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Abstract  

Previous research suggests that the effectiveness of robotic training depends on the motor task to be 
learned. However, it is still an open question which specific task’s characteristics influence the 
efficacy of error-modulating training strategies. Motor tasks can be classified based on the time 
characteristics of the task, in particular the task’s duration (discrete vs. continuous). Continuous tasks 
require movements without distinct beginning or end. Discrete tasks require fast movements that 
include well-defined postures at the beginning and the end. 

We developed two games, one that requires a continuous movement −a tracking task− and one that 
requires discrete movements −a fast reaching task. We conducted an experiment with thirty healthy 
subjects to evaluate the effectiveness of three error-modulating training strategies −no guidance, error 
amplification (i.e. repulsive forces proportional to errors) and haptic guidance− on self-reported 
motivation and learning of the continuous and discrete games.  

Training with error amplification resulted in better motor learning than haptic guidance, besides the 
fact that error amplification reduced subjects’ interest/enjoyment and perceived competence during 
training. Only subjects trained with error amplification improved their performance after training the 
discrete game. In fact, subjects trained without guidance improved the performance in the continuous 
game significantly more than in the discrete game, probably because the continuous task required 
greater attentional levels. Error-amplifying training strategies have a great potential to provoke better 
motor learning in continuous and discrete tasks. However, their long-lasting negative effects on 
motivation might limit their applicability in intense neurorehabilitation programs.  
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1. Introduction 

Motor learning –i.e. the acquisition of new motor skills– is a crucial aspect in several research fields, 
such as psychology, neurology, sport training and rehabilitation research (Muratori et al. 2013). 
These disciplines aim to better understand how to provoke long term changes in the brain structures 
(i.e. neuroplasticity) in order to improve or gain new motor and cognitive skills. In particular, motor 
learning theories have been used as an important tool to investigate, improve and adapt 
neurorehabilitation exercises (Dietz and Ward 2015). There is increasing interest in using robotic 
devices to train new motor skills, since robots can physically interact with subjects in order to assist 
or resist during training of complex movements, such as multi-joint arm movements (Nef et al. 2009; 
Klein et al. 2010) and walking (Riener et al. 2005; Rüdt et al. 2016). There has been a progression in 
the development of robotic training strategies that specify how these robotic devices should interact 
with subjects in order to enhance motor learning and rehabilitation outcomes –see Marchal-Crespo 
and Reinkensmeyer (2009) for a review. One way to group robotic training strategies is according 
their use of the kinematic errors. Robotic haptic guidance is a training strategy in which a machine 
physically interacts with the subject’s limbs to provide guidance in a desired movement by reducing 
ongoing errors. Error augmenting strategies, on the contrary, are in some ways the opposite of haptic 
controllers, because they make movement tasks more challenging.  

It is thought that by moving patients’ limbs in ways that they would otherwise not be able to move 
might motivate them to engage in repetitive and intensive practice (Reinkensmeyer and Housman 
2007). However, robotic guidance also appears to decrease physical effort during training (Israel et 
al., 2006) suggesting that robotic training could potentially decrease learning if it encourages 
subjects’ slacking (Reinkensmeyer et al., 2009; Scheidt et al., 2000). In fact, there is little evidence 
that haptic guidance is beneficial for human motor learning beyond enhancing safety and motivation. 
The long-standing hypothesis in motor learning research –the Guidance Hypothesis– states that 
physically guiding a movement will impair motor learning, because the user learns to rely on the 
guidance and fails to learn the motor commands required to perform the task (Salmoni et al. 1984; 
Schmidt and Bjork 1992). 

Error amplification, on the other hand, is based on the idea that errors are needed in order to improve 
motor learning (Emken et al. 2007; Kitago and Krakauer 2013). Experimental evidence has 
demonstrated that it is possible to accelerate adaptation processes in healthy subjects when errors are 
accentuated using robotic forces during walking (Emken and Reinkensmeyer 2005). In patients with 
chronic stroke, amplifying errors during reaching with a force field resulted in straighter movements 
when the force field was removed (Patton et al. 2006). Training with error augmentation also 
benefited learning to play a pinball-like game in initially more skilled subjects (Milot et al. 2010). 
However, there are also studies that did not find a benefit from augmenting errors during training. 
Augmenting errors with forces proportional to errors did not enhance learning to track a 2D figure 
(Lee and Choi 2010). Amplifying errors during training how to synchronize the legs to track a 
Lissajous figure resulted in better learning in initially more skilled subjects, but limited transfer of 
learning (Marchal-Crespo et al. 2014a, 2017). These contradictory results suggest that error 
amplification might limit learning of some specific motor tasks, such as figure tracking. Augmenting 
kinematic errors during training seems to enhance the motor learning process by making the motor 
system to respond more strongly (Patton et al. 2006; Emken et al. 2007). However, in continuous 
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tasks where feedback is continuously provided, subjects might rely on the enhanced feedback and fail 
to learn the motor task.  

Motor control is the process by which humans use their central nervous system (i.e. brain/cognition) 
to control the musculoskeletal system (i.e. muscles and limbs) involved in the performance of 
a motor skill. Motor learning is thought to be controlled by two different mechanisms in the brain: 
Feedback and feedforward motor control. Feedback motor control enables the motor system to 
respond to sensory information about deviations from the planned movement. Therefore, it depends 
on the sensory system to detect errors and perturbations (Seidler et al. 2004). As soon as errors can be 
detected through the sensory system, the information is used to adapt the motor commands for 
consecutive actions (Seidler et al. 2013). However, feedback control adds time delays into the motor 
response that might lead to inaccurate movement adjustments (Wolpert et al. 2001). The motor 
system is able to deal with these time delays employing feedforward motor control. Feedforward 
motor control works in a more predictive manner, i.e. it uses an internal model to predict the outcome 
of future movements (Kawato 1999; Tong and Flanagan 2003; Emken and Reinkensmeyer 2005). 
There is large evidence that the cerebellum (Wolpert et al. 1998; Shadmehr et al. 2010), parietal 
cortex, Basal ganglia and cingulate cortex are important brain regions involved in error-based 
learning −see Seidler et al. (2013) for a review. Each brain area has its specific characteristics while 
performing a task that requires feedback or feedforward motor control (Seidler et al. 2013). 
Therefore, it is unlikely that a training strategy that enhances learning of tasks requiring mostly 
feedforward control (e.g. discrete tasks, such as fast reaching or hitting tasks) will also benefit 
learning of tasks that mainly require feedback motor control (e.g. continuous tasks, such as tracking 
tasks). Therefore, the contradictory results observed in previous motor learning studies might 
originate from the fact that these experiments employed motor tasks that were governed by different 
motor control processes.  

There is an initial body of work that compared the effectiveness of robotic strategies that augment or 
reduce movement errors on motor learning (Lee and Choi 2010; Sigrist et al. 2015). However, results 
from these comparative experiments are highly inconclusive, probably because they searched for the 
strategy that enhances learning, independently of the subjects’ skill level and the specific 
characteristics of the task to be learned (Marchal-Crespo et al. 2015). Haptic guidance seems to be 
particularly helpful for initially less skilled subjects (Marchal-Crespo et al. 2010b, 2013), while error 
amplification was found to be more beneficial for more skilled participants (Milot et al. 2010; Duarte 
and Reinkensmeyer 2015). Additionally, error-augmenting strategies might be more suitable to 
enhance learning of especially simple tasks, i.e. tasks that can be mastered in a single practice 
session, since it might increase subjects’ motivation and concentration (Marchal-Crespo et al. 
2014b). On the other hand, in more challenging tasks, augmenting errors might decrease feelings of 
perceived competence and satisfaction and result in a long-term decrease in motivation that might 
limit the effectiveness of error amplification on motor learning (Duarte and Reinkensmeyer 2015).  

To date, there is not a good understanding of the role of the motor tasks to be learned on the 
effectiveness of robotic training on motor learning. Thereby, current robotic devices might be 
working with suboptimal training strategies – only using a fraction of the potential – by not 
considering the specific characteristics of the task to be learned. The goal of this paper is to evaluate 
the impact of three error-modulating training strategies −no guidance, error amplification (i.e. 
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repulsive forces proportional to errors) and haptic guidance− on self-reported motivation and learning 
of two virtual reality (VR) games: A tracking game (continuous task) and a fast reaching game 
(discrete task). Both games required that the subjects move their dominant arm with only one degree 
of freedom (vertical or horizontal direction). In order to rule out the effect of the initial skill level on 
learning, we adapted the games difficulty to the subject's initial skill level. We conducted a motor 
learning experiment with thirty healthy subjects using ARMin IV, a robotic exoskeleton for upper 
limb rehabilitation. We hypothesized that after adapting the games difficulty to the subjects’ initial 
skill levels, error amplification would enhance motor learning of the discrete tasks but would not 
have a positive effect on learning the continuous task. We also expected a decrease in self-reported 
feelings of enjoyment and perceived competence and an increase of effort during training with 
amplified errors. Finally, we hypothesized that the continuous task game would require greater 
attention levels, indicated by higher values of self-reported effort and pressure compared to the 
discrete task game.  

2. Methods 

2.1 ARMin IV 

ARMin IV was employed to conduct the motor learning experiment (Fig. 1). ARMin IV is a 7 
degree-of-freedom (DoF) robotic device for upper limb rehabilitation designed by the SMS-lab at 
ETH Zurich in collaboration with the University Hospital Balgrist (Nef et al. 2009). The robot 
incorporates position and force/torque sensors to measure the interaction between human and robot 
which enable subjects to perform a wide range of natural movements of the upper extremities 
(Guidali et al. 2011). A real time system with a sampling rate of 1 kHz controls the robotic device 
and communicates with the virtual world over a UDP connection. 

 
Fig. 1: ARMin IV is a 7 DoF robotic device designed for upper limb rehabilitation (Nef et al. 2009). 
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2.2 Continuous and discrete motor tasks 

Two VR games were designed using Unity© 5.0 (Unity Technologies, United States): a continuous 
task game –the wire loop– and a discrete task game –the bar game. Both games are relatively similar 
to each other and do not employ complicated visual effects in order to reduce the effect of external 
factors (e.g. graphics attractiveness, motivational sounds) on the subjects’ motivation and leaning 
outcomes. In both games, the subject's right hand position is represented by a yellow ring with an 
orange dot at the center which can be moved in the vertical direction by moving the hand up and 
down (Fig. 2). Both games are represented in 2D on the computer screen, but the ring can only be 
moved in the vertical axis.  

2.2.1 Continuous motor task game: the wire loop 

A continuous task which is mainly controlled through feedback motor control should provide 
subjects with sensory information (e.g. the deviations between actual and desired position) during 
practice. This error signal can then be used by the motor system to appropriately adapt the ongoing 
movement. In addition, the task should not be predictable in order to require the subjects’ full 
attention and prevent changing from feedback motor control to feedforward motor control as training 
progresses. 

The goal of the wire loop game is to move the arm up and down in order to align the center of the 
ring (represented by an orange dot) on the green wire to avoid the ring to touch the wire (Fig. 2A). 
The wire moves from the right- to left-hand side of the screen at a speed that depends on the subject’s 
initial skill level (see Section 2.2.3). The shape of the wire follows the addition of two sinusoids of 
different amplitude (12.5 cm and 5 cm) and frequency (2 ∙ 𝑓𝑓 Hz and 𝑓𝑓 Hz, with 𝑓𝑓 depending on the 
wire speed). The resulting wire shape is not trivial, and therefore, it is unlikely that subjects can learn 
the shape, since they only see a small part of the wire at a time (i.e. the entire wire's trajectory is not 
visible during the game). The diameter of the ring is 18 cm.  

While playing the wire loop game, subjects received continuous visual feedback about the actual 
position (center of the ring) and the desired position (green wire). In addition, subjects received 
information about the collisions: As soon as the ring touched the wire, the wire changed the color to 
red. The number of collisions were counted and displayed on the screen (Fig. 2A). 

2.2.2 Discrete motor task game: the bar game 

Discrete tasks require fast movements that include well-defined postures at the beginning and the end 
of the movement. We were especially interested in discrete tasks that are mainly controlled through 
feedforward control. Therefore, the discrete task should not provide subjects with feedback during 
task execution. The goal of the bar game is the same as in the wire loop game, move the arm up and 
down in order to align the ring center (orange dot) on the green wire and, therefore, avoid the ring to 
touch the wire (Fig. 2B). The wire is composed by a series of bars randomly located at three different 
vertical positions that move from the right- to left-hand side of the screen at a speed of 20 cm/s. 
Subjects were instructed to move the ring vertically in one run and as fast as possible to the next bar 
as soon as the ring reached the right end of the bar, minimizing the distance from the center of the 
ring to the next bar (Fig. 2B). While subjects moved the ring to the next bar, there was an additional 
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challenge: As soon as the ring leaved the right end of the bar, the next bar disappeared, and therefore, 
subjects performed the planned movement based on their memory and experience without visual 
feedback. The bar reappeared when the left end of the next bar reached the ring horizontal position, 
and therefore, subjects received terminal visual feedback about how precise their movement was 
once the movement was finished. The distance between the lowest and highest bar is 20 cm and 
between the lowest and middle bar is 15 cm. The bars length depends on the initial skill level of 
subjects (see Section 2.2.3).  

 
Fig. 2. A: The wire loop game. The goal is to move the arm up and down in order to center the ring (orange dot) on the 

green wire. The wire moves from the right- to left-hand side of the screen. B: The bar game. The goal is to move the ring 
vertically in one run and as fast as possible to the next bar as soon as the ring reaches the right end of the bar, minimizing 
the distance from the center of the ring (orange dot) to the next bar. As soon as the ring leaves the right end of a bar, the 

next bar disappears. The bar reappears when the left end of the next bar reaches the ring. 

2.2.3 Adaptive adjustment of game difficulty 

The difficulty levels of the continuous and discrete games were adjusted prior to training in order to 
control for the effect of game difficulty on learning. Adjustment was performed based on ongoing 
subject’s performance during a first baseline test. 

In the continuous (wire) game, the game difficulty was adapted by changing the speed of the wire, 
which moved from right to left on the screen, i.e. higher speeds increased the game difficulty. The 
subject’s performance was measured on-line as the running mean absolute difference between the 
desired position (wire) and the actual position (ring center).The wire speed adjustment was 
performed at each time step (every 0.02 s) as follows: 

𝑣𝑣𝑖𝑖+1 = �𝑣𝑣𝑖𝑖 + 𝛿𝛿𝑣𝑣,   𝑖𝑖𝑓𝑓  1
𝑖𝑖
∑ |𝑒𝑒𝑣𝑣𝑣𝑣|𝑖𝑖
𝑣𝑣=1  <  𝑒𝑒𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟    𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑖𝑖  <  𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣𝑖𝑖 ,                       𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒
       (1) 

Each subject started with an initial wire speed of 5 cm/s. At each sample time 𝑖𝑖, the running average 
absolute vertical error was calculated. If this average error was smaller than a threshold (𝑒𝑒𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟 = 2.5 
cm) and the speed 𝑣𝑣𝑖𝑖 was smaller than the maximum wire speed (𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 17.5 cm/s), the speed was 
increased by 𝛿𝛿𝑣𝑣 (0.0045 cm/s). The parameters 𝑒𝑒𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 and 𝛿𝛿𝑣𝑣 were chosen based on pilot 
experiments in such a way that subjects were able to easily adapt to a smoothly updated wire speed. 

In the discrete (bar) game, the difficulty level was adapted by changing the length of the bars, i.e., 
shorter bars increased the game difficulty. Per each bar, the maximum absolute difference between 
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the ring center and the bar vertical position was calculated. Then, when the ring leaved a bar, the 
average maximum error over all preceding bars was calculated. The bar length was adjusted every 
time the ring leaved a bar (𝑗𝑗) as follows: 

𝑙𝑙𝑗𝑗+1 = �
𝑙𝑙𝑗𝑗 − 𝛿𝛿𝑙𝑙 ,   𝑖𝑖𝑓𝑓  1

𝑗𝑗
∑ max𝑖𝑖|𝑒𝑒𝑣𝑣𝑖𝑖|
𝑗𝑗
𝑣𝑣=1 <  𝑙𝑙𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟  𝑎𝑎𝑎𝑎𝑎𝑎   𝑙𝑙𝑗𝑗 >  𝑙𝑙𝑚𝑚𝑖𝑖𝑚𝑚 

𝑙𝑙𝑗𝑗 ,                                𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒
      (2) 

Each subject started with an initial bar length of 40 cm. When the ring leaved a bar, the average 
maximum absolute error over all preceding bars was calculated. If this average maximum error was 
smaller than a threshold (𝑙𝑙𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟 = 2.5 cm) and the current bar length (𝑙𝑙𝑗𝑗) was larger than the minimum 
length (𝑙𝑙𝑚𝑚𝑖𝑖𝑚𝑚 = 15 cm), the bar length 𝑙𝑙𝑗𝑗 was decreased by 𝛿𝛿𝑙𝑙 (0.99995 cm). The minimum bar length 
of 15 cm was selected based on pilot experiments that showed that playing with shorter bars was no 
longer feasible. The parameters 𝑙𝑙𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟 and 𝛿𝛿𝑣𝑣 were selected based on pilot experiments. 

2.2.4 Generalization games 

Generalization is a crucial aspect of motor learning. It is a type of transfer of learning that occurs 
from one task to another very similar task (Schmidt and Lee 2010). In order to evaluate 
generalization, subjects played both games turned 90 ° counterclockwise, i.e. they played on the 
horizontal axis, by moving the hand right/left, while the wire/bars moved from the top of the screen. 
All other parameters, like the goal of both games, speed and bar length, were equal to the skill-
adjusted original games. 

2.3 Training Strategies 

2.3.1 No Guidance  

The developed games required the subjects to control the ring position by moving the hand in the 
vertical direction. In order to avoid subjects to move in other directions but the vertical, we 
developed an impedance controller in end-effector coordinates with zero impedance gain in the 
vertical direction, and high stiffness gains in the horizontal plane. The impedance forces were then 
transformed into joint torques by using inverse kinematics and input to a close-loop torque controller. 
Ideally, the robot should be transparent when the impedance is zero, i.e. the interaction torques 
between robot and patient should be zero. However, due to the mass and friction of the exoskeleton, 
transparency cannot be fully achieved through impedance control. Therefore, the force of gravity 
acting on the exoskeleton (Nef et al., 2009) and the forces due to friction of the motor-gear 
combinations were modeled and used as feedforward compensation (Guidali et al., 2011).  

2.3.2 Haptic Guidance  

The goal of the haptic guidance strategy was to slightly guide subjects in accomplishing both 
feedback and feedforward games, i.e. reduce the errors, rather than remove them. Therefore, an 
impedance controller with a relatively small impedance gain in the vertical direction (𝑘𝑘𝐻𝐻 = 4 N/cm), 
and high stiffness gains in the horizontal plane was implemented to assists subjects as needed. The 
forces exerted by the vertical haptic guidance controller (𝐹𝐹𝐻𝐻) can be described as: 
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𝐹𝐹𝐻𝐻 = 𝑘𝑘𝐻𝐻 ∙ (𝑥𝑥𝑑𝑑 − 𝑥𝑥) = 𝑘𝑘𝐻𝐻 ∙ 𝑒𝑒𝑣𝑣 ,        where ∶  𝑘𝑘𝐻𝐻 > 0.      (3) 

Equation (3) describes a position controller in end-effector coordinates where the error in vertical 
direction (𝑒𝑒𝑣𝑣) is reduced with a positive proportional gain 𝑘𝑘𝐻𝐻. In the feedback game, the desired 
position (𝑥𝑥𝑑𝑑) was defined by the position of the wire at the current time step. The vertical error (𝑒𝑒𝑣𝑣) 
was calculated as the difference between the position of the ring center (𝑥𝑥) and the wire (𝑥𝑥𝑑𝑑). In the 
feedforward game, the desired position (𝑥𝑥𝑑𝑑) was defined by the bar position only when the bar was 
visible. During the fast movements between two consecutive bars, the desired trajectory was 
calculated following the minimum jerk equation, i.e., a straight vertical movement between the 
vertical positions of the previous bar and the consecutive (invisible) bar with a bell shape velocity 
profile (Flash and Hogan 1985). The mean target movement speed was chosen ad hoc to be 24 cm/s. 

The haptic force in end-effector coordinates was saturated at 10 N to guarantee subjects’ safety, 
transformed into joint torques using inverse kinematics and input to a close-loop torque controller, 
where friction and weight compensation were added (see section 2.3.1). 

2.3.3 Error Amplification 

In order to augment errors, a proportional controller with negative impedance gain in the vertical 
direction (𝑘𝑘𝐸𝐸𝐸𝐸 < 0) was developed. This controller worked similarly to the haptic guidance one, but 
the vertical forces directed the ring away from the wire. The forces exerted by the error amplification 
controller (𝐹𝐹𝐸𝐸𝐸𝐸) can be described as: 

𝐹𝐹𝐸𝐸𝐸𝐸 = 𝑘𝑘𝐸𝐸𝐸𝐸 ∙ (𝑥𝑥𝑑𝑑 − 𝑥𝑥) = 𝑘𝑘𝐸𝐸𝐸𝐸 ∙ 𝑒𝑒𝑣𝑣 ,        where ∶  𝑘𝑘𝐸𝐸𝐸𝐸 < 0.       (4) 

The desired (𝑥𝑥𝑑𝑑) and actual positions (𝑥𝑥) and vertical error (𝑒𝑒𝑣𝑣) were calculated as described in 
previous subsection 2.3.2. The error amplification forces increase proportionally to vertical errors. 
Since subjects have a maximum force that they can apply, the system could potentially make the ring 
leave the wire. In order to limit large errors that can be too dangerous or discouraging for subjects, 
error amplification should be applied only in a small predefined area around the wire. By additionally 
realizing a conversion towards haptic guidance when the error is larger than the ring radius, the 
system could prevent the ring to leave the wire. Therefore, we made the proportional gain 𝑘𝑘𝐸𝐸𝐸𝐸 a 
function of the vertical error (Rüdt et al. 2016). The used equation corresponds to the superposition 
of two sigmoid functions (Fig. 4): 

𝑘𝑘𝐸𝐸𝐸𝐸 = 𝐾𝐾max ∙ �
2

1+𝑟𝑟𝑚𝑚𝑒𝑒 (𝑟𝑟∙(|𝒆𝒆𝒗𝒗|−𝑅𝑅))
− 1�.       (5) 

The resulting function can be tuned by three parameters. The parameter 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 stands for the maximal 
amplification gain when the vertical error 𝑒𝑒𝑣𝑣 is equal to zero. The parameter 𝑅𝑅 defines the error where 
the gain 𝑘𝑘𝐸𝐸𝐸𝐸 changes its sign (ring radius). Due to this change, the amplification force also changes its 
sign, transitioning from error amplification (EA) to haptic guidance (HG) (Fig. 3 bottom). The 
combined sigmoid function has saturation for small and large 𝑒𝑒𝑣𝑣. The width of the saturated area and 
the steepness of the curve around 𝑅𝑅 can be tuned using the parameter r.  

The maximal amplification gain 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 was selected ad hoc. The error amplification controller should 
allow subjects to make small errors in order to stimulate motor learning. Nevertheless, subjects should 
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also be able to stay on the desired target position. In order to enable a certain tracking accuracy 
without an excessive physical effort from the subject, a small 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 gain of 1 N/cm was selected. In 
order to provide a good compromise between smooth transition and unmodified control modes, the 
slope 𝑒𝑒 of the sigmoid was set to 2 (Fig. 3 top).  

The error amplification force in end-effector coordinates was saturated at 10 N to guarantee subjects’ 
safety, transformed into joint torques using inverse kinematics and input to a close-loop torque 
controller (section 2.3.1). 

 
Fig. 3: Combined sigmoid function for the gain 𝑘𝑘𝐸𝐸𝐸𝐸 (top) and its resulting vertical force 𝐹𝐹𝐸𝐸𝐸𝐸 (bottom). The proportional 

gain 𝑘𝑘𝐸𝐸𝐸𝐸 is a function of the subject’s ongoing vertical error 𝑒𝑒𝑣𝑣. It prevents errors bigger than the ring radius using haptic 
guidance (HG), while augments awareness of smaller task-relevant errors by means of error amplification (EA). 

2.4 Experimental Protocol 

The study was approved by the local ethical committee (Kantonale Ethikkommission Zürich, KEK-
ZH-Nr. 2015-0013) and conducted in compliance with the Declaration of Helsinki. Thirty healthy, 
right-handed adult subjects without any history of neurological disease (22 men), 26.7 ± 2.8 y.o., 
gave written consent to participate in the study. Subjects were randomly assigned to one of three 
training strategies: No guidance (NG), haptic guidance (HG), and error amplification (EA).  

Subjects sat in front of a computer screen. The subjects’ right arm was positioned in ARMin IV with 
an initial elbow excursion angle of -10 ° and shoulder elevation 75 ° (Wu et al. 2002). They were 
informed that during practice the robot could either help or disturb them and to be as active as 
possible. In the feedback game, subjects were instructed to move their hand on the vertical axis to 
constantly locate the center of the ring on the green wire. They were informed that the wire color 
would change to red if they collide with the wire and that the number of collisions would be counted. 
In the feedforward game, subjects were instructed to move the ring as fast as possible in one run to 
the next bar as soon as they reached the right end of a bar. They were informed that the next bar 
would disappear once the ring leaves the right end of the previous bar and it would reappear when the 
ring reaches the new bar. In order to prevent the game order to influence on the results, subjects in 
each group were randomly assigned into two subgroups, which practiced the games in contrary order.  
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The experiment took place in two different days. The protocol (Fig. 4) was performed separately for 
each game. On day 1, subjects started with a baseline test (1 min, B1), in which the difficulty level of 
the game was adapted to their initial skill level (see section 2.2.3). Once the wire speed –or bar 
length– was stablished, a baseline test with the adapted value was performed (1 min, B2). After a 
short break, subjects performed the baseline generalization test (1 min, BG), where they played again 
the same game but 90 ° rotated counterclockwise. During all baseline tests, the robot worked with the 
NG controller. During training, subjects played with NG, HG or EA, depending on their training 
strategy group, in four blocks of 1 min each (T), and 30 s breaks between them. After a five minute 
break, short-term retention (ST) and short-term retention generalization (STG) tests were performed 
that followed the same structure and order than B2 and BG tests. The same protocol for the second 
game was then performed. The total experimental time was around 1 hour. Subjects were invited to 
return after 3-5 days to perform the retention (RT) and generalization retention (GRT) tests, which 
followed the same structure and order as ST and STG tests. 

After the second baseline (B2), after the last training block (T4) and after the retention test (RT) in 
each game, subjects responded to 11 questions (Table 1) selected from the Intrinsic Motivation 
Inventory (IMI, Ryan 1982), which is a well stablished and valid questionnaire already used in 
previous motor learning and rehabilitation studies (Novak et al. 2014; Duarte and Reinkensmeyer 
2015). The full questionnaire consists of 45 questions and can be further divided into seven 
subscales. In the present study, only four subscales were selected: Interest/enjoyment (I/E), perceived 
competence (PC), effort/importance (E/I) and pressure/tension (P/T). These four items were selected 
because they encompass the essentials of the motivational aspects in the specific motor task 
(McAuley et al. 1989). Subjects rated their feelings on a Likert scale between 1 and 7 points; 1 
indicated “I disagree completely” and 7 indicated “I agree completely”. The questions were presented 
in German and English. Subjects could see their previous answers to the same questions.  
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Fig. 4: Experimental protocol. On day 1, subjects started with a baseline test (1 min, B1), in which the difficulty level of 
the game was adapted to their initial skill level. A baseline test with the adapted game parameters was then performed (1 
min, B2). After a short break, subjects performed the baseline generalization test (1 min, BG). During training, subjects 
trained with NG, HG or EA in four blocks of 1 min each. After a 5 min break, short-term retention (ST) and short-term 

retention generalization (STG) tests were performed. The same protocol for the second game was then performed. Subjects 
returned after 3-5 days to do the retention tests (RT and GRT) for both games. After B2, after the last training block (T4) 

and after RT in each game, subjects responded to 11 IMI questions. 

Table 1. IMI Questionnaire  

IMI Questions Subscale 

1. I enjoyed playing the game very much 

2. I am satisfied with my performance in the game 

3. I put a lot of effort into this 

4. I think the game was boring 

5. I felt very tense while playing the game 

6. I could not play the game very well 

7. It was important for me to do well at the game  

8. This game was fun to play  

9. I was anxious while playing the game 

10. I think I am pretty good at the game 

11. I did not try very hard to do well at the game 

interest/enjoyment (I/E) 

perceived competence (PC) 

effort/importance (E/I) 

(I/E) 

pressure/tension (P/T) 

(PC) 

(E/I)  

(I/E) 

(P/T)  

(PC) 

(E/I) 

Table 1: Set of 11 questions selected from the Intrinsic Motivation Inventory (IMI, Ryan 1982) in order to assess subjects’ 
interest/enjoyment (I/E), perceived competence (PC), effort/importance (E/I) and pressure/tension (P/T).  
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2.5 Data Processing and Statistical Analysis 

The subjects’ performance at each protocol block (Fig. 4) in the continuous (wire) game was 
calculated as the mean absolute difference between the desired position (wire) and the actual ring 
position. In the discrete (bar) game, the performance variable was calculated as the mean absolute 
difference between the desired position (green bar) and the ring position at the moment when the ring 
reaches the left end of the bar –i.e. when the target bar reappears. Therefore, the error is calculated 
before subjects could correct their movements using visual feedback. For both games, the standard 
deviation of the signed errors (i.e. error variability) was calculated. The error variability is an 
important indicator of learning, since it is a measure of how consistent the subjects’ movements 
were.  

We used linear mixed models to test the effect that the three training strategies (no guidance, haptic 
guidance and error amplification) and the game (continuous and discrete) had on the change in the 
mean error and variability between baseline 2 (B2) and the first training block (T1), short-term (ST) 
and retention tests (RT) and between baseline generalization (BG) and short- term (STG) and 
generalization retention tests (GRT) (therefore, a total of 5 LMM for each performance variable). 
Linear mixed models provide asymptotically normal estimates and a consistent covariance matrix so 
that simultaneous inference procedures can be set up (Hothorn et al. 2008). In order to answer our 
specific hypothesis (listed in Table 2), we created a new categorical super-factor 
(“TrainingGameFactor”) with six different levels corresponding to each of the different combinations 
between the game and the corresponding training strategy (Table 2). We fitted our data (𝑦𝑦𝑖𝑖𝑗𝑗) using a 
linear mixed model of the form: 

𝑦𝑦𝑖𝑖𝑗𝑗 = 𝜇𝜇 + 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑗𝑗  (6) 

where 𝜇𝜇 is the global mean, 𝛽𝛽𝑖𝑖 (with i = 1,…,6) is the super-factor fixed effect 
(“TrainingGameFactor”), 𝛾𝛾𝑗𝑗 (with j = 1,…,30) is the subject random effect with assumed normal 
distribution 𝑁𝑁(0,𝜎𝜎𝛾𝛾2), and 𝜖𝜖𝑖𝑖𝑗𝑗is the error term with assumed normal distribution 𝑁𝑁(0,𝜎𝜎𝜖𝜖2). Every 
person had two treatments (they played the two games) in random order. Only random by-subject 
adjustment of the intercept was considered whereas possible random by-subjects slopes adjustments 
were left out in the LMM models. We used the function lmer from the lme4 package for R described 
in (Bates 2015) to fit our model (eq. 6). We performed post-host analysis in order to test a battery of 
14 linear hypotheses (Table 2) using the General Linear Hypotheses function (glht) in R (Hothorn et 
al. 2008). The significant levels (p-values) were computed using z-test and adjusted using single step 
method. The matrix employed in the glht function is summarized in Table 2. In the results section, 
we report the estimates (β), standard errors (SE), z-values, and significant levels (p).  

 

 

 

 

12 
 



 

Table 2.  TrainingGameFactor 
Linear 
hypotheses Explanation Wire 

EA 
Wire 
HG 

Wire 
NG 

Bar 
EA 

Bar 
HG 

Bar 
NG 

Test 1 
Test 2 
Test 3 
Test 4 
Test 5 
Test 6 
Test 7 
Test 8 
Test 9 
Test 10 
Test 11 
Test 12 
Test 13 
 
Test 14 

Compare EA vs. HG  
Compare EA vs. NG  
Compare Bar vs. Wire  
Wire game: Compare EA vs. HG  
Wire game: Compare EA vs. NG  
Wire game: compare HG vs. NG 
Bar game: Compare EA vs. HG 
Bar game: Compare EA vs. NG 
Bar game: Compare HG vs. NG 
EA: Compare Wire vs. Bar game 
HG: Compare Wire vs. Bar game 
NG: Compare Wire vs. Bar game 
Compare difference EA-HG between Bar and 

Wire  
Compare difference EA-NG between Bar and 

Wire 

1/2 
1/2 
-1/3 
1/2 
1/2 
0 
0 
0 
0 

1/2 
0 
0 

-1/2 
 

-1/2 

-1/2 
0 

-1/3 
-1/2 

0 
1/2 
0 
0 
0 
0 

1/2 
0 

1/2 
 
0 

0 
-1/2 
-1/3 

0 
-1/2 
-1/2 

0 
0 
0 
0 
0 

1/2 
0 
 

1/2 

1/2 
1/2 
1/3 
0 
0 
0 

1/2 
1/2 
0 

-1/2 
0 
0 

1/2 
 

1/2 

-1/2 
0 

1/3 
0 
0 
0 

-1/2 
0 

1/2 
0 

-1/2 
0 

-1/2 
 
0 

0 
-1/2 
1/3 
0 
0 
0 
0 

-1/2 
-1/2 

0 
0 

-1/2 
0 
 

-1/2 
 

Table 2: Linear hypotheses and corresponding matrix employed as an input to the General Linear Hypotheses function 
(glht) in R. For each game, continuous (Wire) and discrete (Bar), three different training strategies were tested: Error 

amplification (EA), haptic guidance (HG) and no guidance (NG). A total of six different combinations (between the game 
and the corresponding training) are represented at the top-right of the table (TrainingGameFactor). Overall, 14 different 

hypotheses were tested. 

We used ANOVAs to test whether the performance variables in each game during baseline 2 were 
different between training groups. Paired t-tests between baseline 2 and retention tests were 
performed to test if learning occurred after training with each strategy. We performed Pearson’s 
correlation tests in order to evaluate the correlation between the mean absolute error during baseline 
1 (B1) and the adapted speed (wire game) and bar length (bar game) reached at the end of B1.  

We evaluated the effects that the different training strategies and games had on the four IMI 
subscales: interest/enjoyment (Q1, Q4, Q8), perceived competence (Q2, Q6, Q10), effort/importance 
(Q3, Q7, Q11) and pressure/tension (Q5, Q9). We compared the responses after baseline using 
nonparametric independent samples Kruskal-Wallis tests with training strategy as the main factor. 
We used the responses after baseline as reference point. We compared the changes in responses with 
respect to baseline using Kruskal-Wallis test with training strategy as the main factor. Mann-Whitney 
Test range test was used on pairwise comparisons if the Kruskal-Wallis was significant. We tested 
the effect of the game in the response changes using nonparametric related samples Wilcoxon signed 
rank tests. 

The normality and homoscedasticity assumption of the residuals was visually inspected using Q-Q 
plots and residuals versus fits plots in order to get a general idea of the data distribution. Post hoc 
comparisons were performed with Tukey correction. Except for the battery of linear hypotheses tests, 
the alternative hypothesis was two-sided. The significance level was set to α = 0.05.. Statistical 
analysis was performed in R (version 3.3.0) and IBM® SPSS® Software (version 21, Chicago, IL). 
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3. Results 

3.1 Game difficulty adjustment  

We found a significant correlation between the speed reached by the end of baseline 1 (B1) and the 
mean absolute error in B1 in the continuous game (wire) (Fig. 5A, r = −0.801, p < 0.001), and 
between the bar length at the end of B1 and the mean absolute error during B1 in the discrete game 
(bar) (Fig. 5B, r = 0.782, p < 0.001). Therefore, there was a significant correlation between initial 
skill level (i.e. error in B1) and wire speed and bar length after adaptation −the more skilled the 
subjects, the faster the wire moved and shorter the bars were.  

In order to test whether subjects reached similar initial skill level after the adaptation of the speed and 
bar length, we assigned subjects into two groups based on their mean error during B1. We used the 
median of the error created by all subjects during B1 as the cut off value –i.e. the 15 subjects with 
errors smaller than the median were designated as skilled subjects, and the other 15 as non- skilled 
subjects.. We run t-tests to compare the mean error between skilled and non-skilled subjects, and 
found that the performance was significantly different during B1 (wire game: t(22.58) = −6.35, p < 
0.001; bar game: t(21.93) = −6.55, p < 0.001), but significant differences were not visible in B2 
(wire: t(27.18) = −0.38, p = 0.71; bar: t(27.88) = −0.91, p = 0.372), suggesting that skilled and non-
skilled subjects performed similarly during B2. We did not find significant differences between 
training groups in the mean errors performed during B2 (ANOVA, p > 0.05).  

 
Fig. 5: Relation between adapted wire speeds (A) and bar lengths (B) at the end of B1 and mean absolute error during B1. 

3.2 Performance during training  

When comparing the error changes from baseline 2 (B2) to the first training session (T1), a 
significant increase in the mean absolute error in the error amplification (EA) group (Fig. 6A & B, 
wire game: t(9) = −9.51, p < 0.001; bar game: t(9) = −3.88, p = 0.004) and a significant error 
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decrease in the haptic guidance (HG) group (Fig. 6 A & B, wire: t(9) = 8.53, p < 0.001; bar: t(9) = 
6.67, p < 0.001) were observed. The no guidance group (NG) also reduced significantly the mean 
error in the wire game (Fig. 6A, t(9) = 3.48, p = 0.007), but the error reduction was non-significant 
in the bar game. In fact, the error change from B2 to T1 was significantly different between training 
groups (wire: F(2,27) = 98.43, p < 0.001; bar: F(2,27) = 29.39, p < 0.001). Post hoc tests revealed 
that all pairwise comparisons between training groups were significantly different. 

Similar results were found in the change of error variability: A significant increase in the EA group 
(Fig. 6 C & D, wire: t(9) = −5.42, p < 0.001; bar: t(9) = −3.38, p = 0.008) and a significant 
variability decrease in the HG group (Fig. 6 C & D, wire: t(9) = 11.57, p < 0.001; bar: t(9) = 7.59, p 
< 0.001). The NG group also reduced significantly the error variability in the wire game (Fig. 6C, 
t(9) = 3.22, p = 0.01), but the change was non-significant in the bar game. 
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Fig. 6: Mean absolute error (A & B) and mean variability error (C & D) during baseline 2, first training block, and short-
term and retention tests for subjects trained with error amplification, haptic guidance and no guidance, during the 

continuous (wire) game (A & C) and the discrete (bar) game (B & D). Error bars: ±1 SE. ** p < 0.001, * p < 0.05. 
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3.3 Effect of the training strategies and games on skill learning 

In general, subjects learned the continuous (wire) task, as suggested by a significant mean error 
reduction from baseline 2 (B2) to short-term (ST) and - retention (RT) tests. In particular, all training 
groups reduced the mean errors significantly at ST (Fig. 6A, EA: t(9) = 5.02, p < 0.001; HG: t(9) = 
2.43, p = 0.038; NG: t(9) = 4.86, p < 0.001). However, at long term retention, only the EA (Fig. 6A, 
t(9) = 4.05, p = 0.003) and NG groups (Fig. 6A, t(9) = 3.72, p = 0.005) reduced the errors. In the 
error variability, however, only the EA and NG groups showed a significant decrease at ST (Fig. 6C, 
EA: t(9) = 4.15, p = 0.002; NG: t(9) = 5.65, p <0.001) and RT (Fig. 6C, EA: t(9) = 3.11, p = 0.012, 
NG: t(9) = 4.54, p = 0.001). 

In the discrete (bar) game, only subjects trained with EA learned the task, i.e., they significantly 
reduced the mean error at ST (Fig. 6B, t(9) = 2.86, p = 0.018). However, the mean error reduction at 
RT in the EA group did not reached significance (Fig. 6B, t(9) = 1.61, p = 0.142). None of the 
training groups showed a significant decrease of the error variability (Fig. 6D, paired t-tests, p > 
0.05). 

We found that subjects trained with EA reduced the mean error significantly more at ST than subjects 
trained with HG (Table 3 test 1, β = 0.319, SE = 0.120, z = 2.661, p = 0.042).. However, no 
significant differences were found between the EA and NG groups. We found a significant effect of 
the game on the error reduction at ST. Subjects reduced the mean error in a greater amount in the 
wire game compared to the bar game (Table 3 test 3, β = 0.291, SE = 0.088, z = 3.291, p = 0.006). 
Interestingly, we found that only subjects in the NG group showed significant differences between 
the wire and bar games: They reduced the errors in the wire game in a greater amount than in the bar 
game (Table 3 test 12, β = 0.517, SE = 0.153, z = 3.380, p = 0.004).  

When evaluating the effect of the training strategies on the performance change at ST for each game 
independently (Table 3 tests 4-9), we found that the differences between EA and HG were more 
evident in the wire game (Table 3 test 4, mean error: β = 0.350, SE = 0.161, z = 2.168, p = 0.139; 
error variability: β = 0.405, SE = 0.171, z = 2.374, p = 0.087), although differences did not reached 
significance. We also found that in the wire game, subjects trained with HG reduced the mean error 
in a significant less amount than subjects trained with NG (Table 3 test 6, β = 0.484, SE = 0.161, z = 
2.998, p = 0.015), same with the error variability (β = 0.474, SE = 0.171, z = 2.779, p = 0.029). 

Most of the significant differences found between training strategies at short-term retention tests 
faded after 3-5 days at retention. We found a significant effect of game type on the error reduction at 
RT (Table 3 test 3, β = 0.269, SE = 0.102, z = 2.643, p=0.044).  
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Table 3.  B2-ST B2-RT 

Linear 
hypotheses Explanation 

p-value 
mean 
error 

p-value 
variabili

ty 

p-value 
mean 
error 

p-value 
variabil

ity 
Test 1 
Test 2 
Test 3 
Test 4 
Test 5 
Test 6 
Test 7 
Test 8 
Test 9 
Test 10 
Test 11 
Test 12 
Test 13 
Test 14 

Compare EA vs. HG  
Compare EA vs. NG  
Compare Bar vs. Wire  
Wire game: Compare EA vs. HG  
Wire game: Compare EA vs. NG  
Wire game: compare HG vs. NG 
Bar game: Compare EA vs. HG 
Bar game: Compare EA vs. NG 
Bar game: Compare HG vs. NG 
EA: Compare Wire vs. Bar game 
HG: Compare Wire vs. Bar game 
NG: Compare Wire vs. Bar game 
Compare difference EA-HG between Bar and Wire  
Compare difference EA-NG between Bar and Wire 

0.042 * 
0.989 
0.006 * 
0.139 
1.000 
0.015 * 
0.294 
0.700 
0.882 
0.530 
0.769 
0.004 * 
0.999 
0.492 

0.082· 
1.000 
0.077 · 
0.087 · 
1.000 
0.029 * 
0.674 
1.000 
0.346 
0.246 
0.918 
0.319 
1.000 
0.999 

0.288 
0.997 
0.044 * 
0.714 
1.000 
0.296 
0.463 
0.881 
0.857 
0.792 
0.553 
0.095 · 
0.978 
0.743 

0.273 
1.000 
0.145 
0.696 
1.000 
0.363 
0.412 
0.996 
0.446 
0.814 
0.538 
0.446 
0.972 
0.953 

Table 3: Linear hypotheses tests results from mean error and errors variability changes from baseline 2 (B2) to short-term 
(ST), and retention (RT) tests. Wire states for continuous game, Bar for discrete game. EA, HG and NG denote the training 

strategies: Error amplification, haptic guidance and no guidance. * p < 0.05, · p< 0.1. 

3.4 Effect of the training strategies on generalization  

In general, subjects generalized learning in the Continuous (wire) game, as suggested by a 
significant mean error reduction from baseline generalization (BG) and generalization short-term 
(STG: t(29) = 4.272, p < 0.001 and retention tests (GRT: t(29) = 4.218, p<0.001). In particular, all 
training groups reduced the mean errors significantly at STG (Fig. 7A, EA: t(9) = 4.349, p = 0.002; 
HG: t(9) = 2.335, p = 0.044; NG: t(9) = 3.380, p = 0.008), and GRT (Fig. 7A, EA: t(9) = 5.488, p < 
0.001; HG: t(9) = 4.681, p = 0.001; NG: t(9) = 2.891, p = 0.018). For the error variability, however, 
only the EA and the NG groups showed a significant decrease at STG (Fig. 7C, EA: t(9) = 6.291, p < 
0.001; NG: t(9) = 2.422, p = 0.038). At GRT, only subjects in the EA and HG groups reduced 
significantly the error variability (Fig. 7C, EA: t(9) = 5.449, p < 0.001; HG: t(9) = 4.277, p = 0.002). 

In the discrete (bar) game, only subjects trained with HG reduced significantly the mean error (Fig. 
7B, t(9) = 3.485, p = 0.007) and error variability (Fig. 7D, t(9) = 2.946, p = 0.016) at GRT. 

We did not find significant differences in any of the 14 linear hypotheses tested between BG-STG 
and BG-GRT, for the mean error reduction (table 4). For the error variability reduction, only the 
difference between HG and NG in the bar game at generalization retention reached significance 
(Table 4 test 9, β = 0.756, SE = 0.246, p=0.012). 
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Table 4.  BG-STG BG-GRT 

Linear 
hypotheses Explanation 

p-value 
mean 
error 

p-value 
variabili

ty 

p-value 
mean 
error 

p-value 
variabil

ity 
Test 1 
Test 2 
Test 3 
Test 4 
Test 5 
Test 6 
Test 7 
Test 8 
Test 9 
Test 10 
Test 11 
Test 12 
Test 13 
Test 14 

Compare EA vs. HG  
Compare EA vs. NG  
Compare Bar vs. Wire  
Wire game: Compare EA vs. HG  
Wire game: Compare EA vs. NG  
Wire game: compare HG vs. NG 
Bar game: Compare EA vs. HG 
Bar game: Compare EA vs. NG 
Bar game: Compare HG vs. NG 
EA: Compare Wire vs. Bar game 
HG: Compare Wire vs. Bar game 
NG: Compare Wire vs. Bar game 
Compare difference EA-HG between Bar and Wire  
Compare difference EA-NG between Bar and Wire 

0.948 
0.968 
0.185 
0.967 
1.000 
0.916 
0.977 
0.862 
1.000 
0.813 
0.846 
0.257 
0.999 
0.884 

1.000 
0.998 
0.549 
0.876 
1.000 
0.516 
1.000 
0.898 
1.000 
0.786 
1.000 
0.117 
1.000 
0.780 

1.000 
0.980 
0.314 
0.910 
0.978 
0.975 
1.000 
0.994 
1.000 
0.329 
1.000 
0.443 
1.000 
1.000 

0.816 
1.000 
1.000 
1.000 
1.000 
1.000 
0.189 
1.000 
0.012* 
1.000 
0.589 
1.000 
0.192 
1.000 

Table 4: Linear hypotheses tests results from mean error and errors variability changes from baseline generalization (BG) 
to short-term generalization (STG), and generalization retention (GRT) tests. Wire states for continuous game, Bar for 

discrete game. EA, HG and NG denote the training strategies: Error amplification, haptic guidance and no guidance. * p < 
0.05 
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Fig. 7: Mean absolute error (A & B) and variability error (C & D) during the generalization tests (baseline, short-term and 
retention tests) for subjects trained with error amplification, haptic guidance and no guidance, during the continuous (wire) 

game (A & C) and the discrete (bar) game (B & D). Error bars: ±1 SE. ** p < 0.001, * p < 0.05. 
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3.5 Effect of training strategies on motivation 

We did not find significant differences between training groups in any of the IMI subscales after 
baseline. Training with the different robotic strategies had a significant effect on self-reported 
motivation. We found a significant effect of the training strategy in interest/enjoyment during 
training (Fig. 8A, p = 0.008). The main effect of training strategy did not reach significance after 
retention (Fig. 8A, p = 0.106). In particular, subjects in the EA group reported a lower 
interest/enjoyment than subjects in the HG group (training: p = 0.030; retention: p = 0.055), and than 
subjects in the NG group (training: p = 0.002; retention: p = 0.096). The training strategy also 
influenced the perceived competence during training (Fig. 8B, p < 0.001). In particular, subjects 
trained with EA reported a lower perceived competence level compared to subjects trained with NG 
(p = 0.001) and HG (p < 0.001). The training strategy had no significant effect on effort/importance 
and pressure/tension. 

The game (continuous/wire vs. discrete/bar) also had a significant effect on motivation. Subjects 
reported greater values of interest/enjoyment in the bar game after baseline (p = 0.045). Subjects also 
reported greater values of perceived competence in the bar game after baseline (p < 0.001). The 
perceived competence in the wire game increased significantly more during training and retention 
than in the bar game (training: p = 0.038; retention: p = 0.016), especially in subjects trained with 
NG and HG. Subjects in the EA group, however, did not report differences between games. Subjects 
did not report differences in effort/importance between games after baseline. However, they reported 
greater values of effort/importance during training of the wire game (p = 0.016). In fact, subjects 
increased the effort/importance during training of the wire game, but reduced it during training of the 
bar game (p = 0.049). Subjects also reported greater values of pressure/tension in the wire game after 
baseline (p = 0.031) and training (p = 0.039).  
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Fig. 8: Effect of the training strategies on self-reported motivation after the last training block and after retention test. A: 
Changes in responses to IMI questions related to interest/enjoyment. B: Changes in perceived competence. C: Changes in 
effort/importance. D: Changes in pressure/tension. All values are referred to the responses provided after baseline. * p < 
0.05, · p < 0.1. The asterisks show significant differences between training conditions for a given experimental phase. 

Error bars: ±1 SE. 

4. Discussion 

Previous research suggested that the effectiveness of robotic training strategies that modulate 
movement errors depend on subjects’ initial skill level and the specific characteristics of the task to 
be learned (Marchal-Crespo et al. 2015). Motor tasks can be classified based on the time 
characteristics of the task, in particular the task’s duration (discrete vs. continuous). Continuous tasks 
require movements without distinct beginning or end. Discrete tasks require fast movements that 
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include well-defined postures at the beginning and the end. In this paper, we evaluated the impact of 
three error-modulating training strategies −no guidance, error amplification and haptic guidance− on 
self-reported motivation and learning of two games, one that requires a continuous movement −a 
tracking task− and one that requires discrete movements −a fast reaching task. In order to rule out the 
effect of the initial skill level on learning, we successfully adapted the games difficulty to the 
subject's initial skill level.  

All robotic strategies worked as expected during training, i.e., the haptic guidance controller 
improved subjects’ performance, while the error amplification controller degraded it. As 
hypothesized, we found that training with error amplification resulted in better motor learning than 
haptic guidance. This is in line with previous studies that found that training with error amplification 
outperforms training with haptic guidance when the task difficulty is appropriate for subjects’ initial 
skill level (Milot et al. 2010; Marchal-Crespo et al. 2014a; Duarte and Reinkensmeyer 2015; 
Marchal-Crespo et al. 2017). This can be explained by the Challenge Point Theory, which states that 
optimal learning is achieved when the difficulty of the task is appropriate for the individual subject’s 
level of expertise (Guadagnoli and Lee 2004). Thus, adapting the game difficulty to the trainee’s skill 
level provided the best framework for error amplification to enhance learning. 

Only subjects trained with error amplification improved their performance after training the discrete 
task game, while training without guidance and with haptic guidance did not promote leaning. In fact, 
subjects trained without guidance improved the performance in the discrete task game in a smaller 
amount than in the continuous task game. Interestingly, subjects in the no guidance group increased 
the interest/enjoyment in the continuous task game during training and retention, but reduced them in 
the discrete task game. Hence, it seems that amplifying errors during training benefits the process of 
learning in the discrete task game, whereas the other two training strategies hampered learning. In the 
continuous task game, however, we did not find a significant greater benefit of training with 
amplified error, compared to training with haptic guidance and no guidance. These divergent findings 
between games may originate from the different motor control mechanisms which are mainly needed 
to perform the games (feedback vs. feedforward motor control). Each brain area related to error-
based control has its specific characteristics while performing a motor task that require feedback or 
feedforward motor control (Seidler et al. 2013). Therefore, it is possible that a training strategy that 
enhance learning of tasks that mainly require feedforward control (e.g. the bar game) did not enhance 
learning of tasks that require feedback motor control (e.g. the wire loop game).  

Another possible rationale for the different findings in continuous and discrete motor tasks learning 
outcomes might originate from the different types of feedback that subjects received while training 
the games. Whilst in the continuous task game subjects continuously received visual feedback about 
their performance (i.e. concurrent visual feedback), in the discrete task game visual feedback was 
provided only once the target bar reached the ring horizontal position (i.e. terminal feedback). Hence, 
subjects experienced fewer errors while playing the discrete task game compared to the continuous 
task game. Research on motor learning has suggested that concurrent feedback attracts an external 
focus of attention during training (Shea and Wulf 1999), which was found to be beneficial for motor 
learning (Wulf 2013). In fact, subjects in this study reported greater values of effort/importance and 
pressure/tension during training of the feedback game, suggesting that the feedback game required 
greater attentional levels. Additionally, the specificity-of-learning hypothesis states that learning is 
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most effective when training is performed involving the most crucial sensory information source 
needed to perform the motor task in retention tests. In our case, in order to perform the continuous 
task game, the concurrent visual information was crucial, and therefore, maybe other sources of 
sensory information −for example proprioception− were neglected (Proteau 2005). Therefore, the 
concurrent experience of visual feedback, the increased attention and the maybe too long lasting 
training times in the continuous task game might have boosted the reduction of errors during training 
with haptic and no guidance strategies also, and not only after training with augmented errors. In fact, 
when looking at the reduction of the error variability −that was found to decrease with practice at a 
slower rate than mean error (Cohen and Sternad 2009)− after training the continuous task game, we 
found that subjects in the error amplification group tended to play more consistently than subjects in 
the haptic guidance group. This difference suggests that playing with amplified errors might be also 
beneficial to accelerate learning in the continuous task game.  

In previous studies, we found divergent effects of training with error amplification on generalization. 
Training with error amplification enhanced generalization in a discrete task –e.g. playing a pinball-
like game (Milot et al. 2010)– but limited transfer of learning in a continuous task –e.g. tracking a 
Lissajous figure (Marchal-Crespo et al. 2017). In the current study, all training strategies generalized 
learning of the continuous task game, but only subjects trained with haptic guidance generalized the 
continuous task game, although no significant differences between strategies were found. These 
contradictory results may derive from the substantial differences between the tasks that were used to 
test for generalization. In the previous studies, the generalization tasks were relatively similar to the 
trained tasks –e.g. extra untrained targets in the discrete task, and a slightly different Lissajous figure 
in the continuous task. In contrast, in this study the movement direction changed from vertical to 
horizontal, which is a considerable greater change than in previous studies.  

Subjects in the error amplification group reported lower levels of interest and enjoyment during 
training than subjects trained with reduced errors (haptic guidance) and without robotic guidance, as 
hypothesized. Surprisingly, 3-5 days after training, subjects seemed to report lower values of interest 
and enjoyment, even whether they played without error amplification during the retention tests. We 
also found lower values of perceived competence during training with error amplification. However, 
this decreased feeling of competence did not persist at retention tests. This is in line with a recent 
study that found that subjects who trained with a robotic strategy that augmented kinematic 
variability when learning a golf putting task reported lower enjoyment levels that persisted after 1-3 
days after training (Duarte and Reinkensmeyer 2015). However, contrary to this previous study, the 
reduced feelings of enjoyment and competence did not negatively affect the learning outcomes. We 
hypothesized an increase of reported effort during training with amplified errors, which could have 
reduced the negative effects of low enjoyment and perceived competence on motor learning 
outcomes. However, the differences between training groups in effort and importance did not reach 
significance. Maybe the relative short training times (subjects trained each game only during 4 
minutes), limited the potential negative effects of low motivation in the acquisition of novel motor 
skills. Additionally, it is important to note that the responses related to effort do not necessary reflect 
the real subjects’ mental or physical effort, but their subjective feelings regarding their effort. The 
error amplification strategy employed in this experiment differs from those previously presented in 
literature, which provide repulsive forces proportional to errors (Marchal-Crespo et al. 2014b; Duarte 
and Reinkensmeyer 2015), forces proportional to velocity and perpendicular to movement direction 
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(Patton et al. 2006), constant disturbing forces (Casellato et al. 2012), or randomly varying, 
unpredictable disturbing forces (Lee and Choi 2010). Maybe, the fact that error amplification was 
applied only in a small predefined area around the wire, and that the conversion towards haptic 
guidance prevented the ring to leave the wire, limited the subjects’ subjective feeling of effort. 
Therefore, we cannot assume that the amount of physical effort required to fulfil the task with error 
amplification was, indeed, not greater than the effort required to perform the task with haptic 
guidance (Marchal-Crespo et al. 2014b).  

Most of the significant differences observed between training strategies at short term retention were 
also observed at retention on the second day; however, these differences did not reach significance. 
Subjects seemed to forget part of what they learned during the 3-5 overly between experimental days, 
making the differences less obvious at retention. These lack of lasting significant differences might 
be due to the maybe too long time between experimental days −retention tests are usually performed 
after only 1-2 days (Heuer and Lüttgen 2014; Duarte and Reinkensmeyer 2015)− and due to the 
relative short training time. For example, in an important experiment in which participants learned to 
position the hand at a desired location, authors found similar results for short-term retention 
(measured 20 min after training) and retention (measured the next day) (Winstein et al. 1994). An 
interesting direction for future research is to more closely examine retention and generalization at 
different time points (e.g. after 1, 3 and 7 days) following the training techniques used here.  

The experimental design suffers from some limitations. First, we ran a parallel design in order to 
reduce carryover effects that would affect learning (Marchal-Crespo et al. 2014b). However, a 
significant issue with parallel studies with a relative small number of sample points is bias (a 
systematic inaccuracy). In order to reduce bias, we randomized subjects into the different training 
strategies. We tested whether the randomization was enough to remove bias. We found that the mean 
errors during baseline 2 were not significantly different between groups, neither were the IMI 
responses related to each of the four IMI subscales. Secondly, the parameters employed in equations 
1 and 2 to adjust the task difficulty based on subjects’ performance were different between games. 
Therefore, we cannot assume that the two game adjustments were equivalent. In fact, subjects created 
significantly greater errors and reported lower perceived competence values when playing the wire 
game during baseline 2, compared to the bar game, suggesting that playing the bar game might have 
been easier. These differences might have also influenced the results. In fact, in previous 
experiments, we found that error-augmenting strategies were more suitable to enhance learning of 
especially simple tasks (Marchal-Crespo et al. 2014b). Finally, error amplifying strategies tend to 
alter the effective stiffness of the limbs through co-contraction of muscles (Franklin et al. 2007; 
Marchal-Crespo et al. 2014b). Therefore, in the discrete game, the observed error reduction after 
training with error amplification, but not in the haptic guidance and no guidance groups, might be 
due to a change of the arm stiffness. However, if stiffness would have been the solely reason for 
better performance, a better performance would have also been expected in the continuous task. 
Furthermore, co-contraction has been shown to fade rapidly once the strategy is removed (Marchal-
Crespo et al. 2014b). An interesting direction for future research is to perform further studies while 
measuring upper arm muscle activity during training and retention.  

Cortical changes have been shown to occur only with learning of new skills and not just with 
repetitive use (Lotze et al. 2003), suggesting that motor learning mechanisms are operative and 
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critical during brain plastic recovery. Therefore, understanding the underlying mechanisms of 
learning during the acquisition of novel motor skills may provide novel ways to improve 
neurorehabilitation therapies (Dietz and Ward 2015). Most of the motor learning studies and clinical 
studies with rehabilitation robots performed to date evaluated the effectiveness of robotic training 
strategies on motor learning and rehabilitation outcomes, independently of the motor task to be 
performed. However, tasks usually employed in robot-assisted rehabilitation are very diverse, from 
continuous tasks such as figure tracking (Dipietro et al. 2007; Nordin et al. 2014), to point to point 
reaching tasks (Krebs et al. 2003; Patton et al. 2006; Wolbrecht et al. 2008). Therefore, our findings 
might have important implications in the field of rehabilitation robotics. Error-amplifying training 
strategies have a great potential to provoke better motor learning in discrete motor tasks. However, 
the observed reduction of enjoyment and perceived competence, and the lack of greater effort during 
training with error amplification, might limit their applicability in neurorehabilitation. Motivation is a 
key factor to engage neurological patients into repetitive and intensive practice (Reinkensmeyer and 
Housman 2007), which in turn is crucial to enhance recovery. However, the impact of presented 
error-modulating training strategies on motor learning and motivation may differ in neurological 
patients. Therefore, additional studies with neurological patients are needed. 

5. Conclusion 

We developed two games, one that requires a continuous movement −a tracking task− and one that 
requires discrete movements −a fast reaching task.. We conducted an experiment to evaluate the role 
of the motor task characteristics on the effectiveness of three error-modulating training strategies −no 
guidance, error amplification and haptic guidance− on self-reported motivation and learning of the 
continuous and discrete motor task games. Training with error amplification resulted in better motor 
learning than training with haptic guidance, besides the fact that error amplification reduced the 
interest/enjoyment and perceived competence during training. Only subjects trained with error 
amplification improved their performance after training the discrete task game, suggesting that error-
amplifying training strategies have a great potential to provoke better motor learning, especially in 
tasks that require mainly feedforward motor control. It is, however, an open question whether the 
different findings in continuous and discrete motor task learning outcomes originate from the 
different nature of the motor control strategies mainly employed to fulfil the games, or whether 
differences arise from the different types of feedback that subjects received while training the games.  
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