to strategies x where

∑
e∈Ei

xi,e ≤ di , x ′ := φ(x) is a feasible strategy in G. For each
feasible strategy x for game M, and for each i ∈ N , we have:

ui (x) = ∑
e∈Ei

pi,e(xe)xi,e − Ci

(∑
e∈Ei

xi,e
)

= ∑
e∈Ei

pi,e(xe)xi,e − ci
(
di − ∑

e∈Ei
xi,e

)(
− di − ∑

e∈Ei
xi,e

)
− ci d2i

= ∑
e∈Ei

pi,e(xe)xi,e − ci
(
di − ∑

e∈Ei
xi,e

)(
di − ∑

e∈Ei
xi,e − 2di

)
− cid2i

= vi (φ1(x1), . . . , φ1(xn)) − cid
2
i .

Thus, games M and G are isomorphic. �

One of our main results is our polynomial time algorithm that finds the unique

equilibrium for atomic splittable singleton congestion games within polynomial time.
As for each multimarket oligopoly there exists an atomic splittable game isomorphic
to it, we can to construct this unique equilibrium within polynomial time.

Theorem 10 Given a multimarket oligopoly M, an equilibrium can be computed
within running time: O

(
n16m14 log (δ/k0)

)
.

Proof This theorem follows directly from the fact that we can construct an atomic
splittable singleton game G isomorphic to M (using Theorem 9) and the fact that
x = (xi)i∈N is an equilibrium in G if and only if x = (φi (xi))i∈N is an equilibrium in
M. Note that if inM, firms compete overm markets, the isomorphic atomic splittable
singleton game G has m + n resources. For such a game, Theorem 8 implies that an
equilibrium can be found in O

(
n3(m + n)3 + n2(m + n)14 log (δ/k0)

)
. �

In an integral multimarket oligopoly players sell indivisible goods. Thus, players
can only produce and sell integer quantities, i.e., xi,e ∈ N≥0 for each i ∈ N and e ∈ Ei .
For these games, we can construct an isomorphic 1-splittable congestion game.

Theorem 11 Given an integral multimarket oligopoly M, we can construct a 1-
splittable congestion game G isomorphic to M within running time O(nm).

Proof We define di := ∑
e∈Ei

�max{t | pi,e(t) = 0}�. Then, the theorem follows
using the same construction as in Theorem 9. �

123

T. Harks, V. Timmermans

Theorem 12 Given an integral multimarket oligopolyM, an integral equilibrium can
be computed within O

(
n16m14 log (δ/k0)

)
.

Proof Theorem 11 implies that we can construct an atomic splittable singleton game G
isomorphic toM. Note that if inM, n firms compete overm markets, the isomorphic
atomic splittable singleton game has m + n resources. For such a game, Theorem 7
implies the desired running time. �

Lastly, we extend a result by Todd [44], where the total and individual production
in one market in an integer equilibrium and a real equilibrium are compared.

Theorem 13 Given a multimarket oligopolyM, with real equilibrium (xi)i∈N . Then,
for any integer equilibrium (yi)i∈N it holds that |xe − ye| ≤ m + n and |xi,e − yi,e| ≤
(m + n)2.

Proof Assume that in game M, n firms compete over m markets. According to The-
orem 9, we can construct an atomic splittable congestion game G on m + n resources
that is isomorphic to M using bijection φ. Let x = (xi)i∈N be an atomic splittable
equilibrium of M and let y = (yi)i∈N be a 1-splittable equilibrium of M. Then
x ′ := (φi (xi))i∈N is an atomic splittable equilibrium of G and y′ := (φi (yi))i∈N is
a 1-splittable equilibrium of G. According to Theorem 1 and 2we know that for any
real equilibrium x ′ and 1-splittable equilibrium y′ it holds that |x ′

e − y′
e| < (m + n)

and |x ′
i,e − y′

i,e| < (m + n)2 for all i ∈ N and e ∈ Ei . Then, using the bijection φ

described in (20), we get |xe − ye| < (m + n) and |xi,e − yi,e| < (m + n)2. �

Todd [44] showed that the total production in a 1-splittable equilibrium is at most

n/2 away from that in the real equilibrium, and the individual firm’s choice can be
more than (n − 1)/4 away from her choice in the real equilibrium. Our bounds are
larger than Todd’s, yet, they hold for a more general model – multiple markets and
firm-specific price functions. We pose as an open question, whether or not our bounds
are tight or can be further improved.

Acknowledgements This work is supported by the COST Action CA16228 “European Network for Game
Theory”. We thank the two reviewers for their valuable feedback.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abolhassani,M., Bateni,M.H., Hajiaghayi,M.,Mahini, H., Sawant, A.: NetworkCournot competition.
In: Liu, T.Y., Qi, Q., Ye, Y. (eds.) Web and Internet Economics, pp. 15–29. Springer International
Publishing, Cham (2014)

123

http://creativecommons.org/licenses/by/4.0/

Equilibrium computation in resource allocation games

2. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion
games. J. ACM 55(6), 1–22 (2008)

3. Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and weighted conges-
tion games. Theor. Comput. Sci. 410(17), 1552–1563 (2009)

4. Amir, R.: Cournot oligopoly and the theory of supermodular games. Games. Econ. Behav. 15(2),
132–148 (1996)

5. Bhaskar, U., Fleischer, L., Hoy, D., Huang, C.C.: Equilibria of atomic flow games are not unique.
Math. Op. Res. 40(3), 634–654 (2015)

6. Bhaskar, U., Lolakapuri, P.R.: Equilibrium computation in atomic splittable routing games. In: 26th
Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, pp.
58:1–58:14 (2018)

7. Bimpikis, K., Ehsani, S., Ilkiliç, R.: Cournot competition in networked markets. In: Proceedings of the
Fifteenth ACMConference on Economics and Computation, EC ’14, pp. 733–733. ACM, NY, (2014).
https://doi.org/10.1145/2600057.2602882

8. Bulow, J., Geanakoplos, J., Klemperer, P.: Multimarket oligopoly: strategic substitutes and comple-
ments. J. Polit. Econ. 93(3), 488–511 (1985)

9. Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Efficient computation of approximate pure Nash
equilibria in congestion games. In: FOCS 2011, Palm Springs, CA, USA, 2011, pp. 532–541 (2011)

10. Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Approximate pure Nash equilibria in weighted
congestion games: existence, efficient computation, and structure. ACM Trans. Econ. Comput. 3(1),
2 (2015)

11. Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player Nash equilibria. J.
ACM 56(3), 14:1–14:55 (2009)

12. Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion games. Games Econ.
Behav. 71(2), 315–327 (2011)

13. Cominetti, R., Correa, J.R., Stier-Moses, N.E.: The impact of oligopolistic competition in networks.
Op. Res. 57(6), 1421–1437 (2009). https://doi.org/10.1287/opre.1080.0653

14. Cournot, A.A.: Recherches sur les principes mathématiques de la théorie des richesses Goldsmiths’.
L. Hachette, New York Public Library, p. 198 (1838)

15. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing aNash equilibrium.
SIAM J. Comput. 39(1), 195–259 (2009)

16. Del Pia, A., Ferris, M., Michini, C.: Totally unimodular congestion games. In: Proceeding 28th Annual
ACM-SIAM Symposium on Discrete Algorithms (2017)

17. Deligkas, A., Fearnley, J., Spirakis, P.G.: Lipschitz continuity and approximate equilibria. SAGT, UK
(2016)

18. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. Association for
Computing Machinery, New York, NY. https://doi.org/10.1145/1007352.1007445 (2004)

19. Gairing,M.,Monien, B., Tiemann, K.: Routing (un-)splittable flow in gameswith player-specific linear
latency functions. ACM Trans. Algorithm. 7(3), 1–31 (2011)

20. Groenevelt, H.: Two algorithms for maximizing a separable concave function over a polymatroid
feasible region. Eur. J. Op. Res. 54(2), 227–236 (1991)

21. Harks, T.: Stackelberg strategies and collusion in network games with splittable flow. Theory Comput.
Syst. 48, 781–802 (2011)

22. Harks, T., Klimm, M.: Multimarket oligopolies with restricted market access. In: Lavi, R. (ed.) Algo-
rithmic Game Theory, pp. 182–193. Springer, Berlin, Heidelberg (2014)

23. Harks, T., Klimm, M., Peis, B.: Sensitivity analysis for convex separable optimization over integral
polymatroids. SIAM J. Optim. 28(3), 2222–2245 (2018). https://doi.org/10.1137/16M1107450

24. Haurie, A., Marcotte, P.: On the relationship between Nash-Cournot andWardrop equilibria. Networks
15, 295–308 (1985)

25. Huang, C.C.: Collusion in atomic splittable routing games. Theory Comput. Syst. 52(4), 763–801
(2013)

26. Klimm, M., Warode, P.: Parametrized nash equilibria in atomic splittable congestion games via
weighted block laplacians. CoRR arXiv:1811.08354 (2018)

27. Korilis, Y., Lazar, A., Orda, A.: Capacity allocation under noncooperative routing. IEEE Trans. on Aut.
Contr. 42(3), 309–325 (1997)

28. Korilis, Y.A., Lazar, A.A., Orda, A.: Architecting noncooperative networks. IEEE J. Sel. Areas Com-
mun. 13(7), 1241–1251 (1995)

123

https://doi.org/10.1145/2600057.2602882
https://doi.org/10.1287/opre.1080.0653
https://doi.org/10.1145/1007352.1007445
https://doi.org/10.1137/16M1107450
http://arxiv.org/abs/1811.08354

T. Harks, V. Timmermans

29. Kukushkin, N.: A fixed-point theorem for decreasing mappings. Econ. Lett. 46, 23–26 (1994)
30. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proceedings

4th ACM Conference on Electronic Commerce (EC-2003), San Diego, California, USA, June 9-12,
2003, pp. 36–41 (2003)

31. Marcotte, P.: Algorithms for the network oligopoly problem. J. Op. Res. Soc. 38(11), 1051–1065
(1987)

32. Meunier, F., Pradeau, T.: A Lemke-like algorithm for the multiclass network equilibrium problem.
WINE 2013, 363–376 (2013)

33. Milgrom, P., Roberts, J.: Rationalizability, learning, and equilibrium in games with strategic comple-
mentarities. Econometrica 58, 1255–1277 (1990)

34. Milgrom, P., Shannon, C.: Monotone comparative statics. Econometrica 62(1), 157–80 (1994)
35. Moulin, H., Ray, I., Gupta, S.S.: Improving Nash by coarse correlation. J. Econ. Theory 150, 852–865

(2014)
36. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)
37. Novshek, W.: On the existence of Cournot equilibrium. Rev. Econ. Stud. 52(1), 85–98 (1985)
38. Orda, A., Rom, R., Shimkin, N.: Competitive routing in multi-user communication networks.

IEEE/ACM Trans. Netw 1, 510–521 (1993)
39. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence.

J. Comput. Syst. Sci. 48(3), 498–532 (1994)
40. Richman, O., Shimkin, N.: Topological uniqueness of the Nash equilibrium for selfish routing with

atomic users. Math. Oper. Res. 32(1), 215–232 (2007)
41. Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Internat. J. Game Theory

2(1), 65–67 (1973)
42. Roughgarden, T., Schoppmann, F.: Local smoothness and the price of anarchy in splittable congestion

games. J. Econom. Theory 156, 317 – 342 (2015). https://doi.org/10.1016/j.jet.2014.04.005. http://
www.sciencedirect.com/science/article/pii/S0022053114000593. Computer Science and Economic
Theory

43. Skopalik, A., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proceeding 40th Annual
ACM Symposium. Theory Comput., pp. 355–364 (2008)

44. Todd, M.J.: Computation, multiplicity, and comparative statics of Cournot equilibria in integers. Math.
Op. Res. 41(3), 1125–1134 (2016). https://doi.org/10.1287/moor.2015.0771

45. Topkis, D.: Equilibrium points in nonzero n-person submodular games. SIAM J. Control Optim. 17,
773–787 (1979)

46. Topkis, D.: Supermodularity and Complementarity. Princeton University Press, Princeton (1998)
47. Tran-Thanh, L., Polukarov, M., Chapman, A., Rogers, A., Jennings, N.: On the existence of pure

strategy Nash equilibria in integer-splittable weighted congestion games. In: SAGT (2011)
48. Vives, X.: Nash equilibrium with strategic complementarities. J. Math. Econ. 19(3), 305–321 (1990)
49. Vives, X.: Games with strategic complementarities: New applications to industrial organization. Int.

J. Ind. Organ. 23(7–8), 625–637 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/j.jet.2014.04.005
http://www.sciencedirect.com/science/article/pii/S0022053114000593
http://www.sciencedirect.com/science/article/pii/S0022053114000593
https://doi.org/10.1287/moor.2015.0771

	Equilibrium computation in resource allocation games
	Abstract
	1 Introduction
	1.1 Our results and techniques
	1.2 Related work

	2 Preliminaries
	3 Sensitivity results for equilibria
	4 Reduction to integrally-splittable games
	5 A polynomial algorithm for integral games
	5.1 Add
	5.2 Restore
	5.3 PacketHalver

	6 Correctness
	6.1 Correctness Restore
	6.2 Correctness PacketHalver

	7 Running time
	7.1 Running time Add
	7.2 Running time Restore
	7.3 Running time PacketHalver

	8 Multimarket cournot oligopoly
	Acknowledgements
	References

