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The time delay between gravitational wave signals arriving at widely separated detectors can be used to
place upper and lower bounds on the speed of gravitational wave propagation. Using aBayesian approach that
combines the first three gravitational wave detections reported by the LIGO Scientific and Virgo
Collaborations we constrain the gravitational waves propagation speed cgw to the 90% credible interval
0.55c < cgw < 1.42c, where c is the speed of light in vacuum. These bounds will improve as more detections
aremade and asmore detectors join theworldwide network. Of order 20 detections by the twoLIGOdetectors
will constrain the speed of gravity to within 20% of the speed of light, while just five detections by the LIGO-
Virgo-Kagra network will constrain the speed of gravity to within 1% of the speed of light.
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The first detections of gravitational waves from merging
black hole binaries [1–3] have been used to test many
fundamental properties of gravity [3–6], and have been used
to place the first observational upper limit on the speed of
gravitational wave propagation [7]. In this Letter we set a
more stringent upper limit on the gravitational waves
propagation speed cgw by combining all the detections
announced to date, and by applying a full Bayesian analysis.
We also provide the first direct lower bound on the propa-
gation speed: cgw > 0.55c at 95% confidence. While there
are strong theoretical arguments that demand cgw ≥ c to
prevent gravitational Cherenkov radiation [8], the LIGO
detections provide the first direct observational constraints.
Gravitational waves generically propagate at a speed

different from c and with frequency dependence dispersion
relations in theories of modified gravity, see, e.g.,
Refs. [6,7,9–12]. Thus, a precise determination of cgw is
a test of gravitation complementary to other observations.
To quantify what “precise” tests mean for general relativity,
let us recall that some post-Newtonian parameters are
known to Oð10−4Þ [13], while cosmological or other
astrophysical observations typically constrain modifica-
tions to general relativity at the Oð10−2Þ level [14,15].
A convenient parametrization for theories preserving

rotation invariance is to write the dispersion relation as

ω2 ¼ m2
g þ c2gwk2 þ a

k4

Λ2
þ � � � ; ð1Þ

where mg refers to the mass of the graviton, cgw is what we
call “speed” of gravitational waves, and the rest of operators
are wave-number-dependent modifications suppressed by a
high-energy scale Λ (for a parametrization in scenarios
breaking rotation invariance, see, e.g., Ref. [10]). Both mg

andΛ can be constrained by the absence of dispersion of the
waves traveling cosmological distances. The scale Λ is
already constrained to be very large [9], making it very
difficult to constrain the operator a. For the gravitonmass the
LIGO Scientific and Virgo Collaborations put the strong
boundmg < 7.7 × 10−23 eV=c2 [3].However, theparameter
cgw cannot be tested by dispersion measurements; other
methods are required [7].
Measuring cgw.—In the following we focus on possible

ways to directly measure cgw. Since the signals measured
by LIGO are dominated by the signal-to-noise accumulated
in a narrow band between 50–200 Hz, our time delay
bounds can be interpreted as constraints on the speed of
gravity at a frequency f ∼ 100 Hz. Since the LIGO bounds
constrain dispersion effects to be small over hundreds of
Mpc, they can safely be ignored on the terrestrial distance
scales we are considering. Note that the inference that the
observed signals come from hundreds of Mpc away relies
on waveform models derived from general relativity, and
may not apply to a theory that predicts cgw ≠ c.
The most obvious way to measure the speed of gravi-

tational wave propagation is to observe the same astro-
physical source using both gravity and light. However, for
the three gravitational wave detections that have been
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announced thus far no unambiguous electromagnetic
counterparts have been detected, and a different approach
must be taken to constrain cgw. The finite distance between
the Hanford and Livingston gravitational wave detectors
can be used to set an absolute upper limit on the
propagation speed [7], since the observed gravitational
wave signals did not arrive simultaneously in the two
detectors. Here we show that a proper statistical treatment
that folds in the probability distribution of the time delays
as function of cgw also allows us to set lower bounds on the
propagation velocity. It should be noted that when the first
confirmed electromagnetic counterpart to a gravitational
wave signal is finally observed, the bounds on the differ-
ence in propagation velocities, jcgw − cj will be many
orders of magnitude more stringent than what we can ever
hope to set using gravitational wave signals alone [9,16–
18]. Precisely for the same reason, this identification may
never happen if the speed difference is not very small, since
that would mean a significant time offset. For other possible
stringent model-independent bounds not relying on the
detection of a counterpart see [11,19].
Constraints on cgw from LIGO detections.—The LIGO

gravitational wave detectors at the Hanford and Livingston
sites are separated by a light-travel time of t0 ¼ 10.012 ms.
The time delay for light along a propagation direction that
makes an angle θ with the line connecting the two sites is
ΔtEM ¼ t0 cos θ. For sources distributed isotropically on
the sky, there are equal numbers of sources per solid angle
element d cos θdϕ; thus, the time delays for electromag-
netic signals are uniformly distributed with pðΔtEMÞ ¼
1=ð2t0Þ for −t0 ≤ ΔtEM ≤ t0. The gravitational wave time
delay is given by Δt ¼ ðc=cgwÞΔtEM; thus, the probability
of observing a time delay Δt between gravitational wave
signals arriving at the two sites for sources uniformly
distributed on the sky is given by the likelihood

pðΔtjcgwÞ ¼
�
cgw=2ct0 for − ct0=cgw ≤ Δt ≤ ct0=cgw;

0 otherwise:

ð2Þ

While the sources may be uniformly distributed on the sky,
the antenna patterns of the detectors make it more likely to
detect systems above or below the plane of detectors.
Assuming roughly equal sensitivity for the detectors,
the observational bias scales as F3, where Fðθ;ϕÞ2 ¼P

D¼H;LF
Dþ;×ðθ;ϕÞ2 is the polarization-averaged network

antenna pattern [20]. The resulting distribution of electro-
magnetic time delays is then well fit by pðΔtEMÞ ¼ ½1 −
ðΔtEM=tqÞ2�½ð3 − t20=t

2
qÞ2t0=3�−1 for −t0 ≤ ΔtEM ≤ t0 with

tq ¼ 10.65 ms. We use this modified distribution to define
the likelihood pðΔtjcgwÞ. For multiple events the full like-
lihood is the product of the per-event likelihoods. The
posterior distribution for cgw follows from Bayes’ theorem,
pðcgwjΔtÞ ¼ pðΔtjcgwÞpðcgwÞ=pðΔtÞ. We consider two

possibilities for the prior on the speed of gravity, pðcgwÞ:
flat in cgw and flat in ln cgw in the interval cgw ∈ ½cL; cU�. For
the results shown here we set cU ¼ 100c, and either
cL ¼ c=100, or cL ¼ c. The latter limit takes into account
the Cherenkov radiation constraint [8]. For three or more
events the choice of prior has very little impact on the upper
limit. To account for the measurement error in Δt we use a
Markov chainMonteCarlo algorithm tomarginalize over the
errors in the arrival times.
The first detections of black hole mergers by LIGO

provide measurements of Δt that were quoted in terms of
central values and 90% credible intervals. Since the full
posterior distributions for Δt were not provided, we assume
that the distributions can be approximated as normal dis-
tributions with mean μ and standard deviation σ with values
GW150914 (μ ¼ 6.9 ms, σ ¼ 0.30 ms) [5], GW151226
(μ¼1.1ms, σ ¼ 0.18 ms) [5], and GW170104 (μ ¼ 3.0 ms,
σ ¼ 0.30 ms) [3] (for a discussion about this assumption,
see, e.g., Ref. [21]). The upper bound on cgw quoted in
Ref. [7] was found by taking the minimum time delay from
GW150914 as Δt ¼ μ − 2σ ¼ 6.3 ms, and demanding that
cgw < ct0=Δt ¼ 1.6c. Note that this value is lower than the
bound of 1.7c quoted in Ref. [7] as they interpreted the error
inΔt quoted inRef. [1] as one-sigma errors,when in fact they
were the bounds on the 90% credible interval.
We compute the posterior distribution for the gravita-

tional wave propagation speed, pðcgwjΔtÞ using a Markov
chain Monte Carlo algorithm that marginalizes over the
uncertainties in the time delays by drawing new values of
Δt from the assumed posterior distributions at each
iteration of the Markov chain. Figure 1 shows the posterior
distributions for cgw using each of the detections separately.
Individually the three events yield 95% upper bounds on
the propagation velocity for the linear and (log) uni-
form priors of cgw < 1.37cð1.26cÞ for GW150914, cgw <
10.1cð8.57cÞ for GW151226, and cgw < 3.19cð2.94cÞ for
GW170104. Each event also yields a 95% lower bound on
the propagation velocity, but these limits are not very
interesting since all of the distributions have some support

FIG. 1. Posterior distributions for the gravitational wave propa-
gation speed derived from each of the individual LIGO events for
prior distributions uniform in cgw or ln cgw.
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at cgw ≃ 0. Note that GW151226 produces the weakest
upper bound on the propagation velocity even though it has
the most accurately measured time delay. This is because
the strongest upper limits come from events with the
longest time delay; even allowing for the uncertainties in
the time delay measurements for GW150914 and
GW170104, both are constrained to have delays that are
much longer than for GW151226.
Figure 2 shows the posterior distribution for cgw found

by combining all three LIGO detections together for
uniform priors in cgw or ln cgw. For the wider prior range
with cL ¼ c=100 the combination of the three detections
yield an interesting lower bound on the propagation speed.
The 90% credible interval for the linear and log priors are
0.55c < cgw < 1.42c and 0.41c < cgw < 1.39c, respec-
tively. The upper limit is only weakly dependent on the
choice of prior distribution. Notice that the form of the
posterior distributions can be qualitatively understood
analytically by using Bayes’ theorem and ignoring the
complications from antenna patterns and noise. For a
uniform prior on cgw this gives pðcgwjΔt1;Δt2;Δt3Þ ¼
4c3gw=c4� for cgw < c�, where c� ¼ ct0=Δt1 and Δt1 is the
longest of the observed time delays. For the uniform-in-log
prior, the posterior distribution is pðcgwjΔt1;Δt2;Δt3Þ ¼
3c2gw=c3� for cgw < c�. This explains the growing of the
posterior in Fig. 2, while the smoothing of the curve is
related to the Gaussian noise. While an analytical under-
standing of the posterior distribution is possible, it is
necessary to use numerical sampling methods to compute
the full shape that includes marginalization over observa-
tional errors, possible orientation biases, and add new
detectors and detections.
One possible limitation of using the published LIGO

results, rather than analyzing the raw data, is that the standard
LIGO searches exclude signals with Hanford-Livingston
time delays greater 15 ms [22], so they may potentially miss

some signals if cgw < 0.66c. On the other hand, loud single
detector triggers consistent with a binary merger would not
go un-noticed, as evidence by GW170104, which was
missed by the standard search due to the Hanford detector
being incorrectly flagged as out of observingmode, and only
found later in an analysis of single detector triggers from the
Livingston detector [3]. It is highly unlikely that pairs of
triggers with time delays greater than 15 ms would be
overlooked, especially if they shared similar parameters
and occurred within minutes of each other.
Forecasts for more detections and more detectors.—It is

interesting to consider how the bounds will improve with
additional detections and detectors, using just the gravita-
tional time delays (as mentioned earlier, combined electro-
magnetic and gravitational observations will dramatically
improve the measurements). The upper bound is mostly set
by detections with large time delays, while the lower bound
is set by having many signals with a wide range of delays.
For the two-detector LIGO network, and assuming cgw ¼ c
as predicted by general relativity, we should see one event
with a time delay Δt > 8.6 ms with ten detections, and one
event with a time delay Δt > 9.6 ms with 100 detections.
Just those single events would yield 99% upper limits better
than cgw < 1.2c and cgw < 1.07c, respectively, assuming
that Δt is measured to a level of accuracy typical of the first
three detections (the accuracy with which Δt can be
measured depends on the signal-to-noise ratio and the
number of cycles completed in-band, among other things).
Performing multiple Monte Carlo simulations under the
assumption that general relativity is the correct theory of
gravity indicates that with 100 detections by the two-
detector LIGO network we will be able to constrain cgw to
within a few percent of the speed of light for both the upper
and lower bounds.
Far better constraints can be achievedwith far fewer events

by using a larger network of detectors. In the next few years
the LIGO Hanford (H) and Livingston (L) detectors will be
joined by the Virgo (V) detector in Italy, the Kagra (K)
detector in Japan [23], and, later, another LIGO detector in
India [24].With anN detector network there areNðN − 1Þ=2
time delays. From the geopositions of the detector
sites [25] the maximum electromagnetic time delays
between these sites are HL¼10.012ms, HV¼27.288ms,
HK¼25.158ms, LV ¼ 26.448 ms, LK ¼ 32.455 ms, and
VK ¼ 29.202 ms. (LIGO India would further improve the
bound, but will not be available at least 2025). Upper bounds
on the speed of gravity are dominated by events with sky
locations that come close to maximizing the electromagnetic
time delay between a pair of detectors. For the HL network
just 5%of events arewithin 95%of themaximum time delay,
while for the HLVK network 25% of events are. Thus, on
average, it only takes a few events to produce tight limits
using the larger network of detectors. Complete information
about the intersite time delays is contained in the joint
probability distribution of the N − 1 electromagnetic time

FIG. 2. Posterior distributions for the gravitational wave
propagation speed derived by combining the first three LIGO
detections. Prior distributions uniform in cgw or uniform in ln cgw
were considered, with the interval starting at either cL ¼ c=100
or cL ¼ c.
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delays between one reference detector and the other detectors
in the network. Figure 3 shows slices through the joint
electromagnetic time delay distribution for the HLVK net-
work usingHanford as the reference site assuming a uniform
distribution of sources. Here we did not correct for the
observational bias, since the network antenna pattern for a
four-detector network is fairly uniform. Applying the change
of variable Δt ¼ ðc=cgwÞΔtEM to this distribution as we did
for the two-detector HL case yields the joint likelihood
pðΔtHL;ΔtHV;ΔtHKjcgwÞ. Using simulated detections of
events measured to a precision of σ ¼ 0.3 ms in each
detector, we find that with just three detections the HLVK
network will typically be able to constrain cgw to the 99%
credible region cgw=c ¼ 1.00� 0.02. The constraints
improve to better than 1% of the speed of light with five
detections.
Summary.—Combining the time-delay measurements

between detector sites for multiple gravitational wave
events can be used to place interesting constraints on the
speed of gravity. The LIGO detections made to date already
constrain the speed of gravity to within 50% of the speed of
light. Additional LIGO detections in the next few years
should improve the bound to of order 10%. The bounds will
improve rapidly as more detectors join the worldwide
network, with just a half dozen detections by the
Hanford-Livingston-Virgo-Kagra network constraining
deviations to better than 1%. These bounds will allow us
to test general relativity to the level of other standard tests,

as those coming from the damping of orbits in binary
systems or cosmology.
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