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Purpose of review

Pneumococcal meningitis is the most frequent form of bacterial meningitis in Europe and the United States.
Although early antimicrobial and adjuvant therapy with dexamethasone have helped to improve disease
outcome in adults, mortality and morbidity rates remain unsatisfactorily high, emphasizing the need for
additional treatment options. Promising targets for adjuvant therapy have been identified recently and will
be the focus of this review.

Recent findings

Brain disease in pneumococcal meningitis is caused by direct bacterial toxicity and excessive meningeal
inflammation. Accordingly, promising targets for adjuvant therapy comprise limiting the release of toxic
bacterial products and suppressing inflammation in a way that maximally protects against tissue injury
without hampering pathogen eradication by antibiotics. Among the agents tested so far in experimental
models, complement inhibitors, matrix-metalloproteinase inhibitors, and nonbacteriolytic antibiotics or a
combination of the above have the potential to more efficiently protect the brain either alone (e.g., in
children and outside the high-income settings) or in addition to adjuvant dexamethasone. Additionally, new
protein-based pneumococcal vaccines are being developed that promise to improve disease prevention,
namely by addressing the increasing problem of serotype replacement seen with pneumococcal conjugate
vaccines.

Summary

Pneumococcal meningitis remains a life-threatening disease requiring early antibiotic and targeted anti-
inflammatory therapy. New adjuvant therapies showed promising results in animal models but need
systematic clinical testing.
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INTRODUCTION

The implementation of pneumococcal conjugate
vaccine programs has reduced the incidence of in-
vasive pneumococcal diseases in many countries,
albeit with varying degrees of success. The latter
might be related to intercountry differences in vac-
cination coverage, serotype distribution, and most
importantly for the future, serotype replacement.
Notwithstanding, meningitis caused by Streptococcus
pneumoniae, a Gram-positive encapsulated bacte-
rium, remains the most common form of commu-
nity-acquired bacterial meningitis in adults, at
least in the Western world [1

&

,2,3
&&

]. Although an
improved case management system has been shown
to be effective in ameliorating disease outcome
[2,4,5,6

&

], the reported mortality rates still range
between 5 and 18% even in an advanced Western
hospital setting [1

&

,2,7,8
&

], but are substantially
higher reaching over 30% when considered globally
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[2,9]. Among surviving patients, up to 50%
suffer from long-term neurologic sequelae such as
hearing loss, seizures, or neurocognitive dysfunc-
tion [4,8

&

,10].
Over the past decade, experimental work has

provided evidence that death and sequelae because
of pneumococcal meningitis occur as a consequence
of a hyperinflammatory host response to the patho-
gen [11]. Accordingly, adjuvant therapy with
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KEY POINTS

� Several adjuvant therapies to attenuate the injurious
proinflammatory reaction in pneumococcal meningitis
have been identified in animal experiments but have
not been tested in human patients yet.

� Inhibition of the complement system, reduction of the
release of proinflammatory bacterial components by
using nonlytic antimicrobials, and prevention of IFN-g
and MMP-mediated inflammatory processes including
BBB breakdown seem to be promising candidates for
adjuvant therapy.

� Protein-based pneumococcal vaccines are currently
being studied in early phase clinical trials and promise
to provide broader coverage than current conjugate
pneumococcal vaccines.

� Emerging antimicrobial-resistant S. pneumoniae strains
have been isolated necessitating close surveillance and
the development of new antibiotics.

Central nervous system infections

Cop
dexamethasone has been found to significantly
reduce mortality and sequelae from pneumococcal
meningitis in adults [12,13] and is currently recom-
mended in the American and European guidelines
for adults with suspected pneumococcal meningitis.
For potential benefit, dexamethasone must be given
before or concomitantly with the antibiotics
[3

&&

,14]. Of note, the beneficial effects of dexameth-
asone only apply to adult patients with pneumococ-
cal meningitis in high-income countries [13].
Although to date no differences on long-term neuro-
psychological sequelae were reported in meningitis
patients treated with dexamethasone compared
with placebo, adjunctive dexamethasone has been
reported to negatively affect survival and hippocam-
pal neuroregeneration in experimental meningitis
[15

&

,16]. The effect of dexamethasone indicates that
immunomodulatory treatments (might) have the
potential to improve the outcome of pneumococcal
meningitis. Its limitations in applicability and also
efficacy underline the need for novel adjunctive
medications. Several interesting candidates have
been identified in recent studies. The purpose of
this review is to provide a brief overview of our
current understanding of the pathogenesis of pneu-
mococcal meningitis and its potential implications
on the management of this life-threatening disease
in humans.
PATHOGENESIS OF PNEUMOCOCCAL
MENINGITIS

The principal ecological niche of S. pneumoniae is
the human nasopharynx. To successfully invade the
2 www.co-infectiousdiseases.com
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central nervous system (CNS), it must overcome
many obstacles on its journey through the blood
to the brain. The CNS is protected externally by its
covering leptomeninges and internally (against
blood-borne pathogen invasion) by the blood-brain
barrier (BBB) and the blood-cerebrospinal (CSF) bar-
rier (BCSFB). To get access to the CNS, the successful
pathogen therefore requires a defect in the external
barrier (e.g., a posttraumatic dura leak). It also uses a
multistep process involving the colonization of the
nasopharyngeal mucosa, followed by the invasion
into the blood with successful survival and replica-
tion, and finally the traversal of the BBB [17,18].
PREVENTION OF BACTERIAL TRAVERSAL
OF THE BLOOD–BRAIN BARRIER

The BBB is formed by brain endothelial cells, astro-
cytes, and pericytes to protect the CNS from invading
pathogens [19]. It has recently been shown that S.
pneumoniae that were able to enter the CNS expressed
adhesive rlrA-regulated gene A (RrgA)-containing pili
[20]. Using brain biopsies from patients who died of
pneumococcal meningitis and a murine meningitis
model, S. pneumoniae was further found to colocalize
with two BBB endothelial receptors, namely poly-
meric immunoglobulin receptor (pIgR) and platelet
endothelial cell adhesion molecule (PECAM-1).
Thereby, the bacteria–receptor interaction is pre-
dominantly mediated by the above-mentioned pilus
protein RrgA [21

&&

,22]. Blockade of pIgR and PECAM-
1 with targeted antibodies substantially reduced bac-
terial invasion of the subarachnoid space in a bacter-
emia-derived meningitis model [21

&&

] (Fig. 1). More
interestingly, these antibodies further decreased bac-
terial CNS load in mice cotreated with ceftriaxone,
the first-line empiric antimicrobial recommended for
community-acquiredbacterial meningitis inhumans
[3

&&

,21
&&

]. Therefore, blockade of pIgR and PECAM-1
could be an interesting target for adjuvant therapy of
pneumococcal meningitis, namely by shielding the
brain against pneumococcal (re)entry. Not only
the prevention of pneumococcal (re)entry but also
the preservation of BBB integrity has been shown to
be beneficial during bacterial meningitis. Matrix met-
alloproteinases (MMPs) participate in the disruption
of the BBB by degrading the extracellular matrix, and
their pharmacological inhibition reduced BBB per-
meability and improved the outcome (mortality and
neuronal damage) in different experimental models
[11,23–26].
TARGETED IMMUNOMODULATION

Excessive inflammation significantly contributes to
meningitis-associated brain damage and thus an
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FIGURE 1. Selected pathogenetic aspects of pneumococcal meningitis and potential therapeutic targets. BBB, blood–brain
barrier; CNS, central nervous system; DAMP, danger-associated molecular pattern; IFN, interferon; mAB, monoclonal
antibodies; MASP, mannose-binding lectin-associated serine protease; MMP, matrix metalloproteinase; MRP, myeloid-related
protein; PECAM, platelet endothelial cell adhesion molecule; pIgR, polymeric immunoglobulin receptor; TLR, toll-like receptor.
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unfavorable disease outcome [27–31]. This hyper-
inflammatory reaction is related to the host’s initial
incompetence to handle pneumococcal infection in
the CSF, because of a lack of innate immune agents
including complement and other opsonins. Thus, S.
pneumoniae can proliferate almost unrestrained and
large quantities of immune-stimulatory pathogen-
associated molecular patterns can be released into
the CSF, resulting in a fulminant inflammatory
reaction [30

&

]. This resulting hyperinflammation
causes collateral tissue damage with release of
endogenous danger-associated molecular patterns
(DAMPs) which in turn can propagate and aggravate
inflammation. Therefore, several promising candi-
dates for new adjuvant therapies act by modulating
this detrimental hyperinflammatory reaction via
various mechanisms (Fig. 1).

Fast and efficient bactericidal antimicrobial sub-
stances that do not cause bacteriolysis prevent the
release of bacterial components and dampen the
inflammatory burst after initiation of antimicrobial
therapy. Daptomycin, which has been successfully
used in individual case reports of meningitis because
of Gram-positive drug-resistant bacteria, fulfills
these characteristics [32–36]. In these studies, dap-
tomycin given intravenously was found to penetrate
into the CSF at approximatively 0.8–5% of the
serum concentration (11.5% when corrected for
protein binding) [34,36–39]. Compared with ceftri-
axone it more rapidly cleared S. pneumoniae from the
0951-7375 Copyright � 2017 Wolters Kluwer Health, Inc. All rights rese
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CSF, decreased the levels of proinflammatory cyto-
kines in the CSF, and was associated with less neu-
ronal injury and improved outcome in several
experimental studies of pneumococcal meningitis
[40,41]. Given the increasing prevalence of penicil-
lin-resistant S. pneumoniae strains as well as the
emergence of ceftriaxone and fluoroquinolone-
resistant isolates, new antibiotics such as daptomy-
cin provide an additional therapeutic option for
severe or antibiotic-resistant cases [42–46]. How-
ever, daptomycin acts on Gram-positive pathogens
only and, thus, needs to be combined with a broad-
spectrum antibiotic for empirical therapy [41].

The complement cascade is activated via three
different pathways with the classic complement
path being the most important one for invasive
pneumococcal infection [47]. All pathways con-
verge not only to mediate opsonization of bacteria
for phagocytosis and/or direct cell lysis via the
membrane-attack complex but also to enhance
inflammation through the production of anaphyla-
toxins like complement component 5a (C5a) [27].
Pathogenic pneumococcal strains have developed
several virulence factors such as surface receptors, a
polysaccharide capsule, and pneumolysin to coun-
teract complement-mediated clearance from the
blood stream [27,48,49,50

&

]. Acquired or congenital
defects of the complement system are associated
with a higher susceptibility to and worse outcomes
of bacterial meningitis [27,51–53]. On the other
rved. www.co-infectiousdiseases.com 3
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hand, genetic deficiency and/or pharmacologic
inhibition of complement factors like complement
components 1q (C1q), 3 (C3), 5 (C5) and mannose-
binding lectin-associated serine protease (MASP) 2
were highly effective in suppressing the CNS inflam-
matory response to pneumococcal infection
[54

&&

,55–57] (Fig. 1). Accordingly, an association
between elevated levels of various complement fac-
tors and a more severe disease course and worse
prognosis were demonstrated in CSF samples from
patients with pneumococcal meningitis [58]. CSF
concentrations of complement factors and their
clinical correlations clearly differ between pneumo-
coccal and meningococcal meningitis [58]. In pneu-
mococcal meningitis, high CSF complement levels
were a strong indicator of disease severity and mor-
tality, whereas an inverse relationship between ter-
minal complement complex-9 levels and mortality
is observed in meningococcal meningitis [58].
Accordingly, complement activation by application
of recombinant properdin afforded protection
against meningococcal sepsis and reduced the sever-
ity of pneumococcal infection by enhancing bacte-
rial killing [59]. These data highlight different roles
of the complement system in the host defense
against major meningeal pathogens. Therapeutic
inhibition of the complement system needs, there-
fore, to be highly specific by preventing un-
controlled immune activation while preserving
complement-mediated bacterial killing as demon-
strated with specific C5a neutralization in a human
whole blood model of meningococcal sepsis [60].

Another potential new target might be the inhi-
bition of the proinflammatory mediator, macro-
phage migration inhibitory factor (MIF). MIF is a
central modulator of the innate immune system and
increased levels are associated with an adverse out-
come in severe bacterial infections including pneu-
mococcal pneumonia and meningitis [28

&

,61–64].
Additionally, inhibition of MIF signaling has been
shown to ameliorate disease outcomes in animal
models of pneumococcal and Escherichia coli sepsis
[65,66].

Recent experimental studies have also suggested
involvement of the proinflammatory cytokine
interferon (IFN)-g in pneumococcal meningitis,
which is released mainly by natural killer cells via
an inflammasome-induced, interleukin 18-medi-
ated mechanism [67,68]. In murine pneumococcal
meningitis models, IFN-g has been shown to be a
key modulator of proinflammatory cytokine pro-
duction via the induction of nitric oxide synthase
2 and to thereby mediate breakdown of the BBB
and ultimately impact disease outcome [67–70].
Accordingly, antibody-mediated inhibition as well
as genetic deficiency of IFN-g or components of the
4 www.co-infectiousdiseases.com
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interleukin 18-inflammasome pathway induced a
strong protective effect in murine models of pneu-
mococcal meningitis [67,68,71]. Importantly, these
effects of IFN-g were reproduced in different clini-
cally pathogenic S. pneumoniae strains making atten-
uation of the IFN-g mediated hyperinflammatory
response another promising target for adjuvant
therapy [68].

Several MMPs not only mediate brain damage by
degrading the extracellular matrix and increasing
BBB permeability but also participate in the modu-
lation of inflammation by virtue of their sheddase
activity. For example, a disintegrin and metallopep-
tidase (ADAM) domain 17, also known as tumor
necrosis factor-a converting enzyme (TACE), pro-
cesses precursor tumor necrosis factor into a soluble,
more active form which contributes to the spread of
inflammation. TACE, therefore, contributes to the
hyperinflammatory pathophysiology of bacterial
meningitis. In several experimental studies, MMP
inhibitors with TACE inhibiting activity attenuated
CSF inflammation in pneumococcal meningitis,
reduced brain damage and improved survival rate
and neurofunctional outcome rendering them
highly attractive candidates for adjuvant therapy
[11,24] (Fig. 1). Moreover, combining the effects
of MMP inhibitors with another modulator of the
inflammatory reaction, such as daptomycin may
increase the beneficial effects (Muri L, Grandgirard
D, Leib SL, unpublished data).

Massive inflammation is only little altered by
appropriate antibiotic therapy over days even
though complete CSF sterilization occurs within
hours. Inflammation-induced cell injury leads to
the release of DAMPs that further sustain inflamma-
tion and exacerbate damage [31,72]. Among the
DAMPs involved in this process are the myeloid-
related protein (MRP) 14 and high-mobility group
box-1 protein. When injected intrathecally, MRP14
was sufficient to induce meningitis in mice by acti-
vating toll-like receptor 4 and both MRP14 defi-
ciency and direct inhibition of MRP14–toll-like
receptor 4 interaction with paquinimod attenuated
disease outcome [31,73] (Fig. 1). Although treat-
ment with high-mobility group box-1 protein
inhibitors had no effect on the development of
meningitis, it led to a better resolution of inflam-
mation during antibiotic therapy, which was
accompanied by reduced brain disease and better
disease outcome [72].

In summary, several interesting candidates for
immunomodulatory adjunct therapy have been
identified recently. Among these, highly specific
complement system inhibitors, MMP/TACE inhib-
itors as well as nonbacteriolytic antibiotics such as
daptomycin seem to be the most promising ones in
Volume 30 � Number 00 � Month 2017
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Table 1. Mechanisms of action and stage of development of potential adjuvant therapies

Mechanisms of action Stage of development References

Paquinimod Direct and specific inhibition of
MRP14–TLR4 interaction

Cell culture and rodent experiments [31]

Anti-MIF antibody Attenuation of excess inflammatory
response of innate immune system

Cell culture and rodent experiments
Antibody used in phase I clinical
study for other indication

[28&,56–62]

Anti-IFN-g antagonists Antibody-mediated inhibition of IFN-g
prevents BBB breakdown and
reduces production of
proinflammatory cytokines

Cell culture and rodent experiments [63–68]

Specific complement
inhibitors

Blockade of complement factor C5a
or MASP2

Cell culture and rodent experiments [54&&,55,47,50&,
51–53]

Daptomycin Attenuation of antibiotic-mediated
hyperinflammation

Rodent experiments and sporadic
use in clinics

[31–33,35–41]

MMP/TACE inhibitors Inhibition of BBB disruption and/or
soluble cytokine release

Cell culture and rodent experiments [11,24,26,36]

BBB, blood–brain barrier; IFN, interferon; MASP, mannose-binding lectin-associated serine protease; MIF, migration inhibitory factor; MMP, matrix
metalloproteinase; MRP, myeloid-related protein; TACE, tumor necrosis factor-a converting enzyme; TLR, toll-like receptor.
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ameliorating disease severity and reducing mortality
in rodent experimental models. These findings
strengthen the hypothesis that a large extent of
neuronal injury in pneumococcal meningitis is
not caused by toxic effects from S. pneumoniae itself
but is rather mediated by the hyperinflammatory
response of the host’s immune system. No clinical
studies have been performed in humans thus far and
it remains to be elucidated whether these promising
results can be reproduced across species. Table 1
summarizes the mechanism of action and stage
of development of potential immunomodulating
adjuvant therapies.
NEURODEGENERATION AND
REGENERATION: ADDITIONAL
THERAPEUTIC TARGETS?

Histopathological studies document a wide spec-
trum of brain injury associated with pneumococcal
meningitis in humans, including cortical petechial
hemorrhages, focal necrotic lesions in cortical and
subcortical structures, and loss of myelinated fibers
in the white matter [74

&&

]. Additionally, mild-to-
moderate apoptosis of granular cells in the dentate
gyrus was found in more than two-thirds of cases in
a previous autoptic study [75]. More recently, how-
ever, no significant differences in the number of
apoptotic cells were detectable between meningitis
cases and control patients [74

&&

]. In animal studies,
the occurrence and degree of neuronal apoptosis
depend on multiple factors, such as the age,
strain, and species of the animal used as well
as the causative pathogen. Although previous
research focused primarily on strategies to prevent
0951-7375 Copyright � 2017 Wolters Kluwer Health, Inc. All rights rese
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neurodegeneration, recent work also investigated
neuroregenerative processes following meningitis.

Neurotrophic factors are key mediators of neu-
ronal survival and neurogenesis. Amongst them,
brain-derived neurotrophic factor (BDNF) is up reg-
ulated during pneumococcal meningitis in both
mice and humans via activation of the myeloid
differentiation primary response 88 (MyD88)/
nuclear factor kappa B (NF-kB) signaling pathway,
a classical pathway of the innate immune system
involved in the pathogenesis of pneumococcal men-
ingitis [76–78]. Activation of this pathway, there-
fore, seems to be essential to counter S. pneumoniae
infection but to also protect neurons from excess
injury and initiate functional recovery. As dexa-
methasone has been shown to attenuate MyD88/
NF-kB signaling [79], this link between neuroregen-
eration and immune response might also explain
why dexamethasone increased neuronal apoptosis
and impaired neuroregeneration in the hippocam-
pus in an infant rat model of pneumococcal menin-
gitis [14,80]. Conversely, treatment with exogenous
BDNF decreased hippocampal apoptosis and stimu-
lated neurogenesis and differentiation of neural
progenitor cells in the hippocampus following
pneumococcal meningitis in rodent models
[81

&&

,82,83]. However, whether these new neurons
can integrate into neuronal circuits and facilitate
functional recovery remains to be elucidated.
FUTURE PERSPECTIVES

One of the major causes for the reduced incidence of
pneumococcal meningitis has been the introduc-
tion and widespread use of pneumococcal conjugate
rved. www.co-infectiousdiseases.com 5
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vaccines [2]. The reduction in incidence is most
prominent for pneumococcal serotypes included
in pediatric conjugate vaccines but an increase in
invasive pneumococcal infections caused by non-
vaccine serotypes is observed [1

&

,2,84–86]. This
serotype replacement is of clinical importance as
it has been shown that the S. pneumoniae capsule
type has a direct effect on disease severity [50

&

].
Alternative pneumococcal vaccines using highly
conserved protein antigens such as pneumococcal
histidine triad protein D and pneumolysin are cur-
rently in development and have been shown to have
an acceptable safety and reactogenicity profile in
phase I/II studies. These novel vaccines promise
to provide broader coverage than the current con-
jugate vaccines and would thereby eliminate the
problem of serotype replacement [87–89].

Although primary prophylaxis through wide-
spread vaccination should remain the primary goal
in the future, we should also remain vigilant to the
emergence of multidrug-resistant S. pneumoniae
strains [45,46,90,91]. Therefore, the development
and clinical testing of novel antimicrobials is highly
warranted. The ideal profile of potential agents is a
good BBB penetration and a rapid bactericidal activ-
ity with limited release of bacterial structures caus-
ing the inflammatory burst associated with an
adverse outcome [40]. Also clinical trials investigat-
ing the combination of nonlytic antibiotics such as
daptomycin, as well as MMP/TACE and comple-
ment system inhibitors may yield promising results
(Muri L, Grandgirard D, Leib SL, unpublished data).
CONCLUSION

Although the incidence and mortality from pneu-
mococcal meningitis have declined over recent
years, several challenges remain. Pneumococcal
meningitis still has a mortality rate of up to 18%
and a substantial proportion of surviving patients
sustains debilitating neurologic sequelae. Even as
new protein-based pneumococcal vaccines promise
a broader coverage of pneumococcal serotypes, fur-
ther systematic research on adjuvant therapy and
new antimicrobials is highly warranted. Promising
targets focus on modulating the excessive immune
response that has been repeatedly linked to worse
clinical outcomes. Potential new therapeutic
options include nonlytic antimicrobials such as
daptomycin, highly specific complement system
inhibitors, and exogenous neurotrophic factors.
Optimally, modulating the immune response
should preserve its ability to eradicate the pathogen,
should limit the extent and duration of the hyper-
inflammation causing damage, and should favor the
initiation of regenerative processes.
6 www.co-infectiousdiseases.com
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