Shift2017

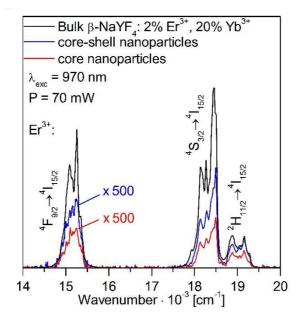
Universidad de La Laguna

Spectral sHaping For biomedical and energy applications November, 13–17, 2017/Tenerife, Canary Islands, Spain.

Room temperature synthesis and luminescence of β -NaGdF₄: Eu³⁺, Er³⁺, and Yb³⁺, Er³⁺ nanocrystals

Gabriella Tessitore¹, Anja-Verena Mudring², and Karl W. Krämer^{1*}

¹ Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland


² Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden

* karl.kraemer@dcb.unibe.ch

Please indicate preference: __Poster X Oral __ Invited Speaker Specify Technical Area: __Biomedical X Energy

Phase pure hexagonal β -NaGdF₄: Eu³⁺, Er³⁺ samples of less than 10 nm particle size were synthesized in ethylene glycol within 24 hours at room temperature. The materials were characterized by powder X-ray diffraction, electron microscopy, and luminescence spectroscopy. The luminescence and energy transfer between Gd³⁺, Eu³⁺, and Er³⁺ ions were investigated upon UV excitation.

 β -NaGdF₄: Yb³⁺, Er³⁺ nanoparticles were prepared by microwave heating in ethylene glycol and ionic liquid mixtures. The synthesis was optimized for green Er³⁺ upconversion emission under 970 nm excitation. Solvent composition, water content, core/shell structure, and reaction temperature were identified as key parameters for material synthesis. 10 nm core/shell particles achieved more than 1/1000 of bulk material upconversion intensity, see the Figure.

