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1 Introduction

The Wilsonian effective action is very compelling from a conceptual point of view, but

the fact that an infinity of terms compatible with the symmetries of the model in question

appear in it drastically reduces its practical uses. There are however special sectors in which

the Wilsonian action can live up to its conceptual power. In a sector of large fixed global

charge Q, higher terms are suppressed by inverse powers of the large charge Q. Essentially,

the Wilsonian effective action in a sector of large charge contains therefore only very few

terms that are not suppressed and lends itself to explicit calculations of conformal field

theory (cft) data, such as the anomalous dimension and three-point functions.

In [1], field theories with global symmetries were studied in the sector where the value of

the global chargeQ is large. It was shown subsequently [2] that the low-energy excitations of

this sector are described by the general form of Goldstone’s theorem in the non-relativistic

regime and that the effective field theory describing a sector of fixed Q contains terms

which are suppressed by inverse powers of Q. These results can be verified on the lattice

and are in excellent agreement with the lattice computations [3]. Most of the existing

literature has verified and extended the large-charge methods of [1] for vector models of

the O(N) family [4–6].1 In this article, we venture to establish the applicability of large-

charge approach beyond the class of vector models. The next logical step is to study models

1A notable and recent exception being [7].
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in 2+1 space-time dimensions at the infrared (ir) fixed point where the order parameter is a

Hermitian traceless matrix, i.e. lives in AN−1 and the system has SU(N) global symmetry.

SU(N) matrix models are of interest as they are related to the CPN−1 model which

has been extensively studied in the condensed matter literature. It is believed to flow

to a conformal fixed point of the type we discuss here. Here, we will concentrate on the

Noether charge and not consider the physics associated to possible topological symmetries.

In the ultraviolet (uv), the CPN−1 describes a compact gauge field (associated to mag-

netic monopole defects) coupled to an N -component complex scalar that satisfies a norm

constraint (see [8] for a pedagogical introduction). At the critical point (which cannot be

easily accessed starting from a Landau-Ginzburg (lg) description), its universality class

is believed to describe the quantum transition between an SU(N) lattice antiferromagnet2

and a valence-bond-solid [12, 13]. The connection between the phase transition in a mi-

croscopic Hamiltonian and a low-energy continuum theory description still remains to be

verified, though. Therefore, in order to provide evidence for such a connection, it is of ut-

most importance to compare various universal properties arising from those two different

descriptions.

One of the reasons why using a standard lg approach to reach the critical point

is complicated is that the CPN−1 model is not invariant under parity. There is in fact

experimental evidence that the model undergoes a second-order phase transition for N =

2, 3, a first-order phase transition for N ≥ 4, and again a second-order one for N � 1 [14].

On the analytic side, valuable results have come from a large-N expansion of the CPN−1

model [15, 16]. More recently, the 1/N expansion in conjunction with the state-operator

correspondence of conformal field theory was used to study magnetic monopole operators

at the critical point of the CPN−1 model. In e.g. [17–19] the derived scaling dimension of

monopole operators was compared with the power-law decay of the valence bond solid at

the quantum critical point [20, 21].

A parity-invariant generalization has been proposed in [22] and in the special case of

N = 3 it is conjectured that the parity-invariant model exhibits a symmetry enhancement

at the critical point which is in the same universality class as the O(8) model. Evidence

for that via lattice simulations is provided in [23].

Our approach to studying the large-charge sector of SU(N) matrix models is similar

to the one used in [2]. We start by writing an effective Wilsonian action in 2+1 dimensions

which must be at least approximately scale-invariant. We look for homogeneous, fixed-

charge ground states and expand around the ground state to find the symmetry-breaking

pattern. We show that, like in the case of the vector model, large charge suppresses all

interactions. Our approach is quite general and the results generalizable, but we have

chosen to concentrate on the N = 3 case, as the algebra is much more tractable than

for N ≥ 4. In order to provide concrete results, we compute the conformal dimension

and a three-point function for the SU(3) matrix model. An interesting observation, and

ultimately the reason for the simplicity of our final results, is that at leading order in the

2Generally, SU(N) antiferromagnetic Heisenberg spin systems with N > 2 serve to model many physical

systems ranging from spin-orbit coupled transition metal compounds [9], to ultracold atoms in optical lattice

potentials [10, 11].
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charge, the model exhibits an Abelian structure as the low-energy physics is governed by

a single relativistic Goldstone boson. Despite starting from a global SU(3) symmetry, the

effective action at leading order resembles the ones of simpler Abelian cases and the explicit

results are similar to the ones found in [1–5].

Concretely, we start by writing a linear sigma model in the ir to find the ground state

and symmetry-breaking pattern. Like in the vector model, we find that a homogeneous

ground state is possible only if we fix a single U(1). The symmetry-breaking pattern how-

ever presents a surprise: when fixing a U(1) charge one would expect the SU(3) symmetry

to be explicitly broken to U(1)2. This is however not the case here: at leading order in

the charge, there is an accidental symmetry enhancement and the explicit breaking is to

U(2), for any choice of the fixed U(1) direction in the Cartan subalgebra. The sponta-

neous symmetry-breaking pattern is then U(2) → U(1) and there will be three Goldstone

degree of freedoms (dofs). Next, we write a non-linear sigma model for these Goldstone

dof and find that the situation is very similar to the one in the vector models, with one

relativistic and one non-relativistic Goldstone field. Finally, we use the Callan-Coleman-

Wess-Zumino [24, 25] (ccwz) formalism (as suggested in [5]) to compute the three-point

function for the insertion of two operators of large charge and one of generic charge and

we compute the large-charge behavior of the relevant fusion coefficients.

Extending the large-charge approach to matrix models yields results which are expected

based on our experience with the vector model [2], testifying to the general applicability

of our approach. The matrix models however exhibit a richer behavior than their simpler

cousins, giving rise to some phenomena that had not appeared before. As in the case of the

vector models, we find that if we want a homogeneous ground state, at least in N ≤ 3, we

can only fix one U(1) charge (i.e. a direction in the maximal torus). The low-energy (large-

charge) physics is fixed by the same symmetry-breaking pattern as in the vector models

and the large charge controls strong coupling. There is a simple formula for the conformal

dimensions which is essentially the same as in the vector models. The matrix models

however also show some new and unexpected behavior: the effective potential depends on

two parameters. For some values of these parameters, it is not possible to fix a generic

U(1) charge. We find moreover an accidental symmetry enhancement at large charge.

Our concrete results for the case of SU(3) are generalizable, but not general. We can

use the very same formalism to analyze any symmetry group SU(N). For N > 3, it turns

out that there are homogeneous solutions with more than one charge — this does not

happen in the vector models or in SU(3); presumably the physics will be similar to the

case of O(2)×O(2) discussed in [5].

The plan of this paper is as follows. We start out with the linear sigma model de-

scription of the SU(N) matrix models at large charge in section 2, finding the symmetry

breaking patterns associated to homogeneous solutions with one fixed charge. In section 3

we discuss the non-linear sigma model realization for SU(N) matrix theory at large charge,

which is more general than the linear sigma model description. In section 4 we use the

ccwz formalism to explicitly compute the fusion coefficients for the SU(3) matrix model.

In section 5 we end with conclusions and outlook. In appendix A we collect the conventions

for the algebra A2.
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2 Linear sigma model

In this section, we set up our problem in terms of a linear sigma model. We will make

an ansatz for the effective action at the conformal point, assuming scale invariance and

including terms with at most two derivatives. We will then look for homogeneous solutions

and determine the associated symmetry breaking pattern.

The starting point of our analysis is the Wilsonian effective action for a theory with

order parameter Φ ∈ AN−1. The Wilsonian action is often considered to be of limited use

as it contains infinitely many higher operators. The large-charge limit has however the

power to turn it into a useful object. In particular, we will see that we do not have to

postulate a symmetry-breaking pattern, but are able to derive it from the analysis of the

action.

Conformal symmetry requires scale invariance of the action and fixes the potential to

be a polynomial of order six in Φ and the conformal coupling of Φ. For the time being, we

neglect higher-derivative operators. We will show in the following that these contributions

are controlled in the large-charge expansion. Given these assumptions, an effective ir

Wilsonian action for Φ living in R× Σ (where Σ is a two-dimensional surface) is given by

S =

∫
R×Σ

dt dΣL =

∫
R×Σ

dt dΣ

[
1

2
Tr(∂µΦ ∂µΦ)− R

16
Tr Φ2 − V (Φ)

]
, (2.1)

where R is the scalar curvature of Σ and

V (Φ) = g1 Tr Φ6 + g2(Tr Φ3)2 + g3 Tr Φ4 Tr Φ2 + g4(Tr Φ2)3. (2.2)

We will use this action to find the symmetry-breaking pattern associated to fixing the

charge. The Euler-Lagrange equations of motion (eom) are found by varying S with

respect to Φ:

Φ̈ = −V ′(Φ). (2.3)

For the purpose of this work, we will limit ourselves to the case of N = 3, i.e. Φ ∈ A2,

where the action is invariant under the adjoint action of the group SU(3). This simplifies

the form of the potential due to the identities

Tr Φ4 =
1

2

(
Tr Φ2

)2
, Tr Φ6 =

1

3

(
Tr Φ3

)2
+

1

4

(
Tr Φ2

)3
, (2.4)

which are ultimately a consequence of the fact that there are only two invariant sym-

metric tensors in A2, namely the identity and the d-tensor. In fact, decomposing Φ on

an appropriate basis of generators λa = 2T a of the algebra as Φ = φaλ
a, we find using

eq. (A.4),

Tr Φ2 = 2δabφ
aφb, (2.5)

Tr Φ3 = dabcφ
aφbφc, (2.6)

Tr Φ6 =
1

3
dabcda′b′c′φ

aφbφcφa
′
φb

′
φc

′
+ 2δabδa′b′δa′′b′′φ

aφbφa
′
φb

′
φa

′′
φb

′′
. (2.7)
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This means that we can choose any two order-six polynomials in V to write the most

general potential, e.g.

V (Φ) = g1 Tr Φ6 + g2

(
Tr Φ2

)3
. (2.8)

In the special case of g1 = 0, the symmetry of the model is enhanced to O(8), acting on

the vector with the components (φ1, . . . , φ8), bringing us back to the vector model studied

in [2].

The model is only consistent if V (Φ) is bounded from below. Since V is a function

of Tr Φn, it is enough to consider the eigenvalues {a1, a2,−(a1 + a2)} of Φ. The potential

is bounded from below if it goes to +∞ when a1 or a2 diverge. If we introduce the

combinations

g0 =
1

4
g1 + g2, δ =

11g1 + 36g2

g1 + 4g2
, (2.9)

we find that the boundedness is assured if both λ and δ are strictly positive:

g0 > 0, δ > 0. (2.10)

This is only a necessary condition, though. We will see in the following that general homo-

geneous fixed-charge solutions may require more stringent conditions on the parameters.

2.1 Homogeneous ground state

In the spirit of [1, 2], we look for the most general homogeneous solutions to the eom

stemming from the Wilsonian effective action.3 If the system is compactified on R × S2,

the state-operator correspondence will map the quantum state to a scalar primary inserted

at the origin: the energy of the state coincides with the dimension of the operator.

The matrix Φ is Hermitian, so we can diagonalize it as

Φ = UAU †, (2.11)

where U is unitary and A is a real traceless diagonal matrix:

A =


a1

a2

. . .

aN

 , a1 + · · ·+ aN = 0. (2.12)

The SU(N) symmetry of the action is reflected in the existence of a conserved Noether

current

Jµ = iB[Φ, ∂µΦ], (2.13)

where B is some diagonal matrix. For N = 3, B = b ·1, where b is a real parameter chosen

such that the conserved charge will be quantized independently of the global properties

3This is not to say that more general inhomogeneous configurations do not exist or are not interesting,

see [6] for an analysis of inhomogeneous solutions at fixed charge in the O(4) model.
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of Φ which are not fixed by the symmetries. We will be mostly interested in the charge

density J0, which can be rewritten as

J0 = bU [[ω,A], A]U †, (2.14)

where ω is the angular velocity

ω = −iU †U̇ . (2.15)

The conserved charge Q is defined as ∫
Σ
J0 = Q, (2.16)

which in the case of a homogeneous solution becomes Q = J0 · Vol(Σ), and hence J̇0 = 0.

It is convenient to introduce also the matrix

K = U †J0U (2.17)

and think of it as the momentum associated to ω:

K = b

(
∂L
∂ω

)T
= b[[ω,A], A]. (2.18)

This allows us to write the Hamiltonian corresponding to the Lagrangian given in eq. (2.1)

in a compact form:

H =
1

2
Tr

(
π2
A + (∇A)2 +

[
U †∇U,A

]2
+ 2V (A)

)
+

1

2b2

∑
i 6=j

|Kij |2

(ai − aj)2 , (2.19)

where πTA = δL/δȦ. The relation between K and ω expressed in components is

Kij = bωij(ai − aj)2, (2.20)

which implies that the diagonal components of K vanish identically, Kii = 0.

Since we are looking for homogeneous solutions (∇Φ = 0), we have an effective

quantum mechanics (qm) problem, for which powerful methods originating from integra-

bility have been developed. We introduce the Lax matrix

L = −iU †Φ̇U = Ȧ+ i[ω,A] (2.21)

in order to write the eom (2.3) as

L̇+ i[ω,L] = −V ′(A). (2.22)

The diagonal part of the EOM. Let us study first the diagonal part of this equation.

The left-hand side (lhs) lives by construction in the algebra, which consists of traceless

matrices, so the eom implies

Tr
[
V ′(A)

]
= 0. (2.23)

– 6 –
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In our case,

V (A) =
R

16
TrA2 +

1

6

(
g1 TrA6 + g2 Tr

(
A2
)3)

. (2.24)

We can parametrize A in terms of Gell-Mann matrices:4

A =

a1

a2

a3

 =

α1 + α2

−α1 + α2

−α2

 = α1λ3 + α2λ8

√
3. (2.25)

Like this, the trace condition becomes

Tr
[
V ′(A)

]
= Tr

[
R

8
A+ g1A

5 + g2 Tr
(
A2
)2
A

]
= g1α2

(
(α2

1 + α2
2)2 − 4α4

2

)
= 0. (2.26)

For the case of g1 6= 0, where the model does not reduce to the O(8) vector model, this is

only satisfied (up to trivial permutations) if α2 = 0, i.e. if A = α1λ3. It follows that

V ′(A) =

(
R

8
a1 + 4g0a

5
1

)1

−1

0

 =

(
R

8
a1 + 4g0a

5
1

)
λ3. (2.27)

It is convenient to write the matrices ω and L explicitly in coordinates, separating the

diagonal part from the rest (no summation implied):

ωij = ωiδij +
Kij

b(ai − aj)2 , (2.28)

iLij = iȧiδij +
Kij

b(ai − aj)
. (2.29)

The diagonal part of the eom can now be written as

äi −
2

b2

∑
j 6=i

|Kij |2

(ai − aj)3
+
R

8
ai + V ′(A)ii = 0. (2.30)

We already know that when g1 6= 0, a2 = −a1 and a3 = 0. This means that we do not have

three independent equations, but one equation and a set of consistency constraints for the

matrix K:

ä1 −
2

b2a3
1

(
|K12|2

8
+ |K13|2

)
+
R

8
a1 + 4g0a

5
1 = 0, (2.31)

|K13|2 = |K23|2. (2.32)

We can choose a gauge in which K is real (observe that only the absolute value of K enters

the Hamiltonian (2.19)) and we find that K only depends on two parameters and can be

written as

K = ρ

 0 cos θ 1
2
√

2
sin θ

cos θ 0 1
2
√

2
sin θ

1
2
√

2
sin θ 1

2
√

2
sin θ 0

 = ρ

(
cos θλ1 +

1

2
√

2
sin θ(λ4 + λ6)

)
. (2.33)

4See appendix A for the conventions used here.
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How are ρ and θ related to the conserved charge density J0? First, we observe that because

of SU(N) invariance only the eigenvalues of J0 are physical. Since the matrices K and J0

are similar, they have the same spectrum:

spec(J0) = spec(K) =

{
ρ cos2 θ

2
, ρ

(
− cos2 θ

2
+ sin2 θ

2

)
,−ρ sin2 θ

2

}
. (2.34)

The conservation of J0 then implies that θ̇ = ρ̇ = 0 and then in turn K̇ = 0. The charge

density J0 can be interpreted as a vector in the space spanned by the maximal torus of the

symmetry group, which in the case of SU(3) is U(1) × U(1) and can be parametrized by

two parameters, its modulus and an angular variable. ρ corresponds to the modulus and

acts as a charge density, and the angle which parametrizes the embedding of J0 into the

maximal torus corresponds to θ.

We have found that, in the SU(3) case, a homogeneous solution to the eom can only

have one fixed charge density ρ. This is an important result. For two independent fixed

charges, no homogeneous solution exists. This is the same situation that was encountered

in [2].5 From now on, we will use ρ� 1 as an expansion parameter.

We can now come back to the diagonal eom (2.31). Given the form of the Hamiltonian

in eq. (2.19), requiring the lowest energy homogeneous solution means ΠA = 0, hence Ȧ = 0.

Under this additional assumption the determining equation for a1 = v√
2

becomes

− ρ2

b2v3
+
R

8
v + g0v

5 = 0. (2.35)

Solving this perturbatively in terms of ρ we find for the amplitude v

v =
1

2

(
−R+

√
R2 + 256g0(ρ/b)2

g0

)1/4

=
(ρ/b)1/4

g
1/8
0

(
1 +O

(
1

ρ

))
. (2.36)

Calogero-Moser. A special case in the A2 theory arises for tan θ = 2
√

2, when

K =
ρ

3

0 1 1

1 0 1

1 1 0

 =
ρ

3
(λ1 + λ4 + λ6). (2.37)

Then, the Hamiltonian for the homogeneous system is of Calogero-Moser type. In fact,

starting from any AN−1 Lagrangian (2.1), the Calogero-Moser Hamiltonian is given by

eq. (2.19) at the homogeneous solution,

H =
1

2

∑
i

π2
i +

1

2(Nb)2

∑
i 6=j

ρ2

(ai − aj)2
+ V (a1, . . . , aN ), (2.38)

where all |Kij | = ρ/N ∀i 6= j (see [26] for a comprehensive review). It describes a set

of N particles with the same charge density ρ/(Nb) repelling each other in an attractive

potential V (ai).

5This is not true in general for a matrix model. The existence of a single Abelian charge discussed here

is particular to the case of SU(3). Models with symmetry SU(N) with N > 3 do not have this property

and can give rise to more general fixed points with more than one fixed charge.
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This gives us an intuitive understanding for the effect of fixing the charge. Fixing

ρ 6= 0, we see that in the homogeneous ground state, the eigenvalues of Φ do not collapse

to the origin as one would expect in the Φ6 potential, but are distributed on the line like

particles in the ground state of a Calogero-Moser model. This behavior is only precise

in the special case tan θ = 2
√

2, but the qualitative picture remains the same for any

value of θ.

It should not be surprising that we have recovered a translation-invariant but non-

Lorentz-invariant model, since we work at fixed charge, i.e. in sectors where the Lorentz

invariance is broken.

The non-diagonal part of the EOM. Let us now consider the non-diagonal part of

the eom,

L̇ij = i[L, ω]ij , i 6= j. (2.39)

This implies charge conservation: commuting both sides of the eom in eq. (2.22) with A

(making its diagonal part drop) and invoking the Jacobi identity, we find

[L̇, A] = i [[L, ω], A]
Jacobi

= i [[L,A], ω] + i [L, [ω,A]]
(2.21)

= i [[L,A], ω]−
[
L, Ȧ

]
. (2.40)

Using that the Lax form of the K matrix in the A2 algebra is

K = −ib[L,A], (2.41)

we can rewrite eq. (2.40) as

K̇ = −i[ω,K] ⇔ J̇0 = 0. (2.42)

This is the Euler-Arnold equation for the generalized rigid body. Charge conservation

follows from the off-diagonal part of the eom in Lax form and it is independent of the

potential V (A).6

We have seen that on the ground state, K̇ = 0. It follows that for generic values of θ,

ω commutes with K and, in the gauge that we have used until now, it must have the form

ω = µ


1
2 cos θ 1

2 cos θ 1√
2

sin θ
1
2 cos θ 1

2 cos θ 1√
2

sin θ
1√
2

sin θ 1√
2

sin θ − cos θ

 = µ

[
cos θ

2

(√
3λ8 + λ1

)
+

sin θ√
2

(λ4 + λ6)

]
, (2.43)

in terms of

µ =

√
R

8
+ g0v4 . (2.44)

Again, the only gauge-invariant information is the spectrum:

spec(ω) = {µ, 0,−µ}. (2.45)

This means that we can pick a different gauge where ω is diagonal and is written as

ω = −iU †U̇ with

U = eiµthU0, (2.46)

6As in the vector model, this follows by varying the angular dof.
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where

h =

1

0

−1

 (2.47)

and U0 is the matrix that diagonalizes both K and ω,

U0 =


1√
2

cos θ2
1√
2

cos θ2 sin θ
2

− 1√
2

1√
2

0

− 1√
2

sin θ
2 −

1√
2

sin θ
2 cos θ2

 . (2.48)

The ground state. We can now write the form of the general homogeneous ground

state, collecting the results that we have found above:

Φ(t) = Ad[U(t)]A = Ad[eiµthU0]A = Ad[eiµth]Φ0, (2.49)

where h and U0 are defined respectively in eq. (2.47) and eq. (2.48), and 〈A〉 = v√
2
λ3. The

constant part of the vacuum expectation value (vev) is now given by

Φ0 = Ad[U0]A =
v√
2

Ad[ei
θ
2
λ5 ]λ1 =

v√
2

 0 − cos θ2 0

− cos θ2 0 sin θ
2

0 sin θ
2 0

 , (2.50)

with v being the constant solution to the radial equation (2.36). All in all, in the chosen

gauge we thus have

Φ(t) =
v√
2

 0 −eiµt cos θ2 0

−e−iµt cos θ2 0 eiµt sin θ
2

0 e−iµt sin θ
2 0

 . (2.51)

The only thing that remains to do is to relate µ to the charge density ρ. This is done by

using the definition of the conserved current:

J0 = iB
[
Φ, Φ̇

]
= bµv2

cos2 θ
2

− cos2 θ
2 + sin2 θ

2

− sin2 θ
2

 , (2.52)

whence (by comparing to (2.34)) we conclude immediately that

µ =
ρ

bv2
=

ρ

4b

(
−R+

√
R2 + 256g0(ρ/b)2

g0

)−1/2

= g
1/4
0

(ρ
b

)1/2
(

1 +O
(

1

ρ

))
. (2.53)

It is important to realize that there is only one control parameter, namely the conserved

charge density ρ. It will however be convenient in the following to use either v = O
(
ρ1/4

)
or µ = O

(
ρ1/2

)
to write asymptotic expansions in the limit of ρ� 1.

Plugging the solution (2.51) into the Hamiltonian (2.19), we can calculate the conden-

sate energy density

E0 =
(µv)2

2
+
Rv2

16
+
g0v

6

6
. (2.54)
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Using the relations (2.36) and (2.53), it can be expressed entirely in terms of the charge

density ρ:

E0 =
2

3

λ1/4

b3/2
ρ3/2 +

1

16

R

g
1/4
0

√
b

√
ρ+O

(
1
√
ρ

)
. (2.55)

We can now use this result to calculate the leading contribution to the anomalous dimen-

sion. By the state-operator correspondence, the condensate energy on the sphere is the

leading contribution to the anomalous dimension. Using that the Ricci scalar RS2 = 2

for a two-sphere of radius 1 and Q = ρV , where V = 4π is the volume of the sphere, we

eventually have:

D(Q) =
2

3

g
1/4
0

b3/2

(
Q

4π

)3/2

+
1

8

1

g
1/4
0

√
b

(
Q

4π

)1/2

+O
(

1√
Q

)
. (2.56)

We see that we find the same universal behavior found in [1, 2]. In the next section, we

will study the fluctuations to find the corrections to this leading behavior.

2.2 Fluctuations

Explicit symmetry breaking. Now that we have found an explicit expression for the

fixed-charge homogeneous solution to the eom, we want to quantize the fluctuations on

top of it. It is convenient to write the field Φ as

Φ = Ad[eiµth]Φ̃, (2.57)

where Φ̃ contains both the constant vev Φ0 and the fluctuations. Substituting this expres-

sion into the Lagrangian, we find that µ takes the role of a chemical potential for the U(1)

symmetry generated by h:

L =
1

2
Tr
(
∂µΦ̃ ∂µΦ̃

)
+ iµTr

(
[Φ̃,

˙̃
Φ]h
)
− µ2

2
Tr
[
h, Φ̃

]2
− V (Φ̃), (2.58)

thus explicitly breaking the SU(N) symmetry to a subgroup H that contains the centralizer

of h:

H ⊇ CG(h) = {g ∈ G|Ad[g]h = h}. (2.59)

This is consistent with the general observation in [2] that the quantum Hamiltonian corre-

sponding to a fixed-charge classical system has a chemical potential term.

In our case, N = 3 and h = diag(1, 0,−1), so we are left with the maximal torus

U(1)×U(1) of SU(3). We will see in the following that this is actually too restrictive and

that at leading order in ρ, there is an accidental symmetry enhancement to U(2).

Accidental symmetry enhancement and spontaneous breaking. On the fixed-

charge ground state 〈Φ(t)〉, the field Φ̃ develops a constant vev
〈

Φ̃
〉

= Φ0 which in

general breaks the unbroken H spontaneously to some subgroup H ′. Goldstone’s theorem

tells us that the low-energy physics is described by dim(H/H ′) massless degrees of free-

dom. Even though the full theory is Lorentz invariant, we are considering a fixed-charge

sector. This means that we break SO(1, 2) to SO(2). It follows that in general, we expect
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both relativistic and non-relativistic massless particles. In particular for N = 3, the Φ0

in eq. (2.50) spontaneously breaks U(1)2 to nothing, thus we are naively expecting two

Goldstone dof.

To explicitly investigate the fluctuations around the classical ground state found in

eq. (2.49), one has to start with a coset parametrization of the form

Φ = Ad[eiµth] Ad[ei
θ
2
λ5 ] Ad[eiφ̂aT

a
]

(
v√
2
λ1 + Φ̂r

)
, (2.60)

where Φ̂r summarizes the “radial” directions that commute with λ1, and T a are the re-

maining generators of the algebra, i.e. 〈T a〉 = {g ∈ g|[g, λ1] 6= 0}. In general, φ̂a will

be a Goldstone if the corresponding T a commutes with h. On the other hand, a stable

expansion around 〈Φ(t)〉 always implies that the radial modes in Φ̂r are massive.

Let us separate, for the moment arbitrarily, the T a into (Σα, N b) where the Σα generate

the A1 subalgebra that contains h, i.e.

Σ1 = λ4, Σ2 = λ5, Σ3 =

√
3

2
λ8 +

1

2
λ3 = h , (2.61)

and the N b are the remaining generators in {T a},

N1 = λ6, N2 = λ2, N3 = λ7. (2.62)

In order to obtain diagonal kinetic terms in the field expansion, it is convenient to refor-

mulate the coset parametrization up to corrections of higher order in µ:

Φ = Ad[eiµth] Ad[Uπ] Ad[Uϕ]

(
v√
2
λ1 + Φ̂r

)
+O

(
µ−1

)
(2.63)

with

Uπ = exp
(
i
π3

v
Σ3
)

exp
(
i
π1

v
Σ1
)

exp

(
i

(
θ

2
+
π2

v

)
Σ2

)
, (2.64)

Uϕ = exp
(
i
ϕ1

2v
N1 + i

ϕ2

v
N2 + i

ϕ3

v
N3
)
, (2.65)

where the normalization for the fields π and φ is chosen to result in a canonical kinetic

term. We also decompose the radial fluctuations explicitly as

Φ̂r =
1√
2

(r1λ1 + r2λ8). (2.66)

Substituting this parametrization of the fluctuations into the Lagrangian and expanding

to leading order in the charge — which coincides with second order in the fields — we find
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(up to boundary terms):

L(2) =
µ2v2

2
− 1

6
g0v

6 − 1

16
Rv2

+
1

2

(
3∑
i=1

(∂µπi)
2 +

3∑
i=a

(∂µϕa)
2 + (∂µr1)2 + (∂µr2)2

)
+ 2µr1π̇3 − 2µπ1π̇2 + 2µ (sin θϕ2 + 2 cos θϕ3) ϕ̇1 − 2

√
3µ sin θr3ϕ̇1

+
1

2
µ2r2

1 +
3

2
µ2ϕ2

1 −
1

2
µ2 cos2 θϕ2

2 + µ2 sin 2θϕ2ϕ3 +

(
1

2
+ cos 2θ

)
µ2ϕ2

3

−
√

3µ2
(
sin2 θϕ2 + sin 2θϕ3

)
r2 +

3

2
µ2 sin2 θr2

2+

−
(

5

2
g0v

4 +
1

16
R

)
r2

1 −
(

5

6
g0v

4 − 2g2v
4 +

1

16
R

)
r2

2 +O(1/v).

(2.67)

As expected, at this order, more fields have become massless. Together with the bona fide

Goldstone π3, corresponding to the symmetry π3 → π3 + ε of the fixed-chemical-potential

action, there are two approximate (in the sense of large charge) Goldstone fields π1 and

π2 which together parametrize the U(2)/U(1) = SU(2) coset. Physically, they relate vacua

with the same condensate energy but different charge assignment (different θ in (2.48)).

This means that — at leading order in Q — the spontaneous symmetry breaking pattern

is U(2)→ U(1) and we expect three massless dof. In total, we thus have

SU(3)
explicit−−−−→ U(2)

spontaneous−−−−−−−→ U(1). (2.68)

In order to study the low-energy physics, it is convenient to pass to a non-linear sigma

model approach, which we obtain by integrating out all the massive dof and describing

the low-energy physics in terms of a field U ∈ SU(2). In this framework, it will also be

easier to show the suppression of higher-derivative terms and quantum effects by 1/Q.

Before doing this in section 3, we first derive the dispersion relations for the Goldstones

in the linear sigma model framework and comment briefly on the massive modes.

Dispersion relations. Starting from the quadratic Lagrangian in eq. (2.67) it is straight-

forward to read off the inverse propagator in momentum space D−1(k), which takes a

block-diagonal form7

D−1(k) =

(
D−1
π (k) 0

0 D−1
ϕ (k)

)
, (2.69)

with

D−1
π (k)

∣∣∣∣
r1,π3,π1,π2

=


k2 − k2

0 + 4µ2 − R
2 −2ik0µ 0 0

2ik0µ k2 − k2
0 0 0

0 0 k2 − k2
0 2ik0µ

0 0 −2ik0µ k
2 − k2

0

 (2.70)

7The fields are ordered as {r1, π3, π1, π2, ϕ1, ϕ2, ϕ3, r2}.
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and

D−1
ϕ (k) =

k
2 − k20 − 3µ2 2ik0µ sin θ 4ik0µ cos θ −2i

√
3k0µ sin θ

−2ik0µ sin θ k2 − k20 + µ2 cos 2θ −µ2 sin 2θ
√

3µ2 sin2 θ

−4ik0µ cos θ −µ2 sin 2θ k2 − k20 − µ2(1− 2 cos 2θ)
√

3µ2 sin 2θ

2i
√

3k0µ sin θ
√

3µ2 sin2 θ
√

3µ2 sin 2θ k2 − k20 −m2
r2

 , (2.71)

where m2
r2 = µ2

(
4g2
g0

+ 1
6 + 3

2 cos 2θ
)

+ R
(
g2
2g0
− 1

12

)
. Looking at the mass terms of the

radial modes r1 and r2 it becomes immediately clear that any R-dependent contributions

to the fluctuations are sub-leading.

Goldstone modes. Starting from D−1
π (k), which does not depend on the angle θ which

describes the embedding of the fixed charge in the maximal torus,

• the first 2 × 2 block describes, after diagonalizing, a massive mode (r1 to leading

order) coupled to the universal relativistic Goldstone χ:

ωχ =
|k|√

2
+O

(
µ−1

)
, ωr1 = 2

√
2µ+O

(
µ0
)
. (2.72)

• The second 2× 2 sub-block of (2.70) describes the non-relativistic Goldstone sector,

ω−π =
|k|2

2µ
+O

(
µ−2

)
, ω+

π = 2µ+
|k|2

2µ
+O

(
µ−2

)
, (2.73)

resulting from an accidental symmetry enhancement which happens at leading order

in the charge ρ.

These are precisely the same low-energy dof that appear in the description of the O(4)

vector model [2].

The Casimir energy of the Goldstones gives the first correction to the conformal dimen-

sion eq. (2.56); it is however easier to discuss this in the framework of the non-linear sigma

model, which we do in section 3, where we also prove that the interactions are controlled

by negative powers of the charge.

Massive modes. By diagonalizing D−1
ϕ (k) given in eq. (2.71) we determine the disper-

sion relations of the spectator fields:

m1,2
N = µ, m±N = µ

√
δ + 21±

√
(δ − 6)2 − 54(δ − 9) cos 2θ + 567

√
6

, (2.74)

where we have used the parameter δ introduced in eq. (2.9).

First observe that the potential is bounded from below if δ > 0, which assures that the

inner square root in m±N is real. Moreover, m+
N is always real and parametrically heavy,

m+
N = O(µ).

We must be more careful with m−N , though. If 0 < δ < 6, the argument of the square

root can become negative and we get a stable mode (and a sensible large-charge expansion)

only for some values of the angle θ, namely only if

cos(2θ) ≤ 3− δ
δ − 9

. (2.75)
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g1

g2

allowed region

only for some

charges

unbounded potential

Figure 1. The validity regions in the (g1, g2) plane. In the upper region (δ > 6) the large charge

expansion is valid for any fixed choice of J(ρ, θ). In the leftmost wedge (0 < δ < 6) there is a

perturbative meaningful expansion only for certain values of θ. The bottom region (g0 < 0) is not

allowed because the scalar potential is not bounded.

We find that even if the potential is bounded from below (δ > 0), there exists a region in the

space of the parameters (g1, g2) where homogeneous fixed-charge solutions are possible only

for certain ways of embedding the charge vector J0 in the maximal torus of the symmetry

group, parametrized by the angle θ (see figure 1).

The θ = 0 special point. The accidental symmetry enhancement to U(2) happens for

generic values of θ. In the special case of θ = 0, however, the off-diagonal eom, eq. (2.42),

allow for yet another ω, implying another possible choice for the chemical potential (re-

specting always charge quantization):

hθ=0 =

1

−1

0

 . (2.76)

Performing the same analysis as above, we find that the symmetry-breaking pattern for this

case is U(1)2 → U(1). No accidental symmetry enhancement happens: there is only one

relativistic Goldstone χ and all other modes are parametrically massive. The non-linear

sigma model for such a low-energy situation has already been discussed in [1, 5].

Note that the same freedom exists in the vector model [2], where the homogeneous

ground state of the O(2N) model can be coupled via the chemical potential in different

ways, resulting in the symmetry-breaking patterns U(k)→ U(k−1) for any value of k ≤ N .

3 Non-linear sigma model

The main purpose of the analysis of the previous section was to find the symmetry-breaking

pattern resulting from studying the physics of the U(N)-symmetric model in a sector of

fixed U(1) charge.
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Now that we know that for N = 3, at leading order in the charge density ρ, the

pattern is U(2) → U(1), we can integrate out all the massive dof and write an effective

action for the remaining Goldstones. In fact, according to the general philosophy of low-

energy effective actions, any Lagrangian that captures the right symmetries will describe

the correct physics [27].

Effective action. We want to write an action for a field U in the coset U(2)/U(1) =

SU(2) which is approximately scale-invariant, i.e. that only contains terms of dimension

three and respects a SU(2)L × SU(2)R symmetry. The action will contain derivatives of U

and terms of the type

‖∂U‖ =
√

Tr(∂µU † ∂µU), (3.1)

which we can think of as resulting from integrating out the massive dof. More precisely,

the action will have the form of an infinite sum of terms with arbitrary derivatives of U in

the numerator and only powers of ‖∂U‖ in the denominator.

In order to make this effective Wilsonian action useful, we will expand it around the

fixed-charge ground state of section 2.1, so that ∂0U = O(µ). The analysis of the leading-

order terms is then analogous to the one for the O(2) model discussed in [1] and results in

L =
c1

3
√

2
‖∂U‖3 − c2√

2
R‖∂U‖+O

(
µ−1

)
, (3.2)

where R is the scalar curvature, and c1 and c2 are constants.

That the effective action for terms with positive ρ-scaling has only two parameters is

consistent with the observation that the fluctuations around the ground state in the linear

sigma model only depend on a linear combination of the couplings g1 and g2 and on the

charge coupling b.

The theory is invariant under the action of SU(2)L × SU(2)R and the corresponding

Noether currents are

JLµ = cJ(U)
(
i ∂µUU

†
)
, JRµ = cJ(U)

(
−iU † ∂µU

)
, (3.3)

where we have introduced cJ(U) to abbreviate the frequently appearing factor

cJ(U) ≡ 1√
2

(
c1‖∂U‖ − c2

R

‖∂U‖

)
. (3.4)

It is also convenient to introduce the left-/right-invariant Maurer-Cartan forms8

ωL ≡ −iU †U̇ and ωR ≡ iU̇U † , (3.5)

so that

‖∂U‖2 = Tr
(
ω2
L − |∇U |

2
)

= Tr
(
ω2
R − |∇U |

2
)
. (3.6)

Expressing the Lagrangian solely in terms of the angular velocity ωL, it is evident that

ωL and the zero-component of the Noether current JR0 in eq. (3.3) are in fact conjugate

variables:

JR0 =

(
δL
ωL

)t
= cJ(U)ωL, (3.7)

8In the language of [28] ωL is the angular velocity in the body and ωR is the spatial angular velocity.
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and the same applies for ωR and JL0 . Thus, it is straightforward to write down9 the

Hamiltonian density, e.g. in terms of JR0 current matrix:

H = Tr
(
JR0 ωL

)
− L

∣∣∣∣
ωL=JR0 /cJ (U)

= cJ(U) Tr
(
ω2
L

)
− c1

3
√

2
‖∂U‖3 +

c2R√
2
‖∂U‖

∣∣∣∣
ωL=JR0 /cJ (U)

.

(3.8)

Homogeneous ground state. Under the assumption of homogeneity in space, i.e.

∇U = 0, we vary the action associated to (3.2) to derive the Euler-Lagrange eom:

d

dt
ωL =

d

dt
ωR = 0 . (3.9)

We restrict our analysis to the SU(2) case describing the symmetry-breaking pattern

U(2)→ U(1) that we have found in the previous section. A convenient explicit parametriza-

tion is the one in terms of Euler angles:

UE(π1, π2, π3) = eiπ3σ3eiπ1σ2eiπ2σ3 =

(
ei(π3+π2) cosπ1 ei(π3−π2) sinπ1

−e−i(π3−π2) sinπ1 e
−i(π3+π2) cosπ1

)
, (3.10)

where σi are the Pauli matrices and the angles take the values π3 ∈ [0, π], π1 ∈ [0, π/2] and

π2 = [0, 2π). The matrices ωL and ωR are not independent since ωR = −U †ωLU , and for

SU(2) they share the same spectrum:

spec(ωL) = spec(ωR) = {±‖∂U‖}, (3.11)

‖∂U‖2 = π̇2
3 + π̇2

2 + π̇2
1 + 2 cos(2π1)π̇3π̇2. (3.12)

It follows that the eom ω̇L = ω̇R = 0 implies that

d

dt
‖∂U‖ = 0. (3.13)

The energy is an increasing function of ‖∂U‖ so, in order to minimize it keeping ωL 6= 0

and ωR 6= 0, we must have 
π̇3 = µ1 = const.

π̇2 = µ2 = const.

π1 = const.

(3.14)

Then ωL takes the form

ωL =

(
−µ2 cos 2π1 − µ1 µ2 sin 2π1e

2iµ1t

µ2 sin 2π1e
−2iµ1t µ2 cos 2π1 + µ1

)
. (3.15)

9Equivalently, one could have defined π =
(
δL
δU̇†

)t
= 1

2
√
2

(
c1‖∂U‖+ c2

R
‖∂U‖

)
U̇ and Legendre trans-

formed to H = Tr
(
πU̇† + π†U̇

)
− L.
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This reduces eq. (3.9) to a single eom:

µ1µ2 sin 2π1 = 0, (3.16)

which is satisfied by

π1 = 0 or π1 =
π

2
or µ1 = 0 or µ2 = 0 . (3.17)

All these conditions eventually lead to the classical ground state

U(t) = e−iµtσ3eiπ1σ2 . (3.18)

The unique coefficient µ = µ1 ± µ2 characterizes the time-dependence of the classical

solution, while π1 is a constant which is fixed by a gauge choice.

Once more we find that if we restrict ourselves to homogeneous solutions we can only fix

one U(1) action (here the left and right actions are identified). Obviously there are more

general solutions where µ1 and µ2 are independent, but they will not be homogeneous.

Solutions of the type eiµ1tσ3eiπ1(x)σ2eiµ2tσ3 have been recently discussed in [6].

If we pick 〈π1〉 = π/2, the solution representing our vev takes the form

U(t) =

(
0 e−iµt

−eiµt 0

)
(3.19)

and the Noether currents on this classical ground state are diagonal:

JL0 = JR0 = µ2

(
c1 −

c2R

2µ2

)
σ3, (3.20)

where
√

2µ = ‖∂U(t)‖. It is natural to fix the charge density for the adjoint action

J0 = JL0 + JR0 = ρσ3 (3.21)

and use ρ � 1 as the controlling parameter or, equivalently, expand in powers of µ2 =

(ρ+ c2R)/(2c1) = O(ρ).

Fluctuations. We can now study the quantum problem, i.e. the dynamics of the fluctu-

ations over the solution in eq. (3.18). It is convenient to parametrize the generic element

U starting from the gauge 〈π1〉 = π/4 and write:

U = UE

(
π

4
+

π̂1√
2c1µ

,
π̂2√
2c1µ

,−µt+
π̂3√
4c1µ

)
= exp

[
i

(
− µt+

π̂3√
4c1µ

)
σ3

]
exp

[
i

(
π

4
+

π̂1√
2c1µ

)
σ2

]
exp

[
i

(
π̂2√
2c1µ

)
σ3

]
,

(3.22)

where the normalization of the fluctuating fields is chosen such that when expanding the

effective action (3.2), the kinetic terms are canonical. Expanding10 at leading order in µ

10We omit the hat for ease of notation.
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we find:

L =
2

3
c1µ

3 − µc2R

+
1

2
π̇2

3 −
1

4
(∇π3)2

+
1

2
π̇2

1 −
1

2
(∇π1)2 +

1

2
π̇2

2 −
1

2
(∇π2)2 + 2µπ1π̇2

+
2

3c1
π3

1π̇2 +O
(
µ−1/2

)
.

(3.23)

Note that in this case the expansion in µ does not coincide with the expansion at quadratic

order in the fields, because of the quartic interaction π3
1π̇2. We will see that once the fields

are rewritten in terms of the canonical oscillators that diagonalize the Hamiltonian, this

term ends up being negligible.

Let us consider the various constituents of the action separately. We have

• a constant term with two contributions of order O
(
ρ3/2

)
and O

(
ρ1/2

)
. This is related

to the energy of the ground state, which gives the dominant contribution in the large-ρ

expansion.

• a relativistic massless field π3 with dispersion relation ω = 1√
2
k + O

(
ρ−1/2

)
. This

is the first contribution of order O
(
ρ0
)

that we encounter and it is precisely the

same dominating term that appears in the O(N) vector model. Its contribution to

the energy is due to the Casimir effect and for the unit two-sphere Σ = S2, it is

c0 = −0.093. This is the only quantum correction which is not controlled by the

large charge.

• a pair of fields π1 and π2 which are coupled via a quadratic term π1π̇2 and a quartic

term π3
1π̇2.

Let us now concentrate on the latter terms. If we limit ourselves to quadratic order in the

fields, we can write the inverse propagator

D−1(k)

∣∣∣∣
π1,π2

=

(
k2 − k2

0 −2ik0µ

2ik0µ k2

)
, (3.24)

which we recognize as describing a massless complex scalar field ϕ = 1√
2

(π1 + iπ2) in

presence of a chemical potential:

L = (∂t+iµ)ϕ∗(∂t−iµ)ϕ− |∇ϕ|2 − µ2|ϕ|2. (3.25)

The corresponding quantum Hamiltonian

H = $∗$ +∇ϕ∗∇ϕ+ µ2ϕ∗ϕ− µ($ϕ−$∗ϕ∗) (3.26)

has already been diagonalized in [2] by going to momentum space and decomposing the

canonical variables ϕ,$ in terms of Heisenberg oscillators a and b:

ϕ(k) =
1

√
2 (p2 + µ2)1/4

(
a(k) + b†(−k)

)
,

$(k) = −i
(
p2 + µ2

)1/4
√

2

(
a(k)− b†(−k)

)
.

(3.27)
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From the expression for ϕ(k) we read off the scaling of the real Goldstone fields, once

expanded in the basis of canonical oscillators,

π1(k) =
1√
2

(ϕ(k) + ϕ∗(−k)) ∼ 1

2
√
µ

(
a(k) + a†(−k) + b(k) + b†(−k)

)
, (3.28)

π2(k) =
−i√

2
(ϕ(k)− ϕ∗(−k)) ∼ −i

2
√
µ

(
a(k)− a†(−k)− b(k) + b†(−k)

)
, (3.29)

and the final form of the diagonalized quadratic Hamiltonian is

H =
(√

k2 + µ2 − µ
)
a†(k)a(k) +

(√
k2 + µ2 + µ

)
b†(k)b(k), (3.30)

which shows that in the large-charge limit, a is massless and b is massive.

Higher operators and quantum corrections. After having diagonalized the

quadratic Hamiltonian, we are ready to move on to the interaction terms.

The first term appearing is the quartic interaction in the Lagrangian in eq. (3.23):

π3
1π̇2. Both the fields π1 and π2 are of order O

(
µ−1/2

)
when expanded in terms of canonical

oscillators. This means that π3
1π̇2 gives a contribution of order O

(
µ−2

)
= O

(
ρ−1
)

which is

negligible with respect to the leading terms in the Hamiltonian. This justifies the choice

of considering only up to quadratic terms in the expansion in the fields.

A similar reasoning can be applied to all the quantum and higher-derivative corrections

to the effective action in eq. (3.2). The intuitive way of understanding this is that since

we are working in a sector of fixed charge Q, we have an effective scale µ which controls

both the higher-derivative terms and the effective dimensionful couplings, thus bypassing

one of the main technical hurdles of the standard formulation of the Wilsonian action for

a second-order phase transition.

The final result is the same as in [2]. The leading correction to the energy of the

ground state comes from the Casimir energy of the Goldstones, which is the only term

of order O
(
ρ0
)

and receives no further corrections. More precisely, the only contribution

comes from the relativistic field π3 and is the same as for the O(N) vector models.

Concretely, there are two leading contributions to the energy of the lowest state: the

energy of the ground state and the Casimir energy EC(Σ) for a massless boson with speed

of light 1/
√

2 compactified on Σ:

E = 〈H〉+EC(Σ) =
4c1

3
µ3+EC(Σ) =

1

3

√
2

c1
ρ3/2+

c2√
2c1

Rρ1/2+EC(Σ)+O
(
ρ−1/2

)
, (3.31)

where in the last equality we have used µ2 = (ρ+ c2R)/(2c1), which follows from fixing

the adjoint Noether current in eq. (3.21).

Using the state-operator correspondence and choosing Σ = S2 we recover the formula

for the conformal dimension of the lowest primary of charge Q:

D(Q) =
c3/2

2
√
π
Q3/2 + 2

√
πc1/2Q

1/2 − 0.093 +O
(
Q−1/2

)
, (3.32)

where we used EC(S2) = −0.093 [29]. This expression is completely analogous to the one

for the O(N) model. The only difference is in the precise value of the coefficients c3/2 and

c1/2 that cannot be computed in this framework but require a different non-perturbative

analysis.
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4 CCWZ formalism and fusion coefficients

The main result of this section is the calculation of a three-point function for our cft in the

limit of large charge. As in the previous section, we take advantage of the state-operator

correspondence and map R3 to Rt × S2 with the dilatation operator in R3 identified with

the time-translation operator (i.e. the Hamiltonian) in Rt × S2.

4.1 Spontaneously broken internal and space-time symmetries

We want to reproduce the symmetry breaking pattern SU(2) → Φ together with the break-

ing of the conformal group SO(d+ 1, 1):

SO(d+ 1, 1)× SU(2)→ SO(d)×D′, (4.1)

where D′ is the combination of dilatations and internal rotations that remain unbroken in

the fixed-charge sector. We introduce a non-coordinate basis êa = eµa ∂µ and its inverse

êa = eaµ dxµ. In terms of infinitesimal generators, we have

broken generators :


Bi ≡ J0i boosts

D dilations

σα internal global symmetries

unbroken generators: :

{
P ′a = Pa + µδ0

aσ3 translations

Jij rotations,

(4.2)

where D ≡ P0 is identified with the dilatation operator on the cylinder and the ordinary

Pauli matrices σα act as the internal symmetry generators in our application. The Bi denote

the generators of broken Lorentz boosts, while P ′0, Pi and Jij for i, j = 1, 2 parametrize

the D′ × SO(3) invariance of the vacuum state.

We are breaking scale invariance, which means that a dilaton will appear in the

spectrum. Using the ccwz prescription, we can introduce a representative of the full

coset space,

W = eiy
aPaeiσDeiη

iBiUE(π1, π2, π3), (4.3)

with the internal UE given in (3.10). The tangent space coordinates ya(x), a = 0, . . . , d−1

(which transform under translations Pa) are generically taken as functions of the space-

time coordinates xµ. The dilaton σ, rapidities ηi as well as the internal π1, π2, π3 are the

Goldstones associated to the breaking pattern (4.2). They are however not independent

dof in the low-energy regime. We will eliminate this redundancy by imposing a set of

inverse Higgs constraints.

The simplest way to write the effective action is to introduce a covariant derivative

with respect to the space-time symmetries:

D = d + i
(
êa − dya + Ωa

by
b −Aya

)
Pa +

i

2
ΩabJab + iAD, (4.4)

where Ωab is the connection one-form, A is the gauge field for the dilatations, and Jab
is gauge field for Lorentz transformations. The connection one-form is gauged away by
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imposing that T abc = 0 be torsionless. Then, at lowest order in the derivative expansion,

Ωa
b is a function of the dreibein êa coupled to the dilaton gauge field Aµ:

Ωab
µ =

1

2

(
eaν
(
∂µe

b
ν − ∂νebµ

)
+ ecµe

a
νe
bλ∂λe

ν
c − (a↔ b)

)
−
(
eaνe

b
µ − ebνeaµ

)
Aν . (4.5)

Now we have the covariant derivative to define the Maurer-Cartan one-form for our coset

representative (4.3). The idea is to introduce a set of derivatives for the Goldstones, which

transform covariantly under all the symmetries (including the spontaneously broken ones)

in order to have a set of building blocks for invariant Lagrangians. Explicitly,

− iW−1DW = e−σ êaΛba

(
P ′b + ωαb σα +∇bσD +∇bηiBi +

1

2
Ξijb Jij

)
, (4.6)

where

• Λdb ≡
(
eiη

iBi
)d
b

is the Lorentz transformation given by the boosts, which is equiva-

lently parametrized by the rapidities

βi =
ηi
η

tanh η, η =
√
ηiηi. (4.7)

Explicitly:

Λ0
0 = γ = cosh η, Λ0

1 = −γβi, Λi0 = −γβi, Λij = δij + (γ − 1)
βiβj
βkβk

. (4.8)

• The covariant derivative for the dilaton σ is

∇bσ = eσeνdΛdb (∂νσ +Aν) . (4.9)

• The covariant derivative of the internal Goldstones is

ωb = eσΛcbe
ν
cων = eσΛcbe

ν
c

(
−iU † ∂νU

)
, (4.10)

or in components,

ωαb =
1

2
Tr (ωbσα) , (4.11)

where the σα are generators of A1 (i.e. the Pauli matrices).

• The covariant derivative ∇bηi and the connection Ξijb include higher-derivative terms

of the Goldstone fields ηi and are negligible in the large-charge expansion.

4.2 The inverse Higgs constraints

According to the standard lore for the spontaneous breaking of internal symmetries, the

number of independent Goldstone modes equals the number of broken generators. On

the other hand, when space-time symmetries are spontaneously broken, we can have in

principle fewer physical Goldstone fields than broken generators (see e.g. [30]).

In section 2.2 we have derived the existence of three low-energy modes for the symmetry

breaking pattern in eq. (4.1) by analyzing the linear sigma model. This means that of the
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fields we have used to initially define the coset in eq. (4.3) and the covariant derivative

eq. (4.4) the dilaton σ, the boost Goldstones ηi, the gauge field for dilatations Aµ and

the spin connection Ωab
µ are redundant dof and thus must be gauged away. Since we are

not interested in describing a theory of gravity, we should as a first step eliminate the

corresponding dynamical dof. Hence, we can impose

T abc = 0 and ∇bσ = 0 . (4.12)

The torsionless condition eliminates the spin connection Ωab as independent dof in favor

of the vielbein êa, see eq. (4.5). The latter condition in (4.12) eliminates (see eq. (4.9)) the

gauge field corresponding to dilatations:

∇bσ = 0 ⇒ Aµ = −∂µσ . (4.13)

It is straightforward to supplement eq. (4.12) with a set of left- and right-invariant

(hence also invariant under the adjoint action) inverse Higgs constraints involving the

internal covariant derivatives:

Tr
(
ωbω

b
)

= µ2 and Tr(ωiω0) = 0 . (4.14)

They can be summarized as

Tr(ω̃bω̃0) = 0 with ω̃b = ωb −
i√
2
µδ0

b 1 . (4.15)

The first constraint conveniently fixes the dilaton to

µ2e−2σ = Tr (ωµω
µ) = Tr

(
∂µU

†∂µU
)
≡ ‖∂U‖2 , (4.16)

in terms of the familiar ‖∂U‖ introduced in eq. (3.1).

The other two conditions (which are compatible with the breaking of Lorentz invariance

in the fixed-charge sector) are used to eliminate the Goldstones ηi. It is convenient to use

the results of the previous section to parametrize ω. Concretely, write U ∈ SU(2) as in the

Euler parametrization of eq. (3.22) where the expectation value and the fluctuations are

separated. In addition, we choose to work in the gauge specified in eq. (3.19). After noting

that for R× Σ,

ω0 = eσΛd0e
µ
dωµ = eσγµ

(
σ3 +O

(
µ−1

))
, (4.17)

then, at leading order, the latter two inverse Higgs constraints imply

Tr(ωiω0) = eσγµTr(ωiσ3)
(
1 +O

(
µ−1

))
= 0 ⇒ ω3

i = 0. (4.18)

Using the explicit expression of ω and Λ as function of β we find:

ω3
i = eσΛcie

ν
cω

3
ν = eσ

(
Λ0
i e
ν
0 + Λjie

ν
j

)
ω3
ν (4.19)

= eσ
(
−γβieν0 +

[
δji + (γ − 1)

βiβ
j

β2

]
eνj

)
ω3
ν = 0. (4.20)
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The solution to leading order in µ of the two equations for i = 1, 2 is given by

βi =
eνi ω

3
ν

eν0ω
3
ν

. (4.21)

which is well-defined since ω3
ν

∣∣
ν=0

∼ µ 6= 0.

After having imposed the inverse Higgs constraints, we have a set of independent low-

energy dof. Moreover, we are not interested in deformations of the coset metric, apart

from the dilaton which is fixed by the constraint in eq. (4.16); this fixes also the dreibein êa.

The upshot is that the only remaining dof are the Goldstones for the internal symmetry

that parametrize ω. This is of course consistent with our analysis of section 3. In the next

section we will see how the precise form of the Lagrangian in eq. (3.2) is recovered in this

formalism.

4.3 The non-linear sigma-model re-derived

According to the ccwz prescription, the invariant action in d space-time dimensions gener-

ically has the form

S =

∫
ddxµd det

(
e−σΛbaê

a
)
F (ωa, R

ab
cd,Ξ

ij
b ). (4.22)

Here we recognize the coset dreibein e−σeaµΛba. F is a dimensionless scalar function of the

remaining building blocks reviewed in the preceding section, i.e. the internal Goldstone

covariant derivatives ωa, the curvature field strengths R and the connection Ξ. Let us

consider the two factors separately.

For the invariant measure we can write

ddxµd det
(
e−σΛ b

a ê
a
)

= ddx det ê ddxµde−dσ (4.23)

and, imposing the inverse Higgs constraint in eq. (4.16),

det ê ddxµde−dσ = dt dΣ ‖∂U‖3. (4.24)

Thanks to our choice of inverse Higgs constraint in eq. (4.16), the coset geometry is com-

pletely expressed in terms of the geometry of the surface Σ and the norm ‖∂U‖. We will

use this fact to simplify the analysis of the function F .

Having imposed the inverse Higgs constraint, it is easy to see that F is only function

of ω and the curvature invariants of the surface Σ. Moreover, at fixed charge, we have a

scale µ that suppresses the derivative terms. This implies that, at leading order in µ, the

function F must have the form

F =
c1

3
√

2
− c2√

2

R

‖∂U‖2
+O

(
µ−3

)
, (4.25)

where c1 and c2 are constants and R is the scalar curvature of Σ.

All in all, we have reproduced the classical σ-model of section 3:

S =

∫
dt dΣ

(
c1‖∂U‖3 + c2‖∂U‖R

)
+O

(
µ−1

)
. (4.26)
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4.4 The three-point function

So far, we have just introduced a reformulation of our previous result. The advantage of

this formalism is that if we take Σ = S2 and use the state-operator correspondence, we have

a direct way of reconstructing operators of fixed charge and dimension (i.e. transforming

linearly under the broken group) in terms of the Goldstone dof.

In our case, we follow the treatment in [5] and start from a representation of the unbro-

ken SO(2) generated by J12 to define a field Φ that transforms linearly in a representation

κ
(

eiσDeiη
iBieiπ3σ3

)
(4.27)

of the broken group. It tells us that a scalar operator of fixed dimension δ and internal

charge q is written (up to a multiplicative constant) as

Oq,δ ∝ µδeiδDeiπ3σ3
(
1 +O

(
µ−1

))
, (4.28)

where the factor µδ is needed to give Oq,δ the right dimension. Using the inverse Higgs

constraint, we get

Oq,δ = C‖∂U‖δeiπ3q
(
1 +O

(
µ−1

))
, (4.29)

where C is a dimensionless constant. ‖∂U‖ contains all the Goldstone dof. At leading

order, the result is the same as the one found in [5], which is not surprising since the

authors describe a U(1) symmetry breaking. Once more, the leading contribution in µ to

the low-energy physics in our model comes precisely from the universal U(1) relativistic

Goldstone.

We can now compute the three-point fusion coefficient for three primary operators

OQ,∆1 , O−Q−δ,∆2 and Oq,δ in the limit of Q � 1 to find that the leading contribution

scales as Qδ/2:

cQ+q,q,Q =
Cq

c
δ/2
1

Qδ/2
(

1 +O
(
Q−1/2

))
, (4.30)

where Cq is a function of the charge q alone which we cannot compute. The effect of the

non-relativistic Goldstones is sub-leading, but can be computed similarly.

5 Conclusions

Wilsonian actions are often of little practical use due to the infinitely many possible terms

that appear in them, compatibly with the symmetries of the system. When however

studying a model in a sector of large global charge Q, most of these terms are suppressed

by inverse powers of Q, turning the Wilsonian effective action into a useful and useable

object which admits a perturbative expansion in 1/Q. In this paper, we have successfully

applied the large-charge method to matrix models in 2 + 1 dimensions, going beyond the

vector models discussed so far in the literature.

Owing to their relation to the CPN−1 model, which is under intensive investigation

in the condensed matter community, SU(N) matrix models make for an interesting object

of study. We have focused on the special case of SU(3) whose algebraic structure is more

tractable than the one of the cases with higher rank. We have concentrated on a homo-

geneous ground state which appears for one fixed charge and determined the associated
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symmetry-breaking pattern. As expected, we found that also in this case, the interaction

terms are suppressed with 1/Q. Moreover, the formula for the anomalous dimension retains

the same universal structure found in [1, 2], the constant term being the same as in the

vector model:

D(Q) =
c3/2

2
√
π
Q3/2 + 2

√
πc1/2Q

1/2 − 0.093 +O
(
Q−1/2

)
. (5.1)

We also have calculated explicitly the fusion coefficients using the ccwz formalism dis-

cussed in [5], and found the same scaling as for the O(2) model:

cQ+q,q,Q =
Cq

c
δ/2
1

Qδ/2
(

1 +O
(
Q−1/2

))
. (5.2)

These two results are the same as those found in the literature for simpler cases due to

an Abelianization which takes place at leading order in the charge. The physics of the

subleading non-relativistic Goldstone fields deserves further investigation.

We also observe behaviors that do not occur in the class of vector models. On the

one hand, we find that we cannot fix a generic U(1) charge for all admissible values of the

parameters in the effective potential. On the other hand, we find that at leading order,

there is a symmetry enhancement leading to a richer symmetry breaking pattern than we

would have naively expected.

For a special choice of the embedding angle tan θ = 2
√

2, we make contact with the

integrable Calogero-Moser model, for which extensive literature exists. Even in the more

general case, we can make use of the technology of integrable systems, such as the Lax

matrix.

Throughout this work we have assumed that the model at the ir fixed point is invariant

under parity. This is not a priori necessary and if we relax this assumption, an extra term,

scaling as O
(
Q1/4

)
, can appear in the formula for the dimension of the lowest fixed-charge

primary. However, such a term is forbidden for simple algebraic reasons in systems with

SU(2) symmetry, such as the non-linear sigma model used in section 3. This seems to match

with the experimental observation [14] that the CPN−1 model flows to a parity-invariant

conformal point for N = 3, while for N > 3 it undergoes a first-order phase transition

(which is again second order in the limit N � 1).

An obvious next step is to extend our explicit calculations to SU(N) matrix models

with rank N > 3, which have richer properties than the SU(3) case. For n > 3, there

will be homogeneous solutions with more than one charge which is qualitatively different

from the O(N) vector model. The algebraic properties are more intricate than for the case

studied here, but our methods are nonetheless applicable.

The other obvious generalization is the study of non-homogeneous solutions, a first

example of which has been discussed in [6]. Even in the case of the SU(3) matrix model,

there are non-homogeneous solutions with more than one fixed charge that can be studied

with the methods presented in this paper.
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A Conventions

The Gell-Mann basis for the generators of A2 is given by:

λ1 =

0 1 0

1 0 0

0 0 0

 , λ2 =

0 −i 0

i 0 0

0 0 0

 , λ3 =

1 0 0

0 −1 0

0 0 0

 ,

λ4 =

0 0 1

0 0 0

1 0 0

 , λ5 =

0 0 −i
0 0 0

i 0 0

 ,

λ6 =

0 0 0

0 0 1

0 1 0

 , λ7 =

0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 ,

(A.1)

normalized as Trλiλj = 2δij . The symmetric coefficients dabc defined through{
λa, λb

}
=

4

3
δab + dabcλc (A.2)

are given in the case of A2 algebra by

d118 = d228 = d338 = −d888 =
2√
3

d448 = d558 = d668 = d778 = − 1√
3

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 = 1.

(A.3)

In total, we have for the product of two Gell-Mann matrices,

λaλb =
2

3
δab 1+

1

2

(
dabc + ifabc

)
λc. (A.4)

Then, it follows for the commutator in these conventions[
λa, λb

]
= ifabcλc, (A.5)

expressed in terms of the totally antisymmetric structure constants

f123 = 2

f147 = −f156 = f246 = f257 = f345 = −f367 = 1

f458 = f678 =
√

3.

(A.6)
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