
ENCYCLOPEDIA WITH SEMANTIC COMPUTING
Vol. 2, No. 1 (2018) 1 (?? pages)
c© The Authors

Integrating Planning and Reactive Behavior
by using Semantically Annotated Robot Tasks

Andreas Schierl† and Alwin Hoffmann† and Ludwig Nägele† and Wolfgang Reif†
†Institute for Software & Systems Engineering, University of Augsburg, Universitätsstr. 6a, 86159 Augsburg, Germany

†{schierl, hoffmann, naegele, reif}@isse.de

Received Day Month Year; Revised Day Month Year; Accepted Day Month Year; Published Day Month Year

Tasks that change the physical state of a robot and its environment take a considerable amount of time to execute. However, many
robot applications spend the execution time waiting, although the following tasks might require time to prepare. This paper proposes
to amend robot tasks with a semantic description of their expected outcomes, which allows planning and preparing successive tasks
based on this information. The suggested approach allows sequential and parallel composition of tasks, as well as reactive behavior
modeled as state machines. The paper describes the means of modeling and executing these tasks, details different possibilities of
planning in state machine tasks, and evaluates the benefits achievable using the approach on two example scenarios.

Keywords: planning; reactive behavior; state machine; robot programming; optimization

1. Introduction

Most classical industrial robot arms are currently used for
fixed and recurring preprogrammed tasks. There, planning (at
run time) and reaction to indeterministic events are of mi-
nor importance. When it comes to more modern or mobile
robots, the situation is different: Due to the greater variability
in the environment, these robots must be able to sense ex-
ternal events and react accordingly, and can thus be seen as
reactive systems.

In this context, it can be observed that when executing a
task, performing its physical actions often requires a consid-
erable amount of time compared to the computations needed
to prepare them. Still, it is often possible to tell details about
the positive outcome of the task even before the task is fully
executed. In contrast, for failures the amount of information
that can be given in advance is limited (e.g. where the robot
will be when the error occurs is usually unknown). While
these details could considerably help to plan ahead, many
software frameworks often ignore this potential and spend the
execution time waiting for completion (cf. Sect. 2).

To improve this situation, we propose to model tasks in-
cluding their expected outcome(s) and details about the corre-
sponding situation(s). These expected outcomes include suc-
cessful execution, but also detectable errors and relevant situ-
ations that occur during execution. Using these semantically
enriched tasks, it becomes possible to plan the following tasks
even before the execution of the current task has completed.
These tasks can be combined in a sequential or parallel way,
can perform case distinctions and can even be used to model
reactive behavior through state machines1. Composing these
tasks, the programmer can configure details about the rela-
tionship between the tasks and the quality of transition: For
some events, an immediate reaction may be required, so the

Fig. 1. Robots handing over a baton

corresponding reaction task has to be planned before the event
can occur, while other events allow some time, so that more
relaxed planning schemes can be used.

To evaluate the approach, the cooperation between two
mobile robots was modeled and implemented (cf. Fig. 1).
There, two KUKA youBots2 drive in parallel, and hand over
a baton while in motion. To realize the reactive behavior and
coordination, state machines are used, while the possibility
of preparation during execution reduces the waiting time be-
tween the different robot actions. Additionally, a theoretical
example with more complex planning is introduced and ana-
lyzed, showing the possible advantages of the appraoch.

The work presented here is based on the conference pa-
per on predictive preparation of state machine tasks3 and ex-
tends it mainly in three fields:

This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 3.0
(CC-BY) License. Further distribution of this work is permitted, provided the original work is properly cited.

1-1

Electronic version of an article published as regular paper in Encyclopedia with Semantic Computing and Robotic Intelligence, Vol. 02, No. 01, 1850005 (2018)
© 2018 World Scientific Publishing Company, https://www.worldscientific.com/worldscinet/escri

https://doi.org/10.1142/S2529737618500053

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/212354719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A. Schierl, A. Hoffmann, L. Nägele, W. Reif ESC 2, 1 (2018)

• Semantic descriptions of task outcomes, describing envi-
ronment states as well as situations that result from changes
therein

• Tasks with multiple possible outcomes and their handling
• Complex task compositions, and the advantages and draw-

backs of using state machine tasks with deferred prepara-
tion

This paper is structured as follows: After an overview
of different ways to handle complex robot behavior (Sect. 2),
the appraoch of defining and executing tasks is outlined in
Sect. 3. Sect. 4 describes the experiments conducted to eval-
uate the approach and points out the corresponding results.
Finally, Sect. 5 gives a conclusion and outlook.

2. Related Work

For modeling and composing tasks or device capabilies, dif-
ferent approaches exist in modern robot frameworks such as
ROS and OROCOS. ROS actionlib4 allows to model interrupt-
ible tasks through Actions. Actions represent long-running,
preemptible tasks that provide feedback and notify about their
result, and that can be canceled when the goal has to be
changed. They can be seen as an extensible way to model
device capabilities, allowing extensions by introducing new
components that provide Action servers. To combine multi-
ple Actions, a new component can provide an Action that in-
vokes the corresponding Actions in parallel or sequentially.
However, no timing guarantees are given for this type of com-
position, as it relies on network communication between the
different Action servers. Furthermore, Actions do not share a
common interface and thus cannot directly be passed between
different components (for example, a planner cannot provide
its result as a generic Action that can be passed to another
component deciding when it should be executed).

For reactive behavior on the task-level with ROS, Bohren
et al. introduced SMACH state machines5. In SMACH, ROS
Actions, Services or Python code can be defined as States, and
States can be composed into new States in a concurrent, se-
quential or state-machine form. Therefore, each State defines
different outcomes that can be used in composite States to de-
fine reactions or handle error conditions. Furthermore, states
in SMACH (and thus state machines) can be made available
to other components as actionlib Actions. This composition
mechanism is similar to the one presented in this paper, how-
ever without timing guarantees, so that guaranteed reactions
to events cannot be specified this way. Furthermore, SMACH
(as well as actionlib) provides no explicit semantics or meta-
data for Action or State post conditions, making further plan-
ning during execution harder to achieve. SMACH state ma-
chines are executed in a blocking way and thus do not offer
the possiblity of using the execution time of robot actions for
further (motion) planning steps.

For OROCOS, restricted Finite State Machines (rFSM)6

allow modeling reactive behavior. An rFSM describes a hi-
erarchical state machine without parallelism, aimed at the
coordination of robot applications. According to the pure-

coordination pattern6, these state machines only process and
raise Boolean events which have to be provided by monitor
components or handled by configurator components, which
in turn manipulate or reconfigure the active components in
order to achieve the goal. rFSM state machines are imple-
mented on top of the programming language LUA with spe-
cialized memory allocation and garbage collection, and can
thus be executed with real-time guarantees.

As an extension to rFSM state machines, Scioni et al.
describe how to achieve preview coordination7: In this ap-
proach, the execution environment takes hints about execu-
tion probabilities based on likelihood labels on some transi-
tions. Using these labels, likely successor states can be pre-
pared (performing some of their work) while the previous
state is still active, as long as there is no conflict between
the preparation steps and the actions performed in the current
state. This allows reducing the execution time, while keeping
the action definitions coherent (instead of moving the prepa-
ration step into the previous state).

The preview coordination mechanism introduces a form
of decoupling between workflow and capability execution
and makes use of meta data about conflicts between states, but
the rFSM mechanism still does not include further semantic
descriptions for the results of states. This way, the following
tasks cannot analyze and prepare for the expected results of
the previous State, a powerful and important feature offered
by the approach introduced in this paper.

Another related approach has been introduced by
Angerer8 in the form of Robotics API Activities. It can be
seen as the basis of the approach suggested in this paper, but
has a stronger focus on real-time and specific ways of model-
ing meta data, and does not support reactive behavior in the
form of state machines. This approach has been further ex-
tended by Schierl9 and along with further research led to the
results presented in this paper.

3. Approach

To facilitate planning during execution, we propose to model
individual robot tasks (cf. Sect. 3.1) along with a seman-
tic description of their expected outcome(s) as described in
Sect. 3.2. Based on these outcome description(s), it becomes
possible to prepare the successor task (or at least start plan-
ning) before the current task has been fully executed – maybe
even before execution starts. This feature can be exploited
during execution, as described in Sect. 3.3. When it comes to
more complex tasks with different viable outcomes, an im-
plementation that is based on simple control flow tends to
become confusing, so it becomes helpful to be able to com-
pose multiple simple tasks (cf. Sect. 3.4). As an alternative,
the desired behavior can be defined in a model-based way,
e.g. using the formalism of state machines1, as described in
Sect. 3.5.

1-2

A. Schierl, A. Hoffmann, L. Nägele, W. Reif ESC 2, 1 (2018)

3.1. Task Definition

Initially, a task to be executed by a specific actuator (e.g.
move to a given position, pick up an item, or even bring me
a beer) is modeled as an Activity (cf. Fig. 2). As one task can
be performed more than once (if you are with friends), it be-
comes helpful to keep track of different task executions. So,
when a task is to be executed in a given situation, its Activity
is instantiated through createHandle() yielding an Activity-
Handle.

...

operations

+prepare(trigger : ActivityResult) : ActivitySchedule

attributes

+execution state

ActivityHandle

...

operations

+execute() : void
+beginExecute() : ActivityHandle

+createHandle() : ActivityHandle

Activity

...

operations

+activate() : void

ActivitySchedule

attributes

+world state
+device state

...
operations

ActivityResult

trigger

1

possibleResults

*

*

1

*

Fig. 2. Relevant classes for task definition and execution

Being responsible for a single task execution, the
ActivityHandle offers state tracking that notifies about exe-
cution progress, and is also responsible to decide how the de-
sired task is to be executed in a given situation. It receives a
semantic description of the situation (see below) the task is
to be executed in, and has to provide instructions on how to
act, and what outcome to expect after the action has been per-
formed. Thus, the ActivityHandle takes a situation descrip-
tion called ActivityResult, and provides an ActivitySchedule
that describes the task to execute, as well as a set of possible
ActivityResults that can occur while/after executing the task.
This way, it provides possible post conditions for the execu-
tion of the task, while the preconditions are derived from the
results of the previous task. If the previous task has multi-
ple possible outcomes, the ActivityHandle is provided with
the different acceptable outcomes, and can plan for each of
the envisioned situations. This differs from typical planning
mechanisms that are based on pre/post conditions and try to
combine fitting actions, but instead allows applying a given
task in many different situations.

To describe the expected situation, the ActivityResult

contains status information about each individual actuator
contributing to the task, as well as a description about the
envisioned geometric and logical situation of the environ-
ment, i.e. the world state. The actuator-specific information
may contain details about a gripper, e.g. whether it is open or
closed, as well as joint positions, velocities and accelerations
for robot arms.

3.2. Task Outcomes

To talk about the world state, a model as described by Schierl
et al.10, 11 is used. It is based on physical objects and geo-
metric features (modeled as frames), along with relations that
are defined between the frames and objects and form an undi-
rected multigraph. Each relation describes an aspect about the
relationship between two objects (such as physical objects or
coordinate frames), and can give give quantitative informa-
tion. Between two physical objects, a containment relation
tells that a screw is part of a work piece, or a link is part
of a robot. Other relations bring together geometric features
(modeled as coordinate frames) and their physical object,
while relations between coordinate frames describe (quanti-
tative or qualitative) geometric aspects. Between two frames,
a logical relation describes the type of connection (e.g. persis-
tent for the connection between two links of a robot, or tran-
sient for the connection between a gripper and the grasped
work piece), while a geometric relation describes the exact
position where the frames are relative to each other (or gives
a sensor or computation that provides that information). To-
gether with containment and geometric feature relations, this
semantic modeling allows to derive that a gripper is con-
nected to the robot, that the robot has grasped a work piece
and that the work piece is at a specific position in space.

While these relations are known by their corresponding
objects, they are not static during run time (an object grasped
by a gripper can be placed on the ground, removing one re-
lation and establishing up another). Thus, situations with dif-
ferent (geometric) relations have to be modeled. One situa-
tion of established relations is modeled as a FrameTopology.
A FrameTopology stores the existing relations for each of the
objects modeled in the environment, and allows to find all
relations for a given object, as well as relation sequences be-
tween given objects.

To give a description about the expected world state after
the execution of an Activity, the view of the world model is
expressed as a FrameTopology. When a robot picks up an ob-
ject from the ground, the relation between ground and object
is removed, and a new relation between gripper and object is
established. These topology changes are relevant for further
planning, because a grasped object changes the shape of a
robot: some motions that were previously possible now result
in collisions. Thus, the world view modeled in the Frame-
Topology provided by the task includes sets of removed and
added relations.

Apart from the established relations, a FrameTopology
can also give hints about the expected sensor values for geo-

1-3

A. Schierl, A. Hoffmann, L. Nägele, W. Reif ESC 2, 1 (2018)

metric aspects to express the positions. This allows to model
not only that the robot has grasped an object, but also the
position where the robot is expected to be. For tasks that in-
clude robot motions, the resulting FrameTopology thus con-
tains a position change that gives the (expected) new pose of
the robot or all of its components. This geometric information
is used whenever performing geometric calculations based on
the world view, e.g. when planning the next motion.

To model different situations, the FrameTopology does
not contain a full snapshot of all relations, but rather works
by storing the difference compared to another topology.
This is especially important when trying to apply the topol-
ogy changes after successful task execution: If each Frame-
Topology contained the complete set of relations, it would
be impossible to execute two tasks at the same time, be-
cause the second task would overwrite the changes applied
by the first task, because these changes would not be present
in the snapshot taken before the execution of the first task.
Instead, modeling FrameTopologys as a difference to a previ-
ous world state allows to keep all unrelated parts of the situa-
tion unchanged. In contrast, the position changes stored in the
FrameTopology do not have to be applied, because they only
describe expected sensor values for the corresponding time.
Thus, after successfully executing the task the position of the
robot has changed as defined, so that the real sensor values
for the robot position are similar to the values predicted by
the task.

3.3. Task Execution

Once a task has been defined, i. e. created as an Activity, it can
be executed in a blocking or non-blocking way. For a specific
execution instance, the Activity creates an ActivityHandle that
takes the ActivityResults of the previous Activity and prepares
ActivitySchedules for each of the situations. The Activity-
Schedules are activated so that they trigger the execution of
the respective task once their ActivityResult is reached. Addi-
tionally, the ActivitySchedules provide their possible Activity-
Results for use with following Activitys.

The first option is to execute the task in a blocking way.
Fig. 3 shows the tasks (A) and (B), which are executed se-
quentially in a blocking way. In this case, the method exe-
cute() of task (A) blocks until a completion ActivityResult of
a corresponding ActivitySchedule has been reached.

Fig. 3. Blocking execution of task (A), followed by (B)

Fig. 4 shows the timing of this behavior. The Activitys
are shown as horizontal life lines with time running from left
to right, while the different boxes denote the phases prepa-
ration P and execution E. However, in this case the situation
description contained in the ActivityResult is of little use, be-

cause once the result has been reached, the described situa-
tion is already reached, and the execution time has already
been wasted waiting.

Fig. 4. Blocking execution of task (A), followed by (B), with preparation
(P) and execution (E)

To use the execution time, non-blocking execution can
be used. Fig. 5 shows task (A) followed by task (B) in a non-
blocking way. Executing tasks with beginExecute() allows the
control flow to continue once any of the ActivitySchedules has
been triggered and the execution of the task has thus started.
The following task can then be prepared for different possible
start situations (based on the ActivityResults of the currently
running task), and immediately execute one of the planned
solutions if the corresponding situation occurs.

Fig. 5. Non-blocking execution of task (A), followed by task (B)

This situation is shown in Fig. 6 – here, the dotted lines
denote times where (B) is already planned and waiting to be
executed. The preparation of (B) happens while (A) is run-
ning, and (B) starts running once (A) is completed.

Fig. 6. Non-blocking execution of task (A), followed by task (B), with
preparation (P) and execution (E)

In contrast, if task (B) is independent of (A), e.g. if it
controls different devices, it starts immediately when pre-
pared, as shown in Fig. 7. However, this execution mode does
not guarantee parallelism, because preparation of (B) starts
after execution of (A) has started, resulting in a certain delay
between the two execution starts.

Fig. 7. Timing of non-blocking execution of independent tasks, with
preparation (P) and execution (E)

1-4

A. Schierl, A. Hoffmann, L. Nägele, W. Reif ESC 2, 1 (2018)

While called non-blocking, this execution scheme is not
fully asynchronous, because preparation for the following
task only starts after the current task has started. This behav-
ior becomes obvious when having a look at a sequence of
three tasks (as shown in Fig. 8), each of which has two possi-
ble results. In this situation, preparation of (B) starts once (A)
has started, while (C) is prepared once (B) has started.

Fig. 8. Non-blocking execution of multiple tasks

Using the proposed non-blocking semantics (as shown
in Fig. 9), (B) has to be prepared for both results of (A), yield-
ing two ActivitySchedules. However, since preparation of (C)
is postponed to the time when (one concrete schedule for)
(B) is started, (C) only has to be planned for the chosen (B)
schedule and its two results.

Fig. 9. Timing of non-blocking execution of multiple tasks, with prepa-
ration (P) and execution (E)

In a fully asynchronous execution, in contrast, prepa-
ration had to be performed for both ActivityResults of each
ActivitySchedules of (B), resulting in four ActivityResults to
plan for and an exponential growth in preparation work for
longer sequences.

3.4. Task Composition

In addition to different execution types, multiple tasks can be
combined to provide better guarantees about execution (e.g.
reliable parallel or sequential execution).

When sequentially combining two tasks (as shown in
Fig. 10), the created sequential task provides the second
task with all the ActivityResults of the first task’s Activity-
Schedules, so that the second task can react to all expected
outcomes of the first task, while the results of the second task
are provided as results of the seqence. In cases where deter-
minism is required, this kind of preparation can even allow
real-time guarantees (given a corresponding software frame-
work that supports scheduling of real-time tasks, e.g. the
Robot Control Core introduced by Vistein et al.12): prepar-
ing the second task for all possible outcomes of the first task
before the first task’s execution starts guarantees that the sec-
ond task can immediately take over no matter how long or
short the first task takes.

Fig. 10. Simple task, followed by a sequential task

In Fig. 11, the sequence S is executed after (A), and
the preparation of S1 and S2 completely happens before S1
is started, guaranteeing that S2 can be started immediately
when S1 ends. However, this determinism is only possible if
the outcomes are fully known in advance: if details of an out-
come description depend on sensor data, these ActivityResults
can only be provided when the sensor data becomes available,
and preparation of the next task is delayed to this moment (no
longer guaranteeing determinism).

Fig. 11. Timing of sequential task with preparation (P) and execution (E)

However, these sequences do not delay preparation, so
the second task has to be planned for all results of the first
task, which has to be planned for all results of the previ-
ous task, leading to an exponential amount of preparation re-
quired for longer sequences.

As a second combination option, parallel execution can
be used (as shown in Fig. 12). The created parallel task then
provides both subtasks with the same initial situation (as
ActivityResults), and combines resulting ActivitySchedules
(and optionally ActivityResults) to create the ActivitySchedule
and ActivityResults of the parallel task.

Fig. 12. Simple task, followed by a parallel task

This situation is shown in Fig. 13, where the parallel
tasks P1 and P2 are planned and thus allow P to start them
at the same time after (A) is completed. Of course, the paral-
lel task has to make sure that the subtasks do not conflict, e.g.
by checking that they control different devices.

1-5

A. Schierl, A. Hoffmann, L. Nägele, W. Reif ESC 2, 1 (2018)

Fig. 13. Timing of parallel task with preparation (P) and execution (E)

Additionally, simple case distinctions can be made based
on the possible ActivityResults, as shown in Fig. 14. A task
with case distinction classifies the ActivityResults of the pre-
vious task and forwards them to the corresponding subtask
depending on the decision condition.

Fig. 14. Simple task, followed by a conditional task

Fig. 15 shows the execution of this situation, with (C)
as a case distinction for the result of (A), deciding to execute
(C2) and unload (C1).

Fig. 15. Timing of parallel task with preparation (P) and execution (E)

Combined tasks can further be composed to handle more
complex scenarios. Fig. 16 shows a task S that first executes
(A1), and continues with (C1) in case of success, or with (B1)
followed by (C1) if (A1) fails.

Fig. 16. Complex task with sequential and conditional composition

For execution, first (A1) is prepared. For its error result,
(B1) has to decide how to react, while (C1) handles all results
of (B1). Additionally, (C2) has to be prepared for the success
case of (A1). Once all these preparations are completed, ex-
ecution of S can begin, first executing (A1), and then switch-
ing to (B1) (because (A1) failed) and (C1). This behavior is
shown in Fig. 17.

Fig. 17. Timing of complex task execution with preparation (P) and ex-
ecution (E)

This entire composition can provide real-time guaran-
tees for execution, because every possible case has been pre-
pared for beforehand; however as a downside all possible
cases have to be planned, which requires a lot of prepara-
tion time before execution can start. Additionally, this type
of composition does not allow for unbounded loops, because
preparation requires to unroll the loop to plan for every pos-
sible amount of repetitions, and quickly limits bounded loops
by the exponential amount of results to plan for.

Instead, these repetitions should be handled through
non-blocking execution of separate tasks that are repeated
through control flow mechanisms wherever timing guaran-
tees are less important, or through state machines that allow
to better handle reactive behavior as described in the follow-
ing section.

3.5. State Machines for Reactive Behavior

For longer or repeating task sequences, these composition
mechanisms that fully plan ahead may reach their limit, be-
cause the number of tasks that has to be prepared grows expo-
nentially with the number of successive tasks (given that each
has more than one possible result). Thus, it becomes helpful
to limit the amount of preparation. One way to achieve this
while supporting complex compositions of tasks is the use of
state machines – a step often taken when specifying reactive
behavior.

The proposed approach uses Activitys to define states
of the state machine. For each state (or Activity), transitions
can be given that specify a switch to another Activity if cer-
tain ActivityResults occur. Additionally, one distinct Activity
is chosen as start state, and ActivityResults of some Activitys
can be defined as transitions to a final state.

As each state can be entered more than once during
execution, for its Activity multiple ActivityHandles, Activity-
Schedules and also ActivityResults are prepared. The resulting
set of ActivityResults for an Activity is dynamic, so the tran-
sition cannot give a complete list. Instead, it works as a pred-
icate to ActivityResults that chooses whether a given Activity-
Result qualifies for the transition, which can be as generic
as any error or as specific as any successful execution of the
given grasp.

As an example, Fig. 18 shows a state machine of the
three tasks (A), (B), and (C), switching from (A) to (C) if (A)
succeeds, and to (B) if it fails. State (B) is always followed

1-6

A. Schierl, A. Hoffmann, L. Nägele, W. Reif ESC 2, 1 (2018)

by (C), leading to two different paths reaching (C).

Fig. 18. Definition of a state machine task consisting of three tasks

Regarding execution, state machine tasks differ from the
composed tasks mentioned previously: While for sequential,
parallel or conditional tasks preparation can completely be
performed up front, state machine tasks require some prepa-
ration while the task is running. The Activity for the initial
state is prepared traditionally, based on the ActivityResults
of the previous task. Then, the ActivityResults of the created
ActivitySchedule are compared against the transitions orig-
inating from the start state to decide whether they have to
be handled by switching to another state (i.e. Activity). How-
ever, for these transitions and Activitys, different options ex-
ist when to prepare them for the corresponding results, as a
trade-off between preparation of unnecessary traces and not
having prepared a required task. For the scope of this paper,
the preparation is usually delayed until their originating state
is entered (i.e. its Activity started running), preparing the tar-
get states for outgoing transitions using the reported Activity-
Results of the current state, so that they can react to the occur-
rence of the corresponding result. Additionally, the outgoing
transitions of the target state are analyzed, so that they can be
handled once the target state is entered. This way, the states
are prepared with a look-ahead of one transition, which works
fine as long as the typical execution time of a state is longer
than the preparation times for all following states.

Fig. 19 shows the preparation timing resulting for the
state machine, numbering the different traces leading to state
(C) as (C1) and (C2). When executing the state machine, (B1)
and (C1) are prepared once (A1) is started, and when the fail-
ure occurs, (B1) is started and (C1) is unloaded. A new in-
stance (C2) has to be prepared for the new situation resulting
of (B1), which is then executed once (B1) finishes. Using this
method yields a behavior that is similar to the one of non-
blocking execution (cf. Fig. 6), where the following task is
prepared once the previous is started.

Fig. 19. Execution of state machine from Fig. 18 with preparation (P)
and execution (E)

However, this mechanism of delaying preparation out-
going transitions once the state is entered is not sufficient to
guarantee that a certain transition can be taken without further
delay, especially if the result happens quickly after entering
the state. Thus, for critical transitions, preparation may not be
delayed until this time.

To allow this, transitions can also be annotated with
qualifiers that direct the order or timing of preparation. For
transitions that may not be missed (such as error recovery
strategies that bring the robot into a safe state), a transition
can be marked as reliable, requesting it to be prepared before
the originating Activity starts. These reliable transitions are
handled similar to sequential tasks described before, making
sure that the following state can be executed no matter how
long or short the first state takes. While having the same ad-
vantages of sequential tasks, reliable transitions also inherit
their drawbacks, especially the amount of preparation neces-
sary if more than one ActivityResult is handled by a reliable
transition, as well as the fact that cycles in the reliable transi-
tion graph are forbidden.

Fig. 20 amends the transition from (A) to (B) with a
stereotype «reliable», defining that the execution environ-
ment has to guarantee that the transition will be taken im-
mediately if the failure occurs.

Fig. 20. Definition of a state machine task with a reliable transition

For execution, reliable transitions and their target state
have to be prepared along with their originating state, be-
fore the originating state is entered. This behavior is shown
in Fig. 21. Here, (A1) and (B1) are planned before (A1) is
started, making sure that the occurrence of the failure cannot
happen while (B1) is still being planned.

Fig. 21. Execution of reliable transitions from Fig. 20 with preparation
(P) and execution (E)

When all transitions in the state machine are marked
with the stereotype «reliable», the defined task has the same
semantics as the complex composition shown in Fig. 16, guar-
anteeing that every transition can be taken immediately. For

1-7

A. Schierl, A. Hoffmann, L. Nägele, W. Reif ESC 2, 1 (2018)

execution, all traces through this state machine have to be pre-
pared beforehand, so preparation looks like the one shown for
the complex composition in Fig. 17. This leads to long prepa-
ration time before execution can start, and inherits the same
restrictions that long reliable sequences (with multiple results
per task) lead to exponential growth in preparation time, and
reliable cycles are forbidden.

4. Experimental Results

The proposed approach has been evaluated in two examples.
First as a real-world example, the interaction between two
mobile robots has been modeled. Two mobile robots drive
parallel to each other and hand over a baton while in mo-
tion. The implementation uses two KUKA youBots and is
based on the Robotics API8. There, both robots are controlled
using their on-board computers using a C++ control core12,
while the high-level coordination and task execution is imple-
mented in Java and performed from a laptop computer con-
nected to the youBots through a wireless network.

Because the handover example (apart from error han-
dling) is purely sequential, the first implementation was based
on separate tasks for moving the arm and gripper and the ex-
ecution model described in Sect. 3.3. For all tasks that do
not depend on the second robot, non-blocking execution was
used, while the correct order of the gripping and releasing
tasks was performed through blocking execution of the corre-
sponding tasks in a common control flow. While working fine
in simulation, this implementation led to unintended delays
between the grasp and release operations when executed on
real robots, and thus required more space for parallel driving
than necessary. This was mainly caused by the unreliable net-
work connection and inefficient network code that required
multiple communication roundtrips to transmit and start the
tasks.

A second implementation modeled the expected behav-
ior through two linked state machines (cf. Fig. 22). Here, the
following tasks could already be prepared while the second
youBot was waiting for the first youBot, so the delay between
the grasp and release operation as well as the required space
for the interaction were significantly reduced.

Position armWait until in
reach

Grasp baton Retreat arm

Retreat armRelease batonPosition armWait until in
reach

completed

completed and other arm ready

completed and released

completed

completed

completed and grasped

completed

completed

Fig. 22. State machine: Robot interaction

The second, theoretical scenario was performed without
connection to a robot framework, but based on a prototypical
implementation with support for reliable transitions. Here, the
scenario was to drive a mobile robot to a pick-up area, take a
large object, and return to its start position. In addition, dur-
ing all steps a sensor had to be observed, and the robot had to
stop once the sensor detected a dangerous situation. To com-
plicate things, in the environment the shortest path to the pick
up zone could not be taken while carrying the large object,
but instead a detour was required.

Fig. 23 shows a state machine model of the task. The
top row of states gives the main success flow, while reliable
transitions handle danger occuring during this task. Addition-
ally, a Back off state has been added, which is executed after
the robot has stopped in case of emergency. As after stopping
the robot is already in a safe state, this transition is not time-
critical and thus does not need to be reliable.

The motion planning tasks, Go to pick up zone and Re-
turn home were implemented as tasks that take considerable
time to plan (3 s for collision free motion planning) and to
execute (5 s to move the robot along the planned path), while
Pick up only takes time to execute (3 s to move the arm and
gripper), but plans quickly (1 s). As a comparative reference
simulating a system that does not support planning ahead
based on result meta data, the three main success task were
executed in a blocking way as a sequence.

Stop

Back off

Return homePick upGo to pick up
zone

successsuccess

«reliable»

danger

«reliable»

danger

«reliable»

danger

stopped

success

Fig. 23. State machine: Second scenario

When executed, the state machine of the second scenario
implementation completed after about an average of 16.05 s,
while the sequential execution took an average of 20.08 sec-
onds. Fig. 25 shows the resulting life lines for those different
execution models, clearly showing where time can be saved
by preparation during execution.

5. Conclusion

Working with robots, the performance of applications is not
only limited by the available processing power of the com-
puter, but also by the physical limitations of controlled de-
vices. Usually, the time needed to execute a task is signifi-
cantly longer than the mere computation time, but still some

1-8

A. Schierl, A. Hoffmann, L. Nägele, W. Reif ESC 2, 1 (2018)

Fig. 24. Sequential execution of the second scenario, with preparation (P) and execution (E)

Fig. 25. State machine execution of the second scenario, with preparation (P) and execution (E)

planning also takes considerable time. In this paper, we pro-
posed to amend robot tasks with descriptions of their ex-
pected outcomes. This allows preparing the following task
while the current task is still running, thus reducing delays
between the execution of successive robot tasks and avoiding
the situation that execution time goes unused although prepa-
ration steps may be pending.

These amended tasks can be executed in a blocking or
non-blocking way, or combined into complex tasks. Besides
sequential and parallel composition, state machines promise
to allow the specification of more complex reactive behavior
including recurring subtasks, while still behaving like regu-
lar tasks, so that further composition or preparation remains
possible.

A prototypical implementation of this mechanism has
been created based on the Robotics API8 and shown to work
for cooperating robots. Additionally, the approach promises
to accelerate the execution of tasks where considerable time
is spent preparing the next steps, such as collision free mo-
tion planning, and also allows specifying events for which a
timely reaction has to be guaranteed (given a capable execu-
tion environment, such as a Realtime Robot Control Core12

used with the Robotics API).
Still, this paper is limited to simple preparation strategies

of state machines (transitions can be guaranteed, or planned
when the state is entered). As a part of further research, more
complex strategies might benefit from likelihood annotations7

or estimated preparation times to decide which transitions in
the state machine will likely happen and should be prepared
first (to reduce the risk of missed transitions). Additionally,
longer sequences of transitions could be prepared in corre-
sponding situations, e.g. to skip over states that take a very
short time to plan and execute. In the given theoretical exam-
ple, this could help if the grasping task took shorter, because
then the execution time of the Go to task could be used to
plan the Return task.

References
1D. Harel, Statecharts: A visual formalism for complex systems,
Sci. Comput. Program. 8, 231 (June 1987).

2R. Bischoff, U. Huggenberger and E. Prassler, KUKA youBot - a
mobile manipulator for research and education, Proc. 2011 IEEE
International Conference on Robotics & Automation, Shanghai,
China, (IEEE. pp. 1–4.

3A. Schierl, A. Hoffmann, L. Nägele and W. Reif, Integrating re-
active behavior and planning: Optimizing execution time through
predictive preparation of state machine tasks, 2018 Second IEEE
International Conference on Robotic Computing (IRC), (2018).

4E. Fernandez, E. Marder-Eppstein and V. Pradeep, actionlib On-
line, accessed Feb 2016, http://wiki.ros.org/actionlib.

5J. Bohren and S. Cousins, The SMACH high-level executive,
IEEE Robotics & Automation Magazine 17, 18 (2010).

6M. Klotzbücher and H. Bruyninckx, Coordinating robotic tasks
and systems with rFSM statecharts, Journal of Software Engineer-
ing for Robotics 3, 28 (2012).

7E. Scioni, M. Klotzbuecher, T. De Laet, H. Bruyninckx and
M. Bonfe, Preview coordination: An enhanced execution model
for online scheduling of mobile manipulation tasks, Proc. 2013
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS 2013), (Nov 2013). pp. 5779–5786.

8A. Angerer, A. Hoffmann, A. Schierl, M. Vistein and W. Reif,
Robotics API: Object-Oriented Software Development for Indus-
trial Robots, Journal of Software Engineering for Robotics 4, 1
(2013).

9A. Schierl, Object-oriented modeling and coordination of mobile
robots, PhD thesis, Universität Augsburg, (2017).

10A. Schierl, A. Angerer, A. Hoffmann and W. Reif, Consistent
world models for cooperating robots: Separating logical relation-
ships, sensor interpretation and estimation, 2017 First IEEE Inter-
national Conference on Robotic Computing (IRC), (April 2017).
pp. 101–108.

11A. Schierl, A. Hoffman and W. Reif, Consistent geometric esti-
mation based on a world model describing logical relationships
and sensor interpretation, Journal of Software Engineering for
Robotics 8, 104 (2017).

12M. Vistein, A. Angerer, A. Hoffmann, A. Schierl and W. Reif,
Flexible and continuous execution of real-time critical robotic
tasks, International Journal of Mechatronics and Automation 4,
27 (1 2014).

1-9

