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Abstract We explore the possibility that inflation is driven
by supersymmetry breaking with the superpartner of the
goldstino (sgoldstino) playing the role of the inflaton. More-
over, we impose an R-symmetry that allows one to satisfy
easily the slow-roll conditions, avoiding the so-called η-
problem, and leads to two different classes of small-field
inflation models; they are characterised by an inflationary
plateau around the maximum of the scalar potential, where
R-symmetry is either restored or spontaneously broken, with
the inflaton rolling down to a minimum describing the present
phase of our Universe. To avoid the Goldstone boson and
be left with a single (real) scalar field (the inflaton), R-
symmetry is gauged with the corresponding gauge boson
becoming massive. This framework generalises a model stud-
ied recently by the present authors, with the inflaton iden-
tified by the string dilaton and R-symmetry together with
supersymmetry restored at weak coupling, at infinity of the
dilaton potential. The presence of the D-term allows a tuning
of the vacuum energy at the minimum. The proposed models
agree with cosmological observations and predict a tensor-
to-scalar ratio of primordial perturbations 10−9 <∼ r <∼ 10−4

and an inflation scale 1010 GeV <∼ H∗ <∼ 1012 GeV. H∗ may
be lowered up to electroweak energies only at the expense of
fine-tuning the scalar potential.

1 Introduction

Inflationary models [1–3] in supergravity 1 suffer in general
from several problems, such as fine-tuning to satisfy the

1 For reviews on supersymmetric models of inflation, see for example
[4,5].
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slow-roll conditions, large field initial conditions that break
the validity of the effective field theory, and stabilisation of
the (pseudo) scalar companion of the inflaton arising from the
fact that bosonic components of superfields are always even.
The simplest argument to see the fine-tuning of the potential
is that a canonically normalised kinetic term of a complex
scalar field X corresponds to a quadratic Kähler potential
K = X X̄ that brings one unit contribution to the slow-roll
parameter η = V ′′/V , arising from the eK proportionality
factor in the expression of the scalar potential V . This prob-
lem can be avoided in models with no-scale structure where
cancellations arise naturally due to non-canonical kinetic
terms leading to potentials with flat directions (at the classical
level). However, such models require often trans-Planckian
initial conditions that invalidate the effective supergravity
description during inflation. A concrete example where all
these problems appear is the Starobinsky model of infla-
tion [6], despite its phenomenological success.

In this work we show that all three problems above are
solved when the inflaton is identified with the scalar compo-
nent of the goldstino superfield,2 in the presence of a gauged
R-symmetry. Indeed, the superpotential is in that case linear
and the big contribution to η described above cancels exactly.
Since inflation arises in a plateau around the maximum of the
scalar potential (hill-top) no large field initial conditions are
needed, while the pseudo-scalar companion of the inflaton is
absorbed into the R-gauge field that becomes massive, lead-
ing the inflaton as a single scalar field present in the spec-
trum. This model provides therefore a minimal realisation of
natural small-field inflation in supergravity, compatible with
present observations, as we show below. Moreover, it allows
for the presence of a realistic minimum describing our present
Universe with an infinitesimal positive vacuum energy aris-
ing due to a cancellation between an F- and D-term contribu-

2 See [7–10] for earlier work relating supersymmetry and inflation.
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tions to the scalar potential, without affecting the properties
of the inflationary plateau, along the lines of Refs. [11–14].

On general grounds, there are two classes of such models
depending on whether the maximum corresponds to a point
of unbroken (Case 1) or broken (Case 2) R-symmetry. The
latter corresponds actually to a generalisation of the model
we studied recently [12], inspired by string theory [11]. It
has the same field content but in a different field basis with
a chiral multiplet S ∝ ln X playing the role of the string
dilaton. Thus, S has a shift symmetry which is actually an R-
symmetry gauged by a vector multiplet and the superpotential
is a single exponential. The scalar potential has a minimum
with a tuneable vacuum energy and a maximum that can
produce inflation when appropriate corrections are included
in the Kähler potential. In these coordinates R-symmetry is
restored at infinity, corresponding to the weak coupling limit.
As we show below, this model can be generalised to a class
of models (Case 2) where inflation arises at a plateau where
(gauged) R-symmetry is spontaneously broken. Small-field
inflation is again guaranteed, consistently with the validity of
the effective field theory. In this work, we are mostly focussed
on a new possibility (Case 1) where the maximum is around
the origin of X where R-symmetry is restored.

The outline of the paper is the following: In Sect. 2, we
describe the model and the two cases to study. In Sect. 3, we
analyse in detail Case 1. We first work out model-independent
predictions valid under the assumption that inflation ends
very rapidly after the inflationary plateau of the scalar poten-
tial (Sect. 3.1). We then discuss the possibility for the exis-
tence of a minimum nearby the maximum with an infinites-
imal tuneable positive vacuum energy and show that addi-
tional corrections to the Kähler potential are needed (Sect.
3.2). The notion of nearby is defined in the sense that per-
turbative expansion around the maximum is valid for the
Kähler potential, but not for the slow-roll parameters. We
subsequently present an explicit example and work out the
cosmological predictions (Sect. 3.3). Finally, in Sect. 3.4,
we discuss the anomaly cancellation associated to theU (1)R
gauge symmetry. In Sect. 4 we analyse Case 2, firstly in gen-
eral (Sect. 4.1) and then in a particular example. In Sect. 5 we
derive a stringent constraint on low-energy inflation models
in a model-independent way. Sect. 5 can be read indepen-
dently of the rest of the paper. Our conclusions are presented
in Sect. 6, while Appendix A contains a proof of an identity
used in Sect. 5.

2 Symmetric versus non-symmetric point

In this work we are interested in supergravity theories con-
taining a single chiral multiplet transforming under a gauged
R-symmetry with a corresponding abelian vector multiplet.
We assume that the chiral multiplet X (with scalar compo-

nent X ) transforms as

X −→ Xe−iqω, (1)

where q is its charge, and ω is the gauge parameter.
The Kähler potential is therefore a function of X X̄ , while

the superpotential is constrained to be of the form Xb:

K = K(X X̄),

W = κ−3 f Xb, (2)

where X is a dimensionless field and κ−1 = mp = 2.4 ×
1015 TeV is the (reduced) Planck mass. For b �= 0, the gauge
symmetry Eq. (1) becomes a gauged R-symmetry. The gauge
kinetic function can have a constant contribution as well as
a contribution proportional to ln X

f (X) = γ + β ln X. (3)

The latter contribution proportional to β is not gauge invari-
ant and can be used as a Green–Schwarz counter term to
cancel possible anomalies. We will show, however, in Sect.
3.4, that the constant β is fixed to be very small by anomaly
cancellation conditions and does not change our results. We
will therefore omit this term in our analysis below.

We are interested in the general properties of supergrav-
ity theories of inflation that are of the above form. Before
performing our analysis, a distinction should be made con-
cerning the initial point where slow-roll inflation starts. The
inflaton field (which will turn out to be ρ, where X = ρeiθ )
can either have its initial value close to the symmetric point
where X = 0, or at a generic point X �= 0. The mini-
mum of the potential, however, is always at a nonzero point
X �= 0. This is because at X = 0 the negative contribution
to the scalar potential vanishes and no cancellation between
F-term and D-term is possible. The supersymmetry break-
ing scale is therefore related to the cosmological constant
as κ−2m2

3/2 ≈ 	. One could in principle assume that the
value of the potential at its minimum is of the supersymmetry
breaking scale. However, in this case additional corrections
are needed to bring down the minimum of the potential to the
present value of the cosmological constant, and we therefore
do not discuss this possibility.

In the first case, inflation starts near X = 0, and the inflaton
field will roll towards a minimum of the potential at X �= 0.
On the other hand, in the second case inflation will start
at a generic point X �= 0. In order to make easier contact
with previous literature [11,12], it is convenient to work with
another chiral superfield S, which is invariant under a shift
symmetry

S −→ S − icα (4)
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by performing a field redefinition

X = eS . (5)

In this case the most general Kähler potential and superpo-
tential are of the form

K = K(S + S̄),

W = κ−3aebS . (6)

Note that this field redefinition is not valid at the symmetric
point X = 0 for the first case.

The first case will be discussed in Sect. 3, and the second
case will be discussed in Sect. 4.

3 Case 1: Inflation near the symmetric point

3.1 Slow-roll parameters

In this section we derive the conditions that lead to slow-
roll inflation scenarios, where the start of inflation is near a
local maximum of the potential at X = 0. Since the super-
potential has charge 2 under R-symmetry, one has 〈W 〉 = 0
as long as R-symmetry is preserved. Therefore, 〈W 〉 can be
regarded as the order parameter of R-symmetry breaking.
On the other hand, the minimum of the potential requires
〈W 〉 �= 0 and broken R-symmetry. It is therefore attractive
to assume that at earlier times R-symmetry was a good sym-
metry, switching off dangerous corrections to the potential.
As similar approach was followed in [15], where a discrete
R-symmetry is assumed. Instead, we assume a gauged R-
symmetry which is spontaneously broken at the minimum of
the potential.

While the superpotential is uniquely fixed in Eq. (2), the
Kähler potential is only fixed to be of the form K(X X̄). We
expand the Kähler potential as follows:

K(X, X̄) = κ−2X X̄ + κ−2A(X X̄)2,

W (X) = κ−3 f Xb,

f (X) = 1, (7)

where A and f are constants. The gauge kinetic function is
taken to be constant since it will be shown in Sect. 3.4 that
the coefficient β in front of the logarithmic term in Eq. (3) is
fixed to be very small by anomaly cancellation conditions. As
far as the scalar potential is concerned, the coefficient γ can
be absorbed in other parameters of the theory. We therefore
take γ = 1.

The scalar potential is given by3

V = VF + VD, (8)

3 We follow the conventions of [16].

where
VF = κ−4 f 2(X X̄)b−1eX X̄(1+AX X̄)

×
[
−3X X̄ +

(
b + X X̄(1 + 2AX X̄)

)2
1 + 4AX X̄

]
(9)

and

VD = κ−4 q
2

2

[
b + X X̄(1 + 2AX X̄)

]2
. (10)

The superpotential is not gauge invariant under the U (1)

gauge symmetry. Instead it transforms as

W → We−iqbw . (11)

Therefore, the U (1) is a gauged R-symmetry which we will
further denote U (1)R . From WXkXR = −rRκ2W , where
kXR = −iq X is the Killing vector for the field X under the
R-symmetry, rR = iκ−2ξR with κ−2ξR the Fayet–Iliopoulos
contribution to the scalar potential, and WX is short-hand for
∂W/∂X , we find

rR = iκ−2qb. (12)

A consequence of the gauged R-symmetry is that the super-
potential coupling b enters the D-term contribution of the
scalar potential as a constant Fayet–Iliopoulos contribution.4

Note that the scalar potential is only a function of the mod-
ulus of X and that the potential contains a Fayet–Iliopoulos
contribution for b �= 0. Moreover, its phase will be ‘eaten’ by
the U (1) gauge boson upon a field redefinition of the gauge
potential similarly to the standard Higgs mechanism. After
performing a change of field variables

X = ρeiθ , X̄ = ρe−iθ , (ρ ≥ 0) (13)

the scalar potential is a function of ρ,

κ4V = f 2ρ2(b−1)eρ2+Aρ4

(
−3ρ2 +

(
b + ρ2 + 2Aρ4

)2
1 + 4Aρ2

)

+q2

2

(
b + ρ2 + 2Aρ4

)2
. (14)

Since we assume that inflation starts near ρ = 0, we require
that the potential Eq. (14) has a local maximum at this point. It
turns out that the potential only allows for a local maximum
at ρ = 0 when b = 1. For b < 1 the potential diverges
when ρ goes to zero. For 1 < b < 1.5 the first derivative of
the potential diverges, while for b = 1.5, one has V ′(0) =
4 For other studies of inflation involving Fayet–Iliopoulos terms see
for example [17], or [18,19] for more recent work. Moreover, our moti-
vations have some overlap with [15], where inflation is also assumed to
start near an R-symmetric point at X = 0. However, this work uses a
discrete R-symmetry which does not lead to Fayet–Iliopoulos terms.
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9
4 f 2 + 3

2q
2 > 0, and for b > 1.5, on has V ′′(0) > 0. We

thus take b = 1 and the scalar potential reduces to

κ4V = f 2eρ2+Aρ4

(
−3ρ2 +

(
1 + ρ2 + 2Aρ4

)2
1 + 4Aρ2

)

+q2

2

(
1 + ρ2 + 2Aρ4

)2
. (15)

Note that in this case the superpotential is linear W = f X ,
describing the sgoldstino (up to an additional low-energy
constraint) [20–25]. Indeed, modulo a D-term contribution,
the inflaton in this model is the superpartner of the goldstino.
In fact, for q = 0 the inflaton reduces to the partner of the
goldstino as in minimal inflation models [26–28]. The impor-
tant difference, however, is that this is a microscopic realisa-
tion of the identification of the inflaton with the sgoldstino,
and that the so-called η-problem is avoided (see discussion
below).

The kinetic terms for the scalars can be written as5

Lkin = −gX X̄ ∂̂μX ∂̂μX

= −gX X̄

[
∂μρ∂μρ+ρ2 (∂μθ+q Aμ

) (
∂μθ + q Aμ

)]
.

(16)

It was already anticipated above that the phase θ plays the role
of the longitudinal component of the gauge field Aμ, which
acquires a mass by a Brout–Englert–Higgs mechanism.

We now interpret the field ρ as the inflaton. It is impor-
tant to emphasise that, in contrast with usual supersymmet-
ric theories of inflation where one necessarily has two scalar
degrees of freedom resulting in multifield inflation [29], our
class of models contains only one scalar field ρ as the infla-
ton. In order to calculate the slow-roll parameters, one needs
to work with the canonically normalised field χ satisfying

dχ

dρ
= √

2gX X̄ . (17)

The slow-roll parameters are given in terms of the canonical
field χ by

ε = 1

2κ2

(
dV/dχ

V

)2

, η = 1

κ2

d2V dχ2

V
. (18)

Since we assume inflation to start near ρ = 0, we expand

ε = 4

(−4A + x2

2 + x2

)2

ρ2 + O(ρ4),

η = 2

(−4A + x2

2 + x2

)
+ O(ρ2), (19)

5 The covariant derivative is defined as ∂̂μX = ∂μX − AμkXR , where
kXR = −iq X is the Killing vector for the U(1) transformation Eq. (1).

where we defined q = f x . Notice that for ρ � 1 the ε

parameter is very small, while the η parameter can be made
small by carefully tuning the parameter A. Any higher-order
corrections to the Kähler potential do not contribute to the
leading contributions in the expansion near ρ = 0 for η and
ε. Such corrections can therefore be used to alter the potential
near its minimum, at some point X �= 0 without influencing
the slow-roll parameters.

A comment on the η-problem in Supergravity

A few words are now in order concerning the η-problem [30].
The η problem in N = 1 supergravity is often stated as
follows (see for example [31,32]): If, for instance, a theory
with a single chiral multiplet with scalar component ϕ is
taken, then the Kähler potential can be expanded around a
reference location ϕ = 0 as K = K(0) + Kϕϕ̄(0)ϕϕ̄ + · · · .
The Lagrangian becomes

L = −∂μφ∂μφ̄ − V(0)
(

1 + κ2φφ̄ + · · ·
)

, (20)

where φ is the canonically normalised field φφ̄ = Kϕϕ̄(0)ϕϕ̄,
and the ellipses stand for extra terms in the expansion coming
from K and W . Following this argument, the mass mφ turns
out to be proportional to the Hubble scale,

m2
φ = κ2V(0) + · · · = 3H2 + · · · , (21)

and therefore

η = m2
φ

3H2 = 1 + · · · . (22)

Or otherwise stated, this leading contribution of order 1 to
the η-parameter has its origin from the fact that the F-term
contribution to the scalar potential contains an exponential
factor eK:V = eX X̄+... [. . . ] resulting in its second derivative
VX X̄ = V [1 + · · · ].

However, in our model the factor ‘1’ drops out for the
particular choice b = 1 in the superpotential,6 resulting in
an inflaton mass m2

ρ which is determined by the next term
A(X X̄)2 in the expansion of the Kähler potential,

m2
χ =

(
−4A + x2

)
κ−2 f 2 + O(ρ2),

H2 = κ−2 f 2

6
(2 + x2) + O(ρ2). (23)

As a result, there are two ways to evade the η-problem:

6 Note that in hybrid inflation models the η-problem is also evaded
by a somewhat similar way, but these models generally include several
scalar fields (and superfields) besides the inflaton (see e.g. [33]).
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• First, one can obtain a small η by having a small q � f ,
while A should be of order O(10−1). In this case, the
rôle of the gauge symmetry is merely to constrain the
form of the Kähler potential and the superpotential, and
to provide a Higgs mechanism that eliminates the extra
scalar (phase) degree of freedom.

• Alternatively there could be a cancellation between q2

and 4A f 2.

Since A is the second term in the expansion of the Kähler
potential Eq. (7), it is natural to be of order O(10−1) and
therefore providing a solution to the η-problem. This will be
demonstrated by an example in Sect. 3.3.

Note that the mass of the inflaton given in Eq. (23) is only
valid during inflation at small ρ. The mass of the inflaton
at its VEV (Vacuum Expectation Value) will be affected by
additional corrections that are needed to obtain in particular
a vanishing value for the scalar potential at its minimum,
which will be discussed in the following sections.

The upper bound on the tensor-to-scalar ratio

Before moving on to the next section, let us focus on the
approximation at ρ � 1 where the perturbative expansion of
the slow-roll parameters in Eq. (19) is valid, and assume that
the horizon exit occurs at the field value ρ∗ very close to the
maximum ρ = 0. In this approximation, Eq. (19) become

ε(ρ) ≈ εpert(ρ) = |η∗|2ρ2, η(ρ) ≈ η∗, (24)

where the asterisk refers to the value of parameters evaluated
at the horizon exit.

To discuss the upper bound on the tensor-to-scalar ratio,
it is convenient to divide the region [ρ = 0, ρend] into two
regions: one is [0, ρp], where the approximation (24) is valid,
and the other is the rest [ρp, ρend]. Here ρend means the infla-
tion end. Note that ρp < ρend because the approximation (24)
breaks down before the end of inflation where ε(ρend) = 1
or |η(ρend)| = 1. In terms of this division, the number of
e-folds from the horizon exit to the end of inflation can be
approximated by

NCMB  N pert(ρ∗, ρp) + κ

∫ χend

χp

dχ√
2ε(χ)

, (25)

where we introduced

N pert(ρ1, ρ2) = κ

∫ χ2

χ1

dχ√
2εpert(χ)

= 1

|η∗| ln

(
ρ2

ρ1

)
. (26)

Here χ is the canonically normalised field defined by Eq.
(17). Let us next focus on the region [ρp, ρend]. It is natural

to expect the following inequality:

κ

∫ χend

χp

dχ√
2ε(χ)

� κ

∫ χend

χp

dχ√
2εpert(χ)

. (27)

This is based on the following observation. The right hand
side describes a hypothetical situation, as if the slow-roll con-
dition were valid throughout the inflation until its end. But
since in the actual inflation the slow-roll condition breaks
down in the region [ρp, ρend], the actual number of e-folds in
this region will be smaller than that in the hypothetical situ-
ation. Adding N pert(ρ∗, ρp) to both sides of (27) and using
(25), we find

NCMB � 1

|η∗| ln

(
ρend

ρ∗

)
. (28)

Using (24) and the definition of the tensor-to-scalar ratio
r = 16ε∗, we obtain the upper bound:

r � 16
(
|η∗|ρende−|η∗|NCMB

)2
. (29)

To satisfy CMB data, let us choose η = −0.02 and NCMB ≈
50. Assuming ρend � 1/2, we obtain the upper bound
r � 10−4. Note that this is a little bit lower than the Lyth
bound [34] for small-field inflation, r � 10−3. From the
upper bound on r , we can also find the upper bound on the
Hubble parameter as follows. In general, the power spectrum
amplitude As is related to the Hubble parameter at horizon
exit H∗ by

As = 2κ2H2∗
π2r

. (30)

Combining this with the upper bound r � 10−4 and the value
As = 2.2 × 10−9 by CMB data, we find the upper bound on
the Hubble parameter H∗ � 109 TeV.

In Sect. 5, we will also find the lower bound r �
10−9 (equivalently H∗ � 107 TeV), based on an model-
independent argument. This bound can be lowered at the
cost of naturalness between parameters in the potential.

3.2 de Sitter vacua

In the previous section we showed that for these models the
slow-roll parameters can be small if

−4A f 2 + q2

2 f 2 + q2 � 1 (31)

in Eq. (19). We showed above that it is indeed easy to sat-
isfy this condition, providing a potential solution to the η-
problem. In this set-up, however, we are ignorant of what
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happens after the end of inflation. In the following, we will
extend the above analysis to include the minimum of the
potential, and we require after inflation the scalar field ρ to
roll into a ‘nearby’ minimum of the potential with a tunably
small but positive cosmological constant. We show below
that, for the two cases q = 0 and q �= 0, the slow-roll condi-
tions do not allow for the existence of such a minimum.

In other words, while it is easy to satisfy the slow-roll
conditions at the maximum of the potential, additional cor-
rections are needed to ensure a vanishing (or tunably small
and positive) cosmological constant. These corrections terms
modify the potential near the minimum, while the leading
contributions to the slow-roll parameters, given by Eq. (19),
only depend on the first two terms in the expansion of the
Kähler potential K = X X̄ + A(X X̄)2 + · · · . Moreover, as
is often the case, having a vanishing cosmological constant
comes at the cost of fine-tuning parameters in the model. An
example of such a correction is proposed in Sect. 3.3 and
compared with the most recent CMB results.

Let us here explain more precisely our definition for a
minimum ‘nearby’ the maximum. In a phenomenologically
realistic model, inflation should end before the minimum of
the scalar potential. We mentioned in previous sections that
the perturbative expansion of the slow-roll parameters in Eq.
(19) is not valid at the end of inflation. So, it must not be valid
at the minimum either. We should then define the existence
of a nearby minimum around the maximum of the potential
in the ‘weaker’ sense in which the minimum is in a region
where the perturbative expansion of the Kähler potential is
valid but not of the slow-roll parameters.

The need for additional corrections for q = 0

In this section we assume q = 0 (the case q �= 0 is treated
separately below), and we show that a model defined by Eq.
(7) does not allow for a tunably small cosmological constant
at a nearby minimum when |η| � 1 at the maximum is
required.

The scalar potential V = VF given by Eq. (15) with q = 0
is repeated here for convenience,

V = κ−4 f 2eρ2+Aρ4

(
−3ρ2 +

(
1 + ρ2 + 2Aρ4

)2
1 + 4Aρ2

)
. (32)

The solutions to V(ρ0) = 0 and V ′(ρ0) = 0 give

ρ0 = ±0.91082, A = 0.330858. (33)

A plot of this potential is shown in Fig. 1. The inflaton starts
near the local maximum at ρ = 0 and rolls towards the
minimum at ρ = 0.91082.

Near the local maximum of the potential at ρ = 0, η is
given by Eq. (19) while the parameter A is already fixed by

Fig. 1 A plot of the scalar potential given by Eq. (32) satisfying
Eq. (33)

requiring a Minkowski vacuum in Eq. (33). As a result, we
have

η = −4A ≈ −1.32. (34)

We conclude that the slow-roll condition |η| � 1 is not
consistent with the existence of a tunably small cosmological
constant at a nearby minimum for q = 0.

The need for additional corrections for q �= 0

The scalar potential is given by Eq. (15) and is repeated here
for convenience,

V = κ−4 f 2eρ2+Aρ4

(
−3ρ2 +

(
1 + ρ2 + 2Aρ4

)2
1 + 4Aρ2

)

+q2

2

(
1 + ρ2 + 2Aρ4

)2
. (35)

The equation V ′(ρ) = 0 is solved by

−q2
(
1 + 4Aρ2

)3
f 2eρ2+Aρ4

= −4A + (1 − 6A)ρ2

+(8A − 16A2)ρ4 + 20A2ρ6 + 16A3ρ8. (36)

The other solutions toV ′(ρ) = 0 areρ = 0, which is assumed
to be a maximum near the start of inflation, and 1 + ρ2 +
2Aρ4 = 0, which corresponds to an AdS (Anti-de Sitter)
minimum (if A < 0). We therefore focus on the solution Eq.
(36) with A > 0.

The condition for a vanishing value of the scalar potential
at the minimum V(ρ) = 0 can be combined with Eq. (36) to
yield
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Fig. 2 A plot of the scalar potential with A = 1/2, q = 1, and f given
by Eq. (38). Notice that the potential indeed has a Minkowski minimum
at ρ = 0.87

0 =
(

1 + ρ2 + 2Aρ2
)2

− 2
(
1 + 4Aρ2

)2 (
1 − ρ2 + ρ4(1 − 8A) + 4Aρ6 + 4A2ρ8

)
−4A + (1 − 6A)ρ2 + (8A − 16A2)ρ4 + 20A2ρ6 + 16A3ρ8 .

(37)

For A > 0, this equation can be solved to give 〈ρ〉 = ρ0,
the value of ρ at the minimum, while V(ρ0) = 0 is satisfied
when the relation between parameters f and q is given by

f 2

q2 = A(A, ρ0), (38)

where

A(A, ρ) = −e−ρ2−Aρ4

⎛
⎜⎜⎝

1
2

(
1 + ρ2 + 2Aρ4

)2
−3ρ2 +

(
(1+ρ2+2Aρ4)

2

1+4Aρ2

)
⎞
⎟⎟⎠ .

(39)

As an example, for A = 1
2 , Eq. (37) gives ρ0 = 0.872008

(the other solutions are not physical). Taking for example
q = 1, gives f ≈ 2.928 by Eq. (38). The result is plotted in
Fig. 2.

We now show that this is inconsistent with |η| � 1 at the
maximum. Equation (19) can be solved to give

f 2

q2 = 2 − η

2η − 8A
. (40)

This can be combined with Eq. (38) to give an expression for
η in terms of A and ρ0

η = 2
1 + AA(A, ρ0)

1 + 2A(A, ρ0)
. (41)

One can now calculate η for every A > 0 (we do not consider
A < 0 since this would lead to an AdS vacuum). Numerical
analysis however shows that |η| > 1 for all A > 0, and
a small η-parameter is impossible in these models when a
vanishing cosmological constant is imposed.

We conclude that additional corrections to the Kähler
potential are necessary in order to obtain a tunably small
cosmological constant consistent with |η| � 1. These cor-
rections can be higher-order or non-perturbative corrections.

3.3 Correction terms that allow for a tunable minimum

We propose corrections to the Kähler potential of the form

κ2K(X, X̄) = X X̄ + α(X X̄)2 + F(X X̄), (42)

while the superpotential is fixed by the gauge symmetry with
b = 1 (the arguments that excluded b �= 1 in Sect. 3.1
still apply). The resulting scalar potential is given by V =
VF + VD , where

VF = κ−4 f 2eX X̄+α(X X̄)2+F(X X̄)

×
[
−3X X̄ +

∣∣1 + X X̄ + 2α(X X̄)2 + XFX
∣∣2

1 + 4αX X̄ + FX X̄

]
,

VD = κ−4 q
2

2

∣∣∣1 + X X̄ + 2α(X X̄)2 + XFX

∣∣∣2 , (43)

where FX = ∂X F and FX X̄ = ∂X∂X̄ F .7

For example, if we choose

F(X X̄) = ξ X X̄eBX X̄ , (44)

the Kähler potential can be expanded near X = 0 as

κ2K(X X̄) = (1 + ξ)X X̄ + (α + ξ B)(X X̄)2 + · · ·
= X ′ X̄ ′ + α + ξ B

(1 + ξ)2 (X ′ X̄ ′)2 + · · · , (45)

where we made a field redefinition X ′ = √
1 + ξ X to bring

the Kähler potential into the form of the expansion Eq. (7).8

It is important to emphasise that the higher-order corrections
to the Kähler potential do not contribute to the leading order
of slow-roll parameters. One can therefore apply Eq. (19)

7 This can in principle be written in terms of ρ by using FX = 1
2 Fρe−iθ

and FX X̄ = 1
4 Fρρ + 1

4ρ
Fρ .

8 Note that we also have W = 1
1+ξ

f X ′, although this is not important
for the discussion below.
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Fig. 3 A plot of the scalar potential given by Eq. (43) for the parameters
in Eq. (48)

Table 1 The theoretical predictions for the parameters given in Fig. 3

N ns r As

57.98 0.9549 7.3241 × 10−6 2.22 × 10−9

with A = α+ξ B
(1+ξ)2 to find

ε = 4

(−4A + x2

2 + x2

)2

ρ′ 2 = 4

(B + x2

2 + x2

)2

(1 + ξ)ρ2,

η = −4A = B, (46)

where we used ρ′ 2 = (1 + ξ)ρ2 and

B = −4
α + Bξ

(1 + ξ)2 . (47)

The scalar potential for the parameters

α = 0.41193,

ξ = 0.26790,

B = −1.51910,

f = 5.52 × 10−7,

x = 0.0526, (48)

is plotted in Fig. 3.
By using ρ∗ = 0.04493 and ρend = 0.32844 one obtains

the results in Table 1. The slow-roll parameters ε and η during
the inflation are shown in Fig. 4. By using Eq. (18), the value
of the slow-roll parameters at the horizon exit are

ε(ρ∗)  4.58 × 10−7 and η(ρ∗)  −2.25 × 10−2. (49)

It is important to emphasise that neither the choice of the
function F in Eq. (44), nor the choice for the particular values
of the parameters is unique. Different choices of F , or even
different choices for the parameters α, ξ and B can lead to
similar CMB results as the ones presented in Table 1. Figure 5

shows that our predictions for ns and r are within 2σ C.L. of
Planck ’15 contours with the number of e-folds N = 57.98.

On the other hand, the gravitino mass is given by m3/2 =
5.96 × 107 TeV and the Hubble scale is 6.80 × 108 TeV. No
other parameter set consistent with the CMB data were found
with a Hubble scale below 108 TeV. Moreover, the tensor-to-
scalar ratio satisfies r > 10−6. We believe that the inability to
find models with gravitino mass of order 10 TeV is indepen-
dent of the choice of F . We will put stringent conditions on
the existence of models with a TeV scale Hubble parameter
in Sect. 5. This will be done in a way not leaning on any ingre-
dients of supergravity, and these results are therefore more
general than the scope of this paper. However, in supergravity
the gravitino mass is usually of the same order as the Hubble
scale, which heavily constraints the supersymmetry breaking
scale.

In particular, in Sect. 5 we show that a necessary, but not
sufficient condition to obtain order 10 TeV scale inflation is
given in Eq. (82), repeated here for convenience of the reader

1

κ3

∣∣∣∣V ′′′∗
V∗

∣∣∣∣ > 106, (50)

where the derivatives are with respect to the canonically nor-
malised field χ satisfying Eq. (17). This can for example be
realised by including an extra term in the Kähler potential
proportional to Z(X X̄)3. The above constraint then requires
Z � 1, which violates our assumption that the Kähler poten-
tial can be expanded around the maximum of the potential
at the symmetric point X = 0. As a result, the expansions
for ε and η in Eq. (19) require correction terms of higher
order in ρ, and the above analysis is not valid. Moreover, the
above condition (50) forces Z to be several orders of magni-
tude larger than the other parameters, which raises questions
about the naturalness of such a model.

The authors confirm that the inclusion of the term Z(X X̄ )3

indeed leads to potentials that allow a Hubble scale of order
10 TeV for large Z . The discussion of such models, how-
ever, is postponed for future work, since the inclusion of a
very large parameter is not natural, and such a term would
reintroduce higher-order terms in ρ in the above analysis.

A final comment is in order: In contrast with Case 2 in
Sect. 4, where the D-term and the F-term contributions to the
scalar potential are of the same order such that a vanishing
cosmological constant can be found by a careful cancellation
between the F-term and the D-term, the model above allows
for a vanishing cosmological constant even when q2 � f 2.
A vanishing cosmological constant can be obtained by care-
fully tuning the parameters governing the F-term contribu-
tion to the scalar potential. However, we emphasise that even
in this scenario the gauge symmetry still plays an important
rôle: It constrains the form of the Kähler potential and the
superpotential, while the U (1) gauge boson ‘eats’ the phase
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Fig. 4 A plot of ε and η versus ρ for the scalar potential given by Eq. (43) with the parameters in Eq. (48). The vertical (red) line indicates ρ∗

Fig. 5 A plot of the predictions shown in Table 1 for a scalar potential
in Eq. (43) with correction term Eq. (44), in the ns −r Planck ’15 results
for TT,TE,EE,+lowP and assuming 	CDM + r

of X resulting in an inflation scenario with a single scalar
degree of freedom.9

3.4 Anomaly cancellation

In this section we show that the coefficient β in Eq. (3) is
indeed small and can be neglected. First, as was already noted
in Eq. (11), the superpotential is not gauge invariant under the
U (1)R gauge symmetry, and therefore is an R-symmetry. A
consequence ofU (1)R is that scalars and fermions within the
same multiplet carry different charges under the symmetry.
In particular, the total U (1)R-charges of the chiral fermion
χ , the U (1)R-gaugino and the gravitino are given by

Rχ = −q + ξR

2
= −q

2
, Rλ = R3/2 = −q

2
. (51)

9 For other approaches involving a single scalar degree of freedom
see [35], or [36,37] for more recent work.

This results in a contribution to the cubic U (1)3
R anomaly

proportional to CR = Tr[R3] = R3
χ + R3

λ + 3R2
3/2,10 given

by [39]

δL1−loop = − w

32π2

CR
3

εμνρσ FμνFρσ . (52)

This can, however, be cancelled by a Green–Schwarz mech-
anism, since the field-dependent term in the gauge kinetic
function Eq. (3) results in a contribution to the Lagrangian
of the form

LGS = 1

8
Im f (X)εμνρσ FμνFρσ = 1

8
βRIm(ln X)εμνρσ FμνFρσ .

(53)

Under a gauge transformation, this results in a contribution

δLGS = −w

8
βRqεμνρσ FμνFρσ . (54)

Anomaly cancellation requires δL1−loop + δLGS = 0,

βR = − CR
12π2q

. (55)

Contributions from MSSM fermions and mixed anomalies
can be treated similarly.

If we instead assume that no extra matter fields are present,
we have CR = −5

( q
2

)3, and βR = 5
96π2 q

2. It follows that
βR is very small if q is small. For example, in the previous
section we had q = 2.91 × 10−8 and ρ∗ = 0.04493, which
gives |βR ln ρ∗| ≈ 1.8 × 10−17 � 1, which justifies the
approximation

f (X) = 1 + βR ln X ≈ 1. (56)

10 Note that the contribution of the gravitino is three times that of a
gaugino [38].

123



 724 Page 10 of 16 Eur. Phys. J. C   (2017) 77:724 

4 Case 2: Inflation away from the symmetric point

In this section we consider the case where inflation starts
at a point far away from the symmetric point X = 0. This
allows us to make a field redefinition Eq. (5) and work with a
chiral superfield S (with scalar component s) invariant under
a shift symmetry. In this case, the most general superpotential
is given by W = κ−3aebs , while the Kähler potential should
be a function of s + S̄. The gauge kinetic function is at most
linear in s i.e. f (s) = γ + βs.

Since we are focussed on small-field inflation, it is nat-
ural to assume that the inflaton starts near a (local) maxi-
mum of the potential.11 However, in contrast with Case 1, the
maximum of the potential does not correspond to a point of
restored R-symmetry and there is no particular reason why
the inflation started precisely near this point. This poses a
fine-tuning problem that is present in many small-field mod-
els of inflation, and we shall not address this further. We will
show that, as in the Case 1, the minimum of the inflation
potential lies near the local maximum in the weaker sense.

4.1 Behaviour near the maximum of the potential

Let us start by considering a perturbation around the local
maximum of the scalar potential φ0, or equivalently making
the change of variable s = δs+φ0/2. We expand the Kähler
potential around the maximum up to the fourth order of the
classical fluctuation δs (and δs̄)

K(δs, δs̄) = κ−2( Ã + B̃(δs + δs̄) + C̃(δs + δs̄)2

+D̃(δs + δs̄)3 + Ẽ(δs + δs̄)4). (57)

We will show below that higher-order terms in the expansion
of the Kähler potential do not contribute to the “leading-
order” terms in slow-roll parameters. Indeed, it was already
emphasised in the previous section that only terms up to
(X X̄)2 are needed in the Kähler potential. We can also
express the superpotential and gauge kinetic function as

W (δs) = κ−3aeb(δs+φ0/2), (58)

f (δs) = γ + β(δs + φ0/2). (59)

By a Kähler transformation to absorb Ã followed by the
redefinitions

γ ′ = γ + β
φ0

2
, a′ = ae Ã/2ebφ0/2, b′ = b + B̃, (60)

11 For small-field inflation, the Lyth bound prevents the possibility of
a monotonically increasing potential since this would require η > 0.
Moreover, inflation starting near an inflection point at a field value
greater than the minimum of the potential would also require η > 0. On
the other hand, inflation starting near an inflection point at a field value
smaller than its VEV is in principle allowed. However, we could not
find any particular working example and therefore focus on inflation
starting near a maximum.

the Kähler potential and superpotential can be simplified into

K(δs, δs̄) = κ−2(C̃(δs+δs̄)2+ D̃(δs+δs̄)3+ Ẽ(δs + δs̄)4),

W (δs) = κ−3aebδs,

f (δs) = γ + βδs, (61)

where we dropped the primes on a, b, γ . The D-term contri-
bution to the scalar potential is given by

VD = c2κ−4

(
b + 2C̃(δs + δs̄) + 3D̃(δs + δs̄)2 + 4Ẽ(δs + δs̄)3

)2

2γ + β(δs + δs̄)
,

(62)

and the F-term contribution is

VF = a2

2κ4 eC̃(δs+δs̄)2+D̃(δs+δs̄)3+Ẽ(δs+δs̄)4+b(δs+δs̄)

×
(

(b + 2C̃(δs + δs̄) + 3D̃(δs + δs̄)2 + 4Ẽ(δs + δs̄)3)2

C̃ + 3D̃(δs + δs̄) + 6Ẽ(δs + δs̄)2
− 6

)
.

(63)

Let us define φ = s+ s̄ such that δφ = δs+δs̄ represents the
(classical) fluctuation around the maximum of the potential
at φ0. Then the potential can be written in terms of δφ as

V = 1

2κ4

{
a2eC̃δφ2+D̃δφ3+Ẽδφ4+bδφ

×
(

(b + 2C̃δφ + 3D̃δφ2 + 4Ẽδφ3)2

C̃ + 3D̃δφ + 6Ẽδφ2
− 6

)

+ 2c2(b + 2C̃δφ + 3D̃δφ2 + 4Ẽδφ3)2

2γ + βδφ

}
. (64)

We fix γ = 1 and β = 0 for simplicity. The slow-roll parame-
ters ε and η are defined in terms of the canonically normalised
fluctuation δχ , which is defined by

d(δχ) =
√
C̃ + 3δφ(D̃ + 2Ẽδφ)d(δφ). (65)

Since we expand the potential around the maximum of the
potential, the slow-roll parameter must satisfy ε(δφ = 0) =
0. This gives us the following constraint on the parameters,

D̃ = a2b2C̃ − 2a2C̃2 + 4c2C̃3

3a2b
. (66)

Using the above constraint, we can write the expansion of
the slow-roll parameters near the maximum of the potential
as
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ε =
(
a4
(
b4C̃ − 4b2

(
C̃2 + 3Ẽ

)
+ 12C̃3

)
+ 12a2c2C̃3

(
b2 − 4C̃

)
+ 48c4C̃5

)2

2a4C̃3
(
a2
(
b2 − 6C̃

)
+ b2c2C̃

)2 δφ2 + O(δφ3) (67)

and

η = −
a4
(
−b4C̃ + 4b2

(
C̃2 + 3Ẽ

)
− 12C̃3

)
− 12a2c2C̃3

(
b2 − 4C̃

)
− 48c4C̃5

a2C̃2
(
a2
(
b2 − 6C̃

)
+ b2c2C̃

) + O(δφ). (68)

Note that η parameter can be small and negative by carefully
fine-tuning four parameters a, b, C̃ and Ẽ . It is also important
to note that the slow-roll expansions are valid only near the
maximum of the potential i.e. δφ � 1. They may break down
during inflation or at the minimum of the potential. These
expansions are useful for showing qualitatively that the η-
problem can be avoided. In order to compare any predictions
with the CMB data, one needs to use the full expression for
ε and η.

4.2 Example

In order to give an example of this class of models, let us
consider the case γ = 1, β = 0, with Kähler potential [12]

K = −κ−2 ln

(
s + s̄ + ξ

b
eαb2(s+s̄)2

)
. (69)

This model is obviously invariant under the shift symmetry
in Eq. (4). With φ = s+s̄ = δφ+φ0, the potential in terms of
fluctuation δφ around the maximum of the potential is given
by

V = κ−4b2c2

2

[
b(δφ + φ0) − 1 + ξeαb2(δφ+φ0)

2
(1 − 2αb(δφ + φ0))

b(δφ + φ0) + ξeαb2(δφ+φ0)2

]2

− κ−4|a|2beb(δφ+φ0)

ξeαb2(δφ+φ0)2 + b(δφ + φ0)

×
⎡
⎢⎣

(
b(δφ + φ0) + ξeαb2(δφ+φ0)2

(1 − 2αb(δφ + φ0)) − 1
)2

2αξeαb2(δφ+φ0)2 (2αb3(δφ + φ0)3 + ξeαb2(δφ+φ0)2 − b(δφ + φ0)
)− 1

+ 3

⎤
⎥⎦ . (70)

In this example, the canonically normalised field χ is defined
by

dχ

dφ
= κ−1b(

ξeαb2φ2 + bφ
)

√
1 − 2αξeαb2φ2 (2αb3φ3 + ξeαb2φ2 − bφ

)
. (71)

For this case, we need contributions from both F-term and
D-term in order to obtain Minkowski vacua. It was shown in
[12,39] that this model is anomaly-free. By choosing, a =
2.34422 × 10−6, b = −0.0234, c = 7.10 × 10−6, ξ =
0.3023, α = −0.7813, we obtain an appropriate inflationary
potential with a flat plateau around the maximum φ0 ≈ 66.37
illustrated in Fig. 6. The horizon exit is at φ∗ = 64.5315 and
inflation ends at φend = 50.9915. By using Eq. (18), the value
of the slow-roll parameters at horizon exit are

ε(φ∗)  1.30 × 10−7 and η(φ∗)  −2.01 × 10−2. (72)

The number of e-folds N , the scalar power spectrum ampli-
tude As , the spectral index of curvature perturbation ns and
the tensor-to-scalar ratio r are calculated and summarised in
Table 2, in agreement with Planck ’15 data. Figure 7 shows
that our predictions for ns and r are within 1σ C.L. of Planck
’15 contours with the number of e-folds N ≈ 56.82.

During inflation, we can show that a field fluctuation from
the maximum of the potential in terms of the canonically
normalised field is quite small in Planck units, i.e. κ|δχ∗| =
κ|χ∗ − χ0| ≈ 0.036 and κ|δχend| = κ|χend − χ0| ≈ 0.351,

but at the minimum of the potential φmin ≈ 21.50 the field
fluctuation is large, i.e. κ|δχmin| = κ|χmin − χ0| ∼ 1.81.
However, one can show that the perturbative expansion of
the Kähler potential is still valid and the minimum is nearby
the maximum in the weaker sense. Indeed, using the values
of parameters a, b, c, ξ and α given above, we can expand
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Fig. 6 A plot of scalar potential in Eq. (70), one of the models belong-
ing to Case 2 with γ = 1 and β = 0. We choose a = 2.34422 × 10−6,
b = −0.0234, c = 7.10 × 10−6, ξ = 0.3023, α = −0.7813. The
vertical (red) line indicates φ∗

Table 2 The theoretical predictions for φ∗ = 64.5316 and φend =
50.9915 and the parameters given in Fig. 6

N ns r As

56.82 0.9597 2.0747 × 10−6 2.22 × 10−9

the Kähler potential (69) in the fluctuation δφ around the
maximum of the scalar potential as

κ2K = 4.1652 + (1.7256 × 10−2)δφ

−(1.8499 × 10−4)δφ2 + (2.5255 × 10−6)δφ3

−(3.1815 × 10−8)δφ4

+(4.0104 × 10−10)δφ5 − (6.0738 × 10−12)δφ6

+O(δφ7). (73)

It is easy to prove that this expansion makes sense as a per-
turbative expansion even for |δφmin| = |φmin − φ0| ∼ 44.9
(equivalent to κ|δχmin| ∼ 1.81 as given above). Thus, in this
example the minimum lies nearby the maximum in the sense
defined above.

Note, however, that in contrast with the claim in [12], the
potential given in Eq. (70) is inconsistent with a supersym-
metry breaking scale (and Hubble scale) in the multi-TeV
range. It has turned out to be very difficult to find any param-
eters, consistent with the CMB data, for which the Hubble
scale H∗ is lower than 108 TeV. The reason is outlined in Sect.
5: Eq. (76), defining the amplitude As , fixes ε∗ in terms of
H∗ (for As fixed by the CMB data), resulting in a very small
(∼ 10−23) value for ε∗. This in turn results in a big num-
ber of e-folds occurring near the horizon exit, which rapidly
exceeds the required amount of e-folds NCMB between the
horizon exit and the end of inflation, which should be of order
∼ 40. Indeed, the potential in Eq. (70) does not satisfy the
necessary (but not sufficient) condition to obtain order 10

TeV scale inflation 1
κ3

∣∣ V ′′′∗
V∗
∣∣ � 106 in Eq. (82).

Fig. 7 A plot of the predictions for a scalar potential in Eq. (70) shown
in Table 2, in the ns–r Planck ’15 results for TT,TE,EE,+lowP and
assuming 	CDM + r

5 A stringent constraint on TeV Hubble scale

In the previous sections, we have seen that it is difficult to
realise inflation models with a TeV scale gravitino mass. Here
we characterise this difficulty in a more general way, and
independent of the supergravity framework. In particular, we
show that a necessary but not sufficient condition to have

order 10 TeV inflation is that 1
κ3

∣∣ V ′′′∗
V∗
∣∣ > 106.

The CMB observation covers the inflation between the
horizon exit and the end of inflation. We first estimate the
number of e-folds during this epoch using the following for-
mula [40–43]:

NCMB  ln
T0

q0
−
(

4

y
− 1

)
ln

√
κ−1Hend

Treh

+1

2
ln(κHend) + ln

H∗
Hend

, (74)

where q0, T0 are the wave number in the physical spatial
coordinate and the CMB temperature at present, respectively.
Note that this formula is independent of inflation models.
Here we take T0/q0 ∼ 1028 with q0  0.002 Mpc−1 follow-
ing [[42], pp. 325–326]. We assume that Hend  H∗, and
that during the reheating era the energy density evolves as
ρ ∝ a−y with 3 ≤ y < 4. The asterisk refers to the horizon
exit as in the previous sections. The reheating temperature
Treh is assumed to be of the same order as Hend. Under the
above rough assumptions we find that, for H∗ ranging from
1 TeV to 1010 TeV, the number of e-folds NCMB is roughly
between 40 and 60.

Let us next discuss the condition that an inflaton potential
should yield NCMB = 40 − 60 for a given Hubble parameter
H∗. The amplitude As and tilt ns are given by

As = κ4V∗
24π2ε∗

= κ2H2∗
8π2ε∗

, (75)

ns = 1 + 2η∗ − 6ε∗, (76)
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Fig. 8 A plot of ε∗ and η∗ versus the Hubble parameter H∗ at the
horizon exit. The blue line refers to ε∗ and the orange one refers to η∗.
Note that ε∗ is much smaller than η∗ for H∗ � 1010 TeV, which fits our
models given in the previous sections

where we used the fact that the Hubble scale is given by
H∗ = κ

√
V∗/3.

We choose As = 2.2 × 10−9 and ns = 0.96 to satisfy the
CMB data. Putting them into Eqs. (75) and (76) yields the
slow-roll parameters ε∗ and η∗ as functions of the Hubble
constant H∗, given by

ε∗ 
(

H∗
1.0 × 1012 TeV

)2

, η∗  −0.02 +
(

H∗
5.8 × 1011 TeV

)2

.

(77)

The plot of these expressions is given in Fig. 8.
The Lyth bound [34] for small-field inflation, r � 10−3,

implies H∗ � 1010 TeV by Eq. (77). From Fig. 8 it is clear
that if the Hubble scale satisfies H∗ � 1010 TeV, then the
slow-roll parameters at horizon exit satisfy ε∗ � |η∗|.12

In the following we consider the Hubble scale in the range
1 TeV ∼ 1010 TeV.13

The inflaton potential decreases monotonically through
the end of inflation χend towards the global minimum. For
simplicity and without loss of generality, we assume that the
field value of the inflaton decreases monotonically during
inflation. We can express the number of e-folds between the
horizon exit χ∗ and some field value χ in terms of the inflaton
potential as

N (χ) =
∫ χ∗

χ

κ√
2ε(χ ′)

dχ ′. (78)

In terms of Eq. (78), the number of e-folds between the hori-
zon exit and the end of inflation is given by N (χend). Any
scalar potential should therefore satisfy N (χend) ≈ NCMB in

12 An upper bound on the tensor-to-scalar ratio r � 10−4 from Sect. 3
implies H∗ � 109 TeV. This is consistent with H∗ � 1010 TeV by the
Lyth bound.
13 Note that the maximum Hubble scale H∗ ∼ 1010 TeV corresponds
to the GUT scale vacuum energy during inflation V 1/4∗ ∼ MGUT.

order to be a good candidate for slow-roll inflation satisfying
the CMB data.

Let us divide the region [χend, χ∗] into two parts, region
A and B. Region A is in the neighbourhood of the horizon
exit χ∗ and the slow-roll parameters in region A are required
to satisfy the conditions

ε(χ) � |η(χ)|, |η(χ)| ≈ |η(χ∗)|, (79)

and the region B is its complement in [χend, χ∗]. Note that the
condition (79) is natural in the neighbourhood of the horizon
exit as long as the Hubble parameter satisfies H∗ � 1010 TeV,
as was already observed in Fig. 8. The inflaton first passes
through region A and enters region B when the condi-
tions (79) are violated. This transition occurs well before
the end of inflation where the slow-roll parameters are of
order 1. It is shown in the appendix that if χ is in region A,
then the number of e-folds N (χ) can be approximated by

N (χ) ≈ 1

|η∗| ln

[
1 + κ

|η∗�χ |√
2ε∗

]
, (80)

where �χ = |χ∗ − χ |. Using this expression, we can show
that, for any χ in region A (and therefore satisfy Eq. (79)),
the following inequality holds:

NCMB  N (χend) 
∫ χ

χend

κ√
2ε(χ ′)

dχ ′ + 1

|η∗| ln

×
[

1 + κ
|η∗�χ |√

2ε∗

]
>

1

|η∗| ln

[
1 + κ

|η∗�χ |√
2ε∗

]
≡ NA(χ).

(81)

This inequality can be used to exclude a given potential in the
following way: If for any particular inflaton potential there
exists some χ in region A for which NA(χ) > NCMB, then
it contradicts the inequality (81), and the inflaton potential
can be excluded. In other words, if the flat region near the
start of inflation is too big, too many e-folds will occur in
region A. As a result, the number of e-folds in this region
exceeds the required number of e-folds NCMB. This allows
us to put a limit on the scalar potential by investigating the
size of region A, characterised by κ�χ .

From Eq. (80) we find that, for the Hubble scale H∗ ∼
10p TeV with 0 ≤ p ≤ 10, the choice κ�χ  10p−9 results
in a number of e-folds in region A given by NA(χ)  80,
which is sufficiently larger than NCMB  40–60. It remains to
check whether this χ is still in region A and therefore satisfies
Eq. (79). It can be shown14 that χ with κ�χ  10p−9 lies

14 Combining κ�χ = 10p−9 with the assumptions (77) and (82), we
find that∣∣∣�χ

dη

dχ

∣∣∣ = κ�χ

∣∣∣ ( 1

κ3

V ′′′

V
− η

√
2ε

) ∣∣∣ � |η∗|
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in region A if the inflaton potential satisfies

1

κ3

∣∣∣∣V ′′′∗
V∗

∣∣∣∣ � 107−p. (82)

In summary, we have shown that if Eq. (82) is satisfied (for
H∗ = 10p TeV with 0 ≤ p ≤ 10), then there exists χ in
region A which gives N (χ) = 80, which exceeds NCMB,
and therefore contradicts the inequality (81). Therefore, the
condition in Eq. (82) is a sufficient condition to exclude an
inflaton potential.

In other words, the condition

1

κ3

∣∣∣∣V ′′′∗
V∗

∣∣∣∣ > 107−p (83)

is a necessary (but not sufficient) condition for any the infla-
ton potential such that the number of e-folds does not exceed
NCMB.

A rough estimate on the necessary condition implies that if

H∗ ≥ 107 TeV, a milder condition on the potential 1
κ3

∣∣ V ′′′∗
V∗
∣∣ <

1 should be satisfied. It should therefore be much easier
to construct potentials with a Hubble scale above 107 TeV.
Note that this implies a theoretical (rough) lower limit on
the tensor-to-scalar ratio, namely r > 10−9 (or equivalently,
ε > 10−10). On the other hand, if the Hubble scale is low,
around the TeV scale, then the necessary condition puts a
very stringent constraint on the potential, which poses ques-
tions about the naturalness of the theory since a large (∼ 109)
hierarchy between parameters in the model is necessary.

It is important to emphasise that the above argument holds
for all models of (slow-roll) inflation, and is not limited to
supergravity models. In supergravity models, however, the
Hubble scale H∗ is usually of the same order as the gravitino
mass m3/2.15 The above argument therefore puts stringent
constraints on the lower limit of the supersymmetry break-
ing scale. It states that a theory with low-energy supersym-
metry breaking (m3/2 of order O(10 TeV)) is very unlikely
to simultaneously be a theory for inflation, unless the third
derivative of the scalar potential attains very high values near
the start of inflation.

6 Conclusions

In this work we proposed a class of supergravity models of
inflation in which the inflaton is the superpartner of the gold-

Footnote 14 continued
at the horizon exit. As a result, the condition η(χ) ≈ η(χ∗) satisfied.
Similarly, by Taylor expanding

√
ε in �χ , we can show that ε(χ) �

|η(χ)|.
15 An exception to this occurs in so-called New Inflation models [44,
45], where the Hubble scale is typically much larger than the gravitino
mass and a gravitino mass as low as 100 TeV is allowed [46,47].

stino, carrying a unit charge under a gauged R-symmetry.
Inflation occurs around the maximum of the scalar poten-
tial where R-symmetry is either restored (Case 1) or spon-
taneously broken (Case 2), with the inflaton rolling down
towards the electroweak minimum of the supersymmetric
Standard Model. Analyticity and R-invariance imply a linear
superpotential which automatically avoids the so-called eta-
problem in supergravity, allowing for slow-roll and small-
field inflation consistently with an effective field theory
description.

Case 2 is a generalisation of a particular model we studied
in a previous publication [12], inspired by type I string theory
with moduli stabilisation by internal magnetic fluxes and the
inflation identified with the string dilaton. Case 1 offers a
new possibility, with the R-symmetry restored around the
inflationary plateau, which we analysed in detail in this work:

• Assuming first that inflation ends very rapidly after the
plateau where small fluctuations are valid around the
maximum of the scalar potential, we were able to find
simple analytic formulae for the slow-roll parameters and
the number of e-folds, leading to an upper bound for the
tensor-to-scalar ratio r <∼ 10−4 and for the inflation scale
H∗ <∼ 1012 GeV.

• We then show that additional corrections to the Käh-
ler potential are needed in order to describe a mini-
mum of the scalar potential ‘nearby’ the maximum with
an infinitesimal tuneable positive vacuum energy. The
‘nearby’ notion is defined in the sense that perturbative
expansion around the maximum is valid for the Kähler
potential but not for the slow-roll parameters. We subse-
quently study an example of such corrections and work
out the experimental predictions for the cosmological
observables.

We finally derived a stringent and model-independent con-
straint on TeV scale inflation (or in general low scale). The
constraint implies that in order to attain a theory with Hubble
scale in the multi-TeV range, one has to tune the form of the
potential, implying in general a naturalness problem between
its parameters.
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A Proof of an important identity

In this appendix, we show that Eq. (80) holds for any χ

satisfying Eqs. (79), repeated here for convenience of the
reader

ε(χ) � |η(χ)|, |η(χ)| ≈ |η(χ∗)|.

Note first that the identity

d
√

ε

dχ
= 1√

2κ

(
V ′′

V
−
(
V ′

V

)2
)

= κ√
2

(η − ε) (84)

can be approximated between χ and χ∗ by

1

κ

d
√

ε

dχ
≈ η∗√

2
. (85)

This can be solved analytically by

√
ε = √

ε∗ + η∗√
2
κ(χ − χ∗). (86)

The number of e-folds at χ then becomes

N (χ) = κ

∫ χ∗

χ

dχ ′
√

2ε(χ ′)
≈ 1

|η∗| ln

[
1 + κ

|η∗�χ |√
2ε∗

]
. (87)

This completes the proof of Eq. (80).
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