Synthesizing Capabilities for Collective
Adaptive Systems from Self-descriptive
Hardware Devices Bridging
the Reality Gap

Constantin Wanninger, Christian Eymiiller®™), Alwin Hoffmann®™,
Oliver Kosak®™, and Wolfgang Reif™)

Institute for Software and Systems Engineering,
University of Augsburg, Augsburg, Germany
{Wanninger ,eymueller,hoffmann,kosak, reif}@isse .de

Abstract. In the field of collective adaptive systems (CASs) robotic
applications are mostly executed in a simulated environment with simu-
lated hardware and abstract capabilities due to their complexity. These
simulated systems usually cannot be applied in reality without major
modifications. We propose an approach to bridge the gap between
abstract capabilities and the execution of concrete capabilities on real
hardware through a semantic description of the hardware itself, its
drivers, interfaces and capabilities, enabling the realization of CAS in
the real world. With a plug and play mechanism for hardware modules
and the semantic description it is now possible to develop a CAS with-
out committing to a concrete set of hardware and, moreover, the set of
hardware to the requirements of the system.

1 Introduction

Collective systems exist in almost all areas of nature [6] (e.g., flocks of birds,
herds of animals) and technology [20] (e.g., computer networks, robot teams).
All of these systems have the common characteristic that groups of individ-
ual agents provide more functionality than each individual. Besides collective
approaches, adaptive approaches can be added to manage even more complex
problems. An example for a collective system is a group of ants carrying one big
leaf on a narrow surface. If there are gaps on the forest floor, adaptive systems
are needed to react to the environmental influences, like building a bridge out
of other ants [28]. Such compound systems are called collective adaptive sys-
tem (CAS) [21]. Mobile robots are typically used for the illustration of CASs on
real hardware (e.g., [12,14,18]). These systems mostly use robots that are heav-
ily customized for accomplishing specific tasks. For example, Unmanned Aerial
Systems (UAS) equipped with gas sensors are used to find chemical clouds [23]
or for the detection of forest-fires infrared cameras are mounted to UAS [10]. One
problem of such systems is that they are very inflexible and must be redesigned

Synthesizing Capabilities for CASs from Self-descriptive Hardware Devices 95

in case of changing requirements or new use cases. In this case hardware specific
code, mostly written in C or C++4, must be altered or rewritten.

This paper proposes an approach for the reconfiguration of robot hardware
at runtime without the need to alter or rewrite hardware specific code. There-
fore a plug and play mechanism with semantic self-descriptions of the hardware
modules is used. These self-descriptions include static information about the
hardware (e.g., weight of a hardware module) in form of properties. In addition,
executable capabilities (e.g., “measure temperature”) of a hardware module are
deposited in the self-description of each hardware module. Capabilities can be
either provided by a single hardware element (e.g., a quadcopter has the capabil-
ity “fly”) or by a combination of multiple hardware elements through combining
their self-descriptions (e.g., a quadcopter with a GPS sensor has the capability
“fly to position”). This information about hardware modules allows the devel-
opment of CASs without committing to a specific set of hardware. The goal is
to create a system in which each hardware module supplies interfaces to capa-
bilities, which can be executed by agents within a CAS, rather than creating
an agent with a fixed set of capabilities. In order to realize such a system, an
adapter for devices (i.e., sensors and actuators) is created to enrich the hardware
with semantic annotations and a common interface to provide capabilities for
the usage in CASs. We call these systems “Self-Descriptive Devices” (SDDs).

In sum, this paper contains the following contributions for facilitating the
use of hardware devices within CASs:

(1) Storage and usage of distributed properties;

(2) Methods for the automatic provision of capabilities for agents;
(3) Determination of appropriate hardware for capabilities;

(4)

4) Task fulfillment through combined capabilities;

As a running example various hardware modules (i.e., quadcopter that can be
equipped with multiple modular sensor modules) are used to demonstrate the
advantages of the developed technique. Each SDD, no matter if it is a quad-
copter or a sensor module, provides a self-description. In case of a quadcopter,
it has properties like “maximum payload” and “weight” and capabilities like
“fly to position”. Furthermore these simple capabilities of multiple SDDs can
be composed to more complex capabilities of the whole system. For example
capabilities like “sensor-based flight” can be created out of the capability “fly
to position” of the quadcopter and the capability “measure sensor value” of a
mounted sensor module.

This paper is structured as follows: Sect.2 describes which objectives the
paper pursues. In Sects. 3 and 4 the structure and realization of SDDs in CASs
is described. Afterwards the architecture and realization are evaluated in a case
study (Sect.5). Section 6 shows related research fields and Sect.7 finally con-
cludes the paper.

96 C. Wanninger et al.

2 Objectives and Challenges

The objective of our approach is to establish an architecture for multi-agent
applications in the field of collective adaptive systems with real modular hard-
ware. In view of the variety of possible applications, a common denominator
must be found. In many projects, e.g., [5,7,24,25] the term capability is used
for interactions with (simulated) hardware. For example the project of Preece
et al. [25] use the term to define if a camera can be mounted on an UAS with the
semantic annotation “can mount” for every camera type. This interpretation of
capability is only indirectly coupled with real hardware and serves as descriptive
information to define the properties of the UAS. From our point of view, a prop-
erty qualifies static information like, e.g., physical specifications (e.g., geometric
models, weight, ...) or hardware specific limitations (e.g., sensor accuracy, motor
speed, ...). The storage, distribution and usage of properties is a fundamental
challenge in this paper and serves to give an appropriate answer to the hardware
device, regarding the question:

(1) “What am 177

Projects like Knowrob [31] use the term capability to describe executable
procedures. For example, the annotation “grab cup” can be executed and an
industrial robot starts the appropriate procedure. This procedure in turn uses
properties (e.g., pictures, geometric details and grasp pattern) to support the
automated execution. This interpretation of capabilities with dependencies to
properties is also used in this paper. For example, a UAS with the properties
“payload” and a mounted sensor with the property “weight” has to determine
if the capabilities “fly to position” or “fly direction” are feasible (e.g., weight
is lower than the payload). This example illustrates the dependency between
the capability “fly” and the property “weight”. The capability “fly to position”
can further use the “battery capacity” in combination with the “weight” and
“power consumption” to estimate the “flight time”. The challenge lies in linking
the capabilities to executable processes with a common interface for the usage
as well as providing a mechanism for the creation and usage of dependencies
between properties and capabilities. These dependencies give an answer to the
question:

(2) “Am I capable of doing it?”

The description of hardware with properties and the access of its function-
ality with capabilities have to be established on real hardware. Every hardware
element should provide its self-description i.e., its properties and capabilities.
One objective is to offer capabilities over several hardware parts. For example,
a quadcopter must be equipped with a distance sensor to offer the capability
“sensor-based flight”. To realize such configurable robots with self descriptive
hardware elements in real world applications, various challenges must be over-
come. For a common physical interface, the hardware elements must on the one
hand be able to handle multiple physical interfaces in order to support a large

Synthesizing Capabilities for CASs from Self-descriptive Hardware Devices 97

set of components like sensors, actuators and combinations thereof. On the other
hand the hardware elements must offer a common communication interface for
the exchange of corresponding values between them. This communication inter-
face should also be used for the exchange of capabilities and properties. For
the programming of an agent, the capabilities and properties must be traceable
to the corresponding hardware element and actual configuration of hardware
elements (e.g., the quadcopter should use a mounted sensor for the capability
“sensor-based flight”). This information answers the question:

(3) “With what should I do it?”

Projects like [15,17,29] combine the capabilities of multiple agents, e.g., sev-
eral mobile robots pull a child, while one single robot can not apply the force
to pull it. In this example the user task “carry child” can be divided into sev-
eral agent tasks “carry subject” which the combination of agents has to solve.
This task decomposition of user tasks into agent tasks with coordination mech-
anisms between agents is not in the scope of this paper. However, we want to
establish a mechanism to enable the agent to solve the task with a combination
of capabilities. The agent task should express the requirements in an abstract
manner (e.g., sensor based flight to position). The information, which sensors
and actuators (e.g., position sensor, quadcopter) are needed and the procedure
how they interact (e.g., fly to position combines a position sensor with the flight
capability of a quadcopter) is one challenge, which is focused on in this paper.
The definition of abstract requirements for the instantiation of capabilities with
distributed properties finally leads to the question:

(4) “What am I supposed to do?”

For simulated environments as well as real hardware.

3 Concept

This paper provides an architecture for the realization of multi-agent applications
in the field of collective adaptive systems with real, modular hardware, as shown
in Fig. 1. To give an overview over the proposed system, we start with the user
of the multi-agent system, who is able to define so called User Tasks. These
are tasks that can only be handled by a set of agents, for example “fly triangle
formation to position 1m over ground for 15min”. Such tasks are decomposed
into multiple Agent Tasks that can be assigned to a single agent of the multi-
agent system, e.g., “sensor-based flight to position 1 m over ground for 15 min”.
For the decomposition of the user tasks, a distributed multi-agent reasoning
system is used in our overall architecture, presented in Kosak et al. [22]. After
the agent task has been assigned to an agent the advantages of our proposed
system come into play. The following paragraphs address the questions from the
previous section with an analog equation.

98 C. Wanninger et al.

[Fly triangle formation to position]ﬁover groundf for 15 min> User Task (UT)

decompose user task

Y Y
[Sensor—based flight to position]@)ver groundf for 15 min> [Agent Task (AT)
)))

search matching blueprint

Blueprint Matching Blueprint (BP)
& <<blueprint>>
Sensor-based flight to posmon____

value B Measure aam g LOgic <—N FIy to posmon X duration)

-
NI b T T el TN O /
N N

search matching hardware

. N Y
Hardware Matching Self-Descriptive Device (SDD)
Distance Sensor Quadcopter
L

check requirements

Property Matchin
perty 9 Properties

/ \
i — i \
Power Consumption = (\\ duration / (1)

Battery Capacity

Fig. 1. Structure of the entire system from a given task of the user over the decompo-
sition into capabilities to the selection of the required hardware.

With the requirements defined in the agent task, the agent searches for a
blueprint in a set of predefined blueprints that can cover these requirements
(Blueprint Matching (4)). Blueprints are a schematic representation of composed
capabilities and depict how capabilities may be interconnected to more complex
capabilities. For example, a task “sensor-based flight to position 1 m over ground”
can be composed of the basic capabilities “fly to position” and “measure”. With
the help of the appropriate blueprints, the decomposition of a task into single
basic capabilities is realized.

After the decomposition of a task into individual capabilities, the agent is
capable of searching for hardware that possesses these capabilities and can fulfill
the given task. This step is called Hardware Matching (3). In our example,
we have a quadcopter that has a capability “fly to position” and a distance
sensor that has a capability “measure distance to ground”. From the information
of the hardware’s capabilities, the agent can determine with which hardware
configuration it can fulfill the task.

Before execution of the task, a final check is made to ensure the agent is
able to fulfill the task with the given hardware. For this check we use Property
Matching (2), which guarantees that the constraints of each hardware module are
met, for example if the task has the constraint that the sensor-based flight must
last at least 15 min. Consequently, the system must check whether the desired
flight duration can be achieved by the given set of hardware. For this check

Synthesizing Capabilities for CASs from Self-descriptive Hardware Devices 99

several properties (i.e., “weight”, “power consumption” and “battery capacity”)
of each attached hardware module are used.

After the concept of the entire system has been presented, the distribution
of the concept to the individual hardware modules is described. Every agent in
our CAS is composed of one Logic Device (LD) and a set of Self-Descriptive
Devices (SDDs) as shown in Fig.2. An SDD is a device which consists of the
actual hardware, for example a distance sensor, and a Self-Description Adapter
(SDA), which is responsible for the self-description of the hardware component.
The SDA includes the communication interface, the semantic datasheet for self-
description of the hardware with its capabilities and properties (1) and a driver
to interact with the specific hardware for using its capabilities. Thus, SDDs
provide the information used for the hardware and property matching of the
systein.

Self-Descriptive Device

Self-Description Adapter Hardware

(e.g.Sensor)

Communication Interface

Semantic Datasheet Hardware Driver

Logic Device s

Communication Interface

Self-Descriptive Device

Self-Description Adapter

Hardware
(e. g. Quadcopter)

Semantic Description B £yo cytion Environment
of the entire system

Communication Interface

Semantic Datasheet Hardware Driver

Fig. 2. Schematic structure of the system for our running example. This system is
comprised of a quadcopter-SDD, a sensor-SDD and an Logic Device (LD).

An LD is a device which maintains a runtime environment for the execution
of capabilities of multiple SDDs and provides an interface to the agent and thus
represents an independent subsystem. LLDs have a set of predefined blueprints
that can be used to find a suitable hardware set and to utilize this blueprint with
the real capabilities of the selected hardware for the execution of the agent task.
Both LD and SDD communicate with each other over connections using wired
or wireless interfaces. The communication interface is used on the one hand to
transmit the semantic datasheets and on the other hand to query sensor values
and set commands for actuators. One of the main components of an LD is the
semantic description of the whole subsystem. This means all self-descriptions of
each SDD are sent to the LD, where they are joined to form a complete knowledge
base. For the execution of capabilities, we also need an execution environment,
that can interact with mobile robots, actuators and sensors. For example, one
agent of a CAS (e.g., mobile robot) consists of one LD and several sensor and
actuator SDDs. In the quadcopter example, we use a single board computer
attached to the quadcopter which runs an LD. This SDD has a connection to a
quadcopter SDD and some sensor SDDs.

100 C. Wanninger et al.

4 Implementation

The following section details the implementation of the four main concepts
involved in the realization of SDD and LD: (Sect.4.1) Distributed knowl-
edge, (Sect.4.2) Hardware and Property Matching, (Sect.4.3) Blueprints and
(Sect. 4.4) Deployment and Execution of Capabilities.

4.1 Distributed Knowledge

In order to create a common knowledge base of all SDDs connected to one LD,
the distributed information of each SDD must be collected and processed. The
information on properties and capabilities of each SDD is stored in form of a
“Resource Description Framework” (RDF) ontology (e.g., the Semantic Sensor
Network Ontology [3] for sensor data), where only the instances are specified
in the self-description of the SDD. The abstract form of the ontology, which
contains the classes and associations between them, is exclusively stored on the
LD. To establish a common knowledge base, the abstract ontology is completed
by the concrete instances of each SDD. To this end, the framework Jena [2] is
used to merge the different ontologies. Therefore, a combination of multiple SDDs
communicate with one LD which they are connected to by physical interfaces to
transfer the knowledge. This collected knowledge is then available for the agent
of a CAS. In addition to the merging of semantic data sheets, there is even the
possibility of adding additional information to the ontology itself by inserting
RDF-Triples with “Simple Protocol And RDF Query Language” (SPARQL) [26]
INSERT statements. This extensibility is crucial due to the incredible variety of
sensors and actuators (e.g., a new type of sensor is used). With such INSERT
statements the user is able to add classes as well as instances to the ontology as
needed.

4.2 Hardware and Property Matching

The created knowledge base can be used to find the required hardware to fulfill a
given task. Therefore SPARQL queries are used to search for SDDs with specific
capabilities or properties. By using SPARQL filter functions, the system is not
only able to search for hardware devices which have a certain capability, but
the search can be restricted even more precisely with help of the associated
properties of a capability. For example if a task needs the capability “measure”,
it can be specified which value should be measured or with what accuracy the
value is measured. These constraints of capabilities can be added by the user of
a task by adding SPARQL filter functions to the task definition. After the search
for and filtering of capabilities, the agent is able to use the found hardware for
the execution of the task. If multiple SDD possibilities are found, the agent is
even able to choose which hardware is most suitable for the task. If no suitable
set of SDDs is found, the user is informed that no matching hardware devices
were found for the execution of the given task.

Synthesizing Capabilities for CASs from Self-descriptive Hardware Devices 101

If a set of SDDs is found, which is able to fulfill the given task, the property
matching is executed. Therefore constraints of capabilities and constraints given
by the user or agent tasks are considered. Constraints of capabilities may be for
example that the capability “fly to position” can only be executed with a take-off
weight of 1kg. Task constraints may be for example that the sensor-based flight
must last at least 15min. This constraint check is realized through SPARQL
queries. For the constraints of the take-off weight, the sum of the weight of
all SDDs is queried and checked if its under 1kg. The second example is more
complex. For the calculation of the flight time, a function can be created that
depends on “weight”, “power consumption” and “battery capacity” of the entire
system. Once all constraints are satisfied the execution starts, otherwise the user
gets notified.

4.3 Blueprints

Between the abstract formulation of a requirement of a task (e.g., “sensor-based
flight to position”) and the decomposition into individual capabilities, a lack of
information exists. This lack is eliminated by using blueprints to describe how
to compose individual capabilities to more complex capabilities.

Measure [——————>{ |Calculate Height H Fly to Position D

1 1
! SensorValue | | SensorValue Height | | Height !

Fig. 3. Extract of the blueprint “sensor-based flight to position” with the capabilities
“measure” and “fly to Position” and a logic component “calculate height”

Figure 3 shows an example of a blueprint for the composed capability “sensor-
based flight to position”. A blueprint consists of multiple semantic components
(dashed boxes) which describe actions that can be executed. These actions can
be capabilities or logical components, like calculation components (e.g., “calcu-
late height”) which in turn have control flow ports (boxes without description)
as well as a data flow ports (boxes with names) and can be used to interconnect
the semantic components. Control flow ports are used to set the order of exe-
cution while data flow ports serve to transfer data between multiple semantic
components. In our example, the capability “measure” is used to influence the
“height” parameter of the capability “fly to position”. Each data flow port has
a semantic description, which means it knows its content, its data type and its
unit. For example, the capability “measure” in a blueprint, can be represented
by a semantic component with a data flow port “sensor value” which measures
distance values in meters.

Through this semantic description, the logical components are able to adjust
their logic. To give an example, it makes a difference if a distance sensor or a
temperature sensor (value must be mapped) is connected to the semantic com-
ponent “calculate height”. In both situations, the sensor value must be converted
into a height in meters. As described in Sect. 3, the placeholder of the blueprint

102 C. Wanninger et al.

is filled with concrete capabilities if capable SDDs are found in the hardware
matching. After all capability placeholders of the blueprint are filled, the com-
posed capability can be executed.

4.4 Deployment and Execution of Capabilities

Agents use blueprints to define which capabilities they need to execute their task.
The blueprints must decide at runtime, which concrete hardware they use, thus a
mechanism is necessary to load interfaces to enable the execution of capabilities.
For this reason, a loading mechanism for hardware specific interfaces was created,
that is capable of using semantically annotated code fragments. These fragments
are Linked Open Data [34] compliant, stored in HTML sites and are linked to
the appropriate self-description of the individual SDDs.

Figure 4 shows the deployment of a system with a quadcopter SDD, a sensor
SDD and an LD. As described in Sect. 4.1 the LD includes the knowledge base
consisting of the abstract ontology and the self-description of each SDD. The
self-descriptions are sent to the LD when the SDD is added to the system. If the
execution of a capability is required, a SPARQL query is used to get a URI for
the code fragments of the SDD driver. Subsequently these code fragments are
downloaded from the web or a snapshot, which is directly stored in an SDD, com-
piled at runtime and integrated into the Robotics API [30], which is responsible
for the control of the sensors and actuators. Afterwards these fragments can be
executed. All code fragments contain interfaces for the execution of capabilities
within an SDD. For example, a sensor SDD has a function getSensorValue()
or a quadcopter SDD has a function £1yToPosition(Position).

Because of the modularity, the system is able to exchange real SDDs for
simulated SDDs and vice versa. So it makes no difference if it works on real or
simulated hardware. Thereby the system is even capable of executing capabilities
on a combination of simulated and real hardware devices.

<<include>>
[}

flyToPosition(Position)

Semantic Execution Hardware
Quad (Ctoogy
SDD

¥ query ontology

| |
get link of SDD driver W

Ontology)=(

SPARQL)==>(Robotics API)

LD
t " getSens;)rVaIue()
A v

Sensor (—Sge / OrengeP

SDD get code fragments of SDD driver =

! ——
Fr— = = = = — = — =¥ — - - - - — = = = = = = =
I WEB HTML
JAVA-Code

Fig. 4. Deployment of the running example with two SDDs and one LD

Synthesizing Capabilities for CASs from Self-descriptive Hardware Devices 103

5 Proof of Concept

To show the feasibility of our approach and to implement a CAS in reality,
several SDD prototypes were developed. These SDD prototypes consist of the
actual hardware module (e.g., a sensor) and a single-board computer, which is
responsible for the control of the hardware, the self-description of the hardware
component and provides a wireless communication interface for the communica-
tion with the LD. These two components are encapsulated in a 3D printed case
with a plug connection to enable the combination of several SDDs with an LD
to an overall system (see Fig.5).

Fig. 5. Hardware prototype of an SDD adapter (a) for sensors and actuators. The
used hardware is an Orange PI Zero with Wireless LAN in a custom 3D printed case
with magnetic connectors. Prototype of a distance sensor SDD with an SR04 distance
sensor (b). Prototype of a quadcopter SDD (c¢) with magnetic connectors for two SDD
prototypes

The running example “sensor-based flight of a quadcopter” is used to deter-
mine whether our approach answers the questions mentioned in Sect. 2. By merg-
ing the distributed self-descriptions of each SDD to an overall knowledge base we
can answer the question “What am I?”. By using constraints in form of SPARQL
queries and filters, the agent is able to define constraints for the execution of
tasks. With these constraints the system is able to answer the question “Am I
capable of doing it?”. It has been shown that the system is even capable of select-
ing hardware or giving suggestions to the user which hardware should be used
for the execution of a task. For example, if there are requirements like “measure
temperature” the system will select a temperature sensor SDD or otherwise will
inform the agent that no matching sensor SDD was found. This answers the
question “With what should I do it?”. The Question “What am I supposed to
do?” is answered by blueprints, which are used for the decomposition of tasks
into a set of capabilities. After all questions have been resolved and a suitable
hardware configuration has been found, the task can be executed.

With the developed system it is possible to use values of a sensor SDD to
influence the behaviour of actuators like a quadcopter SDD. Figure 6a shows the
flight of a quadcopter that adjusts its height according to the measured distance
to the ground with a distance sensor SDD, with the blueprint shown in Fig. 3.
As a test setup a quadcopter SDD equipped with an LD and a distance sensor
SDD flew along a specified route with obstacles. For the navigation of the route,

104 C. Wanninger et al.

e

(a) time lapse recording of a quadcopter equipped with an ultra sonic distance sensor
(SR-04) and obstacles on the ground for the sensor-based flight

0.2
0

2 1
< 0.8
= 0.6
= 0.4
=
o
=

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

distance to takeoff position in meters

(b) analysis of the sensor based flight (multiple runs) with obstacles within a indoor
tracking system to get an accurate position of the quadcopter

Fig. 6. Case study: sensor-based distance flight

an indoor tracking system was used, which also recorded the exact position of
the quadcopter, as shown in Fig.6b. To validate the suggestion of SDDs, the
capability “sensor-based flight” can be executed with distance sensor SDDs as
well as with temperature sensor SDDs. The sensor-based temperature flight is
comparable to a kind of thermometer. If the measured temperature increases or
decreases the distance of the quadcopter to the ground matches the change.

By merging the self-descriptions of each SDD of an agent, it is possible to
generate an added value for the overall system. Because the total weights, power
consumptions and power reserves are known for each SDD, it is possible to
calculate the average flight time of a quadcopter. Through the plug and play
mechanism of the SDDs, it is possible to calculate the flight time dynamically
depending on the current configuration of the system.

Figure 7 shows the comparison between the calculated flight time and the
actually measured flight time with different takeoff weights of a quadcopter.
From this data a function was derived, which predicts the flight time depending
on the weight of the combined system with additional LDs. Hence, it is possible
to evaluate the constraints whether a capability can be performed for a given
duration as required in the example from Fig. 1.

Synthesizing Capabilities for CASs from Self-descriptive Hardware Devices 105

200
1807
160
140
120
100

0 20 40 60 80 100 120 140 160 180 200

flight time in seconds

load in gram
—— Calculated flight time x Measured flight time

Fig. 7. Comparison between calculated and measured flight time with multiple runs
with different weights

6 Related Work

The following section will investigate related work in relevant research fields
emphasizing potentials as well as limitations in the context of Self-Descriptive
Device (SDD). The presented architecture for SDDs addresses two areas: self
awareness and modular hardware.

Due to many different protocols and storage possibilities for sensor data,
common ontologies such as the Semantic Sensor Network Ontology [3] have been
utilized. The advantage of the semantic storage in ontologies is primarily the
usage of semantic reasoners (e.g., queries as described in Subsect. 4.2). In the field
of geographic research, where many sensors are used to validate weather models,
this ontology is used to convert stored binary data into semantically annotated
data (e.g., [4,8,11,33]). The approach of Dibley et al. [13] goes one step further
with a hardware adapter where this conversion takes place. In contrast to the
architecture presented in this paper only sensors are semantically annotated and
a transfer to capabilities is not in the focus of these approaches.

The project Cubelets [16] focuses the influence of measurements on corre-
sponding actuators. Every sensor or actuator in this project is separated into
onc modular hardware clement with a common physical interface. The commu-
nication is instead very primitive. Every sensor provides a value between 0 and
255 which is in turn used by the actuators. With this mechanism, primarily
intended for educational purposes, reactive robots or systems can be built, how-
ever predefined processes (e.g., drive to position) are not possible. The idea of
combined capabilities, derived from several hardware elements is focused on in
the projects [9,29], in which homogeneous hardware is combined to gain loco-
motive capabilities. Heterogeneous aspects like e.g., combining a sensor with an
actuator are not considered in these projects.

The robot operating system (ROS) [27] is a middleware for robots which
allows publish-subscribe as well as service oriented communication mechanisms.
In ROS, sensors and actuators can be integrated and tested within a simula-
tion environment as well as on real hardware. The project H-ROS [1] aims to
simplify the connection between hardware elements with a common interface for

106 C. Wanninger et al.

communication in an ID-based plug and play manner. Each module must be
plugged into a backbone, which is connected with a so called cognition. Within
the cognition, the offered services of other connected H-ROS modules can be
used in programs. Semantic annotations with dependencies on capabilities, as
described in Sect. 3 are not in the focus of this project.

The project Knowrob [31] defines executable capabilities based on sensor
information performed by (industrial) robots. Abstract capabilities (e.g., grab
cup), geometric information (e.g., sensor position) as well as knowledge derived
from observations of humans are stored within a common knowledge base built
upon Semantic Web techniques. The abstract capabilities use this knowledge to
subdivide themselves into executable robot motions. This subdivision is similar
to the decomposition of capabilities. Modular self-descriptive devices as well
as combined capabilities described in Subsect. 4.3 are not in the scope of this
project.

To the best of our knowledge the combination of self description in a system
of modular hardware with a capability interface for agents within a CAS is novel.

7 Conclusions

In this paper we have proposed an architecture for the realization of collective
adaptive systems (CASs) on hardware devices for real world scenarios. With this
architecture, we arc able to fulfill tasks by analyzing the given requirements.
Through the self-description and the plug and play mechanism of each Self-
Descriptive Device (SDD), we are capable to compile a detailed description of
the composed total system. Using this detailed description of properties and
capabilities of each hardware component, it is possible to compose capabilities
in a semantically correct way according to blueprints. The agent can use the
blueprint on the one hand to execute the capabilities if they can be instantiated
with the current set of hardware and on the other hand get a suggestion if the
actual hardware can not handle it. If a system can handle a defined task it can
execute this task in a simulated environment as well as on real hardware or even
in a mixed reality. With an increasing amount of data the system can give further
useful information about the system, like for example the rough estimation of the
flight time mentioned in Sect. 5. This consistent and expandable architecture is in
our point of view an important basis for the creation of CASs with real hardware
in the real world.

Future research will focus on the autonomous reconfiguration of agents
through the automatic exchange of SDDs with recommender techniques. Asso-
ciated with this, predictive maintenance of SDDs will be examined. So the SDD
can give information about its condition and if it is defective, it can be replaced
autonomously e.g., to facilitate long term measurements with quadcopters and
replaceable intelligent batteries. A first approach for the resource allocation on
agent level is presented in Hanke et al. [19]. Nevertheless, future work will focus
on the parallel execution of blueprints allocated to the same resources based on
a previous work [32].

Synthesizing Capabilities for CASs from Self-descriptive Hardware Devices 107

References

W

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

Hardware ROS (2018). https://www.h-ros.com/

JENA Framework (2018). https://jena.apache.org/

Semantic Sensor Network Ontology (2018). https://www.w3.org/TR/vocab-ssn/
Barnaghi, P., Wang, W., Dong, L., Wang, C.: A linked-data model for semantic
sensor streams. In: 2013 IEEE International Conference on Green Computing and
Communications and IEEE Internet of Things and IEEE Cyber, Physical and
Social Computing, pp. 468-475 (2013)

Barreiro, J., Boyce, M., Do, M., Frank, J., et al.. EUROPA: a platform for Al plan-
ning, scheduling, constraint programming, and optimization. In: 4th International
Competition on Knowledge Engineering for Planning and Scheduling (ICKEPS)
(2012)

Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems, 1st edn. Oxford University Press, Oxford (1999)

Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the capability concept for
flexible BDI agent modularization. In: Bordini, R.H., Dastani, M.M., Dix, J., El
Fallah Seghrouchni, A. (eds.) ProMAS 2005. LNCS (LNAI), vol. 3862, pp. 139-155.
Springer, Heidelberg (2006). https://doi.org/10.1007/11678823_9

Broéring, A., Maué, P., Janowicz, K., Niist, D., Malewski, C.: Semantically-enabled
sensor plug & play for the sensor web. Sensors 11(8), 7568-7605 (2011)

Cao, Y., Leng, Y., Sun, J., Zhang, Y., Ge, W.: 360botG2 - an improved unit of
mobile self-assembling modular robotic system aiming at exploration in real world.
In: 41st Annual Conference of the IEEE Industrial Electronics Society, IECON
2015, pp. 001716-001722. IEEE (2015)

Casbeer, D.W., Kingston, D.B., Beard, R.W., McLain, T.W.: Cooperative forest
fire surveillance using a team of small unmanned air vehicles. Int. J. Syst. Sci.
37(6), 351-360 (2006)

Compton, M., Henson, C., Lefort, L., Neuhaus, H., Sheth, A.: A survey of the
semantic specification of sensors. In: Proceedings of the 2nd International Confer-
ence on Semantic Sensor Networks, vol. 522, pp. 17-32. CEUR-WS.org (2009)
Daniel, K., Dusza, B., Lewandowski, A., Wietfelds, C.: AirShield: a system-of-
systems MUAV remote sensing architecture for disaster response. In: Proceedings
of 3rd Annual IEEE Systems Conference (SysCon) (2009)

Dibley, M., Li, H., Rezgui, Y., Miles, J.: An integrated framework utilising software
agent reasoning and ontology models for sensor based building monitoring. J. Civ.
Eng. Manag. 21(3), 356-375 (2015)

Dorigo, M., et al.: Swarmanoid: a novel concept for the study of heterogeneous
robotic swarms. In: IEEE Conference on Robotics, Automation and Mechatronics
(RAM), vol. 20, no. 4, pp. 60-71 (2013)

Dorigo, M., et al.: The SWARM-BOTS project. In: Sahin, E., Spears, W.M. (eds.)
SR 2004. LNCS, vol. 3342, pp. 31-44. Springer, Heidelberg (2005). https://doi.
org/10.1007/978-3-540-30552-1_4

Gross, M.D., Veitch, C.: Beyond top down: designing with cubelets. Tecnologias,
Sociedade e Conhecimento 1(1), 150-164 (2013)

Gross, R.: Self-assembling robots. KI 22(4), 61-63 (2008)

Gross, R., Dorigo, M.: Towards group transport by swarms of robots. Int. J. Bio-
Inspired Comput. 1(1-2), 1-13 (2009)

Hanke, J., Kosak, O., Schiendorfer, A., Reif, W.: Self-organized resource allocation
for reconfigurable robot ensembles. In: 2018 IEEE 12th International Conference
on Self-Adaptive and Self-Organizing Systems, September 2018

108

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

C. Wanninger et al.

Kernbach, S.: Structural Self-organization in Multi-agents and Multi-robotic Sys-
tems. Logos Verlag Berlin GmbH, Berlin (2008)

Kernbach, S., Schmickl, T., Timmis, J.: Collective adaptive systems: challenges
beyond evolvability. arXiv preprint arXiv:1108.5643 (2011)

Kosak, O.: Facilitating planning by using self-organization. In: 2017 IEEE 2nd
International Workshops on Foundations and Applications of Self* Systems
(FAS*W), pp. 371-374, September 2017

Kovacina, M.A., Palmer, D., Yang, G., Vaidyanathan, R.: Multi-agent control algo-
rithms for chemical cloud detection and mapping using unmanned air vehicles. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp.
27822788 (2002)

Morgan, D., Subramanian, G.P., Chung, S.J., Hadaegh, F.Y.: Swarm assignment
and trajectory optimization using variable-swarm, distributed auction assignment
and sequential convex programming. Int. J. Robot. Res. 35(10), 1261-1285 (2016)
Preece, A., et al.: Matching sensors to missions using a knowledge-based approach.
In: Proceedings of SPIE: Defense Transformation and Net-Centric Systems, vol.
6981, p. 6981091 (2008)

Prud, E., Seaborne, A., et al.: SPARQL query language for RDF (2006)

Quigley, M., et al.: ROS: an open-source Robot Operating System. In: [ICRA Work-
shop on Open Source Software, Kobe, vol. 3, p. 5 (2009)

Reid, C.R., Lutz, M.J., Powell, S., Kao, A.B., Couzin, [.D., Garnier, S.: Army ants
dynamically adjust living bridges in response to a cost—benefit trade-off. Proc.
Natl. Acad. Sci. 112(49), 15113-15118 (2015)

Romanishin, J.W., Gilpin, K., Rus, D.: M-blocks: momentum-driven, magnetic
modular robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 4288-4295, November 2013

Schierl, A.: Object-oriented modeling and coordination of mobile robots. Doctoral
thesis, Universitdt Augsburg (2017)

Tenorth, M., Beetz, M.: KNOWROB - knowledge processing for autonomous per-
sonal robots. In: 2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 4261-4266 (2009)

Vistein, M., Angerer, A., Hoffmann, A., Schierl, A., Reif, W.: Flexible and contin-
uous execution of real-time critical robotic tasks. Int. J. Mechatron. Autom. 4(1),
27-38 (2014)

Xue, L., Liu, Y., Zeng, P., Yu, H., Shi, Z.: An ontology based scheme for sensor
description in context awareness system. In: 2015 IEEE International Conference
on Information and Automation, pp. 817-820 (2015)

Yu, L.: Linked open data. In: Yu, L. (ed.) A Developers Guide to the Seman-
tic Web, pp. 409-466. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-15970-1_11

