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Abstract Leptogenesis is an appealing framework to
account for the baryon asymmetry in the universe. To this
end physics beyond the standard model is demanded. In this
paper we investigate the possibility to attain successful lepto-
genesis with composite Majorana neutrinos. We work in the
framework of effective gauge-mediated and contact inter-
actions without any reference to an underlying composite-
ness theory. This approach is the one adopted in all current
experimental searches for composite fermions at colliders.
In the case of gauge-mediated interactions, we calculate the
CP asymmetry in heavy composite neutrino decays. Both the
direct and the indirect CP asymmetry are derived and reso-
nant leptogenesis is also discussed. We find that the Sakharov
conditions can be met and, for some choice of the parame-
ters, the correct order of magnitude of the baryon asymmetry
is reproduced.
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1 Introduction

There is strong evidence that the standard model (SM) alone
cannot provide any exhaustive solution to the dark-matter
problem and the baryon asymmetry in the universe. As
regards dark-matter, the only candidates that can be pro-
vided within the SM are neutrinos. Due to their tiny masses,
those particles can possibly act as hot dark matter and hence
be responsible at most for a very small fraction of the
required dark-matter energy density. As far as the generation
of a baryon asymmetry (or baryogenesis) is concerned, the
Sakharov conditions [1–4] are fulfilled by the SM. However,
the CP violation is too small and the departure from thermal
equilibrium is not strong enough so that physics beyond the
SM appears to be necessary [5–8].

In this respect it is important to scrutinize the available
models that extend the SM particle spectrum to address fun-
damental questions in particle physics, in view of their pos-
sible connection with the striking observations from astro-
physics and cosmology. It happens quite often that one can
borrow new fields and interactions to have a suitable dark-
matter candidate or a successful mechanism for a matter–
antimatter asymmetry generation. On the other hand the
parameter space of the model at hand can be constrained
in order to satisfy the accurate measurements of dark-matter
and baryon-asymmetry abundances in the universe. Indeed
it sounds as a win–win situation. For example, a very well-
motivated, constrained and predictive model is the neutrino
minimal SM (νMSM) [9]. Here three right-handed ster-
ile neutrinos with masses below the electroweak scale are
responsible for the active neutrino masses via the seesaw
mechanism and, in some regions of the parameter space, the
model can account for both dark matter and the observed
baryon asymmetry via leptogenesis. We refer to extensive
reviews for more details [10,11]. Of course, supersymmetry
provides suitable dark-matter candidates depending on the
choice of the lightest supersymmetric particle [12], together
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with heavy Majorana fermions that make baryogenesis work
through leptogenesis [13,14]. Axions may work as dark-
matter particles as well and they originally arose to solve
the strong CP problem [15,16].

In this paper we focus on the connection between models
that contain heavy composite fermions, especially Majorana
neutrinos, and the possibility to realize a successful baryoge-
nesis via leptogenesis [17]. Compositeness is one of the many
scenarios of physics beyond the SM on the market [18–25].
Composite models for quark and leptons are usually advo-
cated to address the proliferation of elementary fermions of
the three generations, their mass and mixing patterns and
their similar behaviour under the electroweak interactions. In
this approach ordinary fermions are regarded as composite
objects of unknown more fundamental constituents (some-
times called preons). Despite it being quite hard to build a
quantum field theory of fundamental interactions of such sub-
constituents, many features of these models can be addressed
phenomenologically and are indeed subject to experimental
searches.

The common ground of composite models is to assume
a high energy scale, usually denoted with �, below which
composite fermions interact effectively among themselves
via contact interactions [26,27]. The more fundamental
degrees of freedom are not resolved and the interactions
are accounted for by dimension-six operators suppressed by
the high energy scale �. Moreover, the possibility to have
excited quarks and leptons is in order. The mass scale of
these heavier resonances is often denoted M∗ and they can
interact among themselves and with SM fermions via contact
and gauge interactions. We call them heavy composite states
throughout the paper. Gauge-mediated interactions are an
alternative, and complementary, way to implement models
for composite fermions [28,29]. In this case, the quantum
numbers of the composite fermions can be fixed by weak
isospin invariance, similarly to when strong isospin invari-
ance was used to fix the characteristics of many (unknown)
hadronic states later experimentally observed. Among the
excited leptons, electromagnetically neutral states are found
which can be accommodated in a rather simple way to be
found to be Majorana fermions.

Direct searches of composite fermions have been per-
formed at colliders for quite some time. To date the stronger
bounds are provided by the LHC experiments. Updated
bounds on charged excited lepton masses have been provided
by the LHC Run I analyses, where the ATLAS and CMS
collaborations give, respectively, a lower bound M∗ > 2.2
TeV [30] and M∗ > 2.45 TeV (M∗ > 2.48 TeV) [31]
for heavy composite electrons (muons). Those bounds are
extracted imposing � = M∗, moreover, contact interactions
are used for the production of the heavy composite leptons
and gauge interactions to account for their decays. A phe-
nomenologically driven study has recently investigated the

accessible parameter space for heavy composite neutrinos at
the LHC, where both gauge and contact interactions have
been included in the production cross sections and decays
leading to a like-sign dilepton plus di-jet final state signature
[32]. A dedicated experimental analysis by the CMS col-
laboration excludes heavy-composite neutrinos with masses
M∗ < 4.35(4.70) TeV [33,34] for a di-jet ee (di-jet μμ) final
state, when M∗ = �.

Our aim is to address the question of possible connec-
tions between composite heavy neutrinos and leptogenesis;
however, we want to keep the discussion as much as pos-
sible model independent. Therefore we take the effective
Lagrangians for both contact and gauge-mediated interac-
tions (see Eqs. (2.1)–(2.3) below), without any reference to
an underlying theory. In doing so, we allow for a more direct
comparison with the experimental constraints on the model
parameters driven by the very same Lagrangians.

In order to assess the leptogenesis mechanism within a
given model, one needs to check at least the three Sakharov
conditions: lepton-number violation (LNV), C and CP viola-
tion, and out-of-equilibrium dynamics. In particular we con-
sider composite models that accommodate Majorana neutri-
nos and we calculate the corresponding composite-neutrino
decay widths into SM leptons and antileptons. Those are the
key ingredients for the generation of a lepton asymmetry if
one assumes complex couplings that add new sources of CP
violation. Leptogenesis with composite neutrinos has been
investigated in [35], where the authors consider an under-
lying SU(6)c preon dynamics as a particular case of con-
fining gauge theories presented in [18]. Here the compos-
ite heavy neutrinos are responsible for the smallness of the
SM neutrino masses via the seesaw mechanisms, and for
leptogenesis at the same time. Bounds on the heavy com-
posite neutrinos are of the order of 1010 GeV, and there-
fore they are out of range with respect to collider searches.
Recently another study has been carried out in [36] where
composite heavy neutrinos, labelled leptomesons and aris-
ing from the UV completion proposed in [19], are respon-
sible for the generation of the matter–antimatter asymmetry.
In this case four-fermion contact interactions are considered
and both leptogenesis from heavy-particle decays and oscil-
lations is addressed. The CP asymmetry coming from the
interference between the tree-level and the one-loop wave-
function diagram has been considered (often referred to as
indirect CP asymmetry), mainly in the case of a resonant
enhancement. Moreover, giving up the simultaneous expla-
nation of SM neutrino masses and the baryon asymmetry,
composite states with mass scale of the TeV scale can be
pursued.

The structure of the paper is as follows: in Sect. 2 we intro-
duce the model of composite fermions that comprises Majo-
rana neutrinos and the corresponding effective Lagrangians,
together with a discussion of the necessary conditions for
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leptogenesis. In Sect. 3 we calculate explicitly the widths
of leading order induced by the gauge-mediated interac-
tions and show their complementarity in the parameter space
(�, M∗) with contact-interaction-induced widths. In the case
of gauge interactions, we provide the expressions for the CP-
violating parameters that require the evaluation of two-loop
cut diagrams. We consider and calculate both the indirect
and the direct CP asymmetry, and discuss two limits for the
composite neutrino mass spectrum, namely a strongly hier-
archical and nearly degenerate spectrum. All these results
are discussed in Sect. 4. The out-of-equilibrium dynam-
ics is addressed in Sect. 5, and conclusions are found in
Sect. 6.

2 Composite-neutrino models and leptogenesis

The Majorana or Dirac nature of neutrinos is a long-
standing puzzle in contemporary physics. The implica-
tion of a Majorana mass term for neutrinos may have a
big impact on the processes occurring in the early uni-
verse. In particular Majorana fermions are a key ingredient
for baryogenesis via leptogenesis. A Majorana mass term
automatically leads to lepton-number-violating (LNV) pro-
cesses because one cannot assign a definite lepton charge
to a Majorana fermion. The violation of lepton num-
ber is the first condition to be fulfilled for a successful
leptogenesis, together with CP violation and the out-of-
equilibrium dynamics. These three requirements are the so-
called Sakharov conditions [1–4] and we shall discuss them
in the context of composite neutrino models in this sec-
tion.

In this paper we consider standard thermal leptogenesis
induced by heavy particle decays. We do not deal with lep-
togenesis via neutrino oscillations [37]. In the former sce-
nario, heavy Majorana fermions are at the origin of a lep-
ton asymmetry induced by their lepton-number- and CP-
violating decays in SM leptons/antileptons. We briefly recall
the simplest leptogenesis mechanism with heavy Majorana
neutrinos [17,38]. The heavy states are kept in equilibrium
with the plasma at sufficiently high temperatures by decay,
inverse decay and scattering processes. However, the expan-
sion and then cooling of the universe makes the temperature
drop below the heavy-neutrino mass. Then the heavy states
effectively decay into SM particles and produce a different
amount of leptons and antileptons due to the CP-violating
phases that distinguish matter from antimatter. Such a net
imbalance is not washed out by the inverse decays that are
Boltzmann suppressed (and scatterings inefficient as well).
It is important to remark that thermal leptogenesis has to
occur at temperatures above the electroweak phase transi-
tion. This makes sure that any lepton asymmetry is partially
reprocessed into a baryon asymmetry through the sphaleron

transitions in the SM [39].1 We stick to this standard scenario
and hence we work in an unbroken phase of the SM gauge
group, SU(2)L×U(1)Y , in the following.

We propose that heavy composite neutrinos interacting
with gauge and contact interactions may lead to a success-
ful leptogenesis. A fundamental assumption is in order. The
typical temperatures during the onset of leptogenesis and the
effective composite-neutrino decays have to be smaller than
the compositeness scale, �. On the contrary the composite
states would dissolve in the sub-constituents and the descrip-
tion in terms of composite Majorana fermions would not be
viable. The mass scale of heavy-composite neutrinos is not
subjected to the constraint imposed by the seesaw mecha-
nism in this model, at least in its realisation discussed in the
present paper, so we assume it to be of order of the TeV scale.

2.1 Gauge- and contact-interaction Lagrangians

There are at least two possibilities to accommodate Majo-
rana composite neutrinos when considering effective gauge-
mediated interactions: the sequential-type and the mirror-
type model [42–44]. The first option comprises excited states
whose left-handed components are accommodated in a SU(2)
doublet whereas the right-handed components are SU(2) sin-
glets. Following the discussion in [43,44], if the right-handed
excited neutrino is not considered, only a Majorana mass term
can be obtained and this determines the Majorana nature of
the fermion. The second option, the mirror-type model, con-
tains an excited right-handed doublet and left-handed sin-
glets. Again we can assume that the left-handed excited neu-
trino is absent. Therefore we can associate a Majorana mass
term to the composite neutrino. In this paper we consider
only the mirror-type model for the gauge interactions.2 The
corresponding gauge-mediated Lagrangian reads

L mir = 1

2�
L̄ L ,ασμν

(
f gτ aWa

μν + f ′ g′ Y
2
Bμν

)
L∗
R,I +h.c.,

(2.1)

where LT
L ,α = (eL ,α, νL ,α) is a SM SU(2)L doublet with

flavourα = e, μ, τ , thenσμν = i[γ μ, γ ν]/2, g and g′ are the
SU(2)L and U(1)Y gauge couplings respectively, f and f ′ the
effective couplings of the model, Wμν and Bμν are the field
strength for the SU(2)L and U(1)Y gauge fields, τ a = σ a/2
where σ a are the Pauli matrices, Y is the hypercharge of the

1 Actually the temperature at which the sphaleron transitions switch
off is the relevant one. This is not exactly the same of the electroweak
crossover temperature, respectively they are Tsph ≈ 130 GeV and Tc ≈
160 GeV; see [40,41] for recent precision studies.
2 At colliders the cross sections and widths induced by the sequential
model are expected to be suppressed by a factor v/�, where v is the
vacuum expectation value of the Higgs field, with respect to the mirror
model.
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doublets, and L∗T
R,I = (ν∗

R,I , e
∗
R,I ) stands for the composite

lepton doublet (I is understood as mass eigenstate index).
Such a Lagrangian describes the interaction between a left-
handed SM doublet and a right-handed composite doublet
mediated by the SM gauge fields. A comment is in order:
in principle one can consider the excited left(right)-handed
neutrino in the mirror (sequential) model. In this case one
may write a Dirac mass term in addition to the Majorana
mass term and implement a seesaw mechanism in the heavy-
neutrino sector. However, we stick to the choice as introduced
in [43,44] in order to keep a simpler realisation of the model
for the following discussion.

Another way to implement effective interactions between
excited and SM fermions is with four-particle contact inter-
actions. They can be understood as arising from constituent
exchanges that are not resolved at energies smaller than �.
The corresponding Lagrangian comprises two fermion cur-
rents, and hence two inverse powers of the high energy scale
� appear. It reads

L cont = g2∗
2�2 jμ jμ , (2.2)

where the vector current is

jμ = ηL ψ̄Lγ μψL + η′
L ψ̄∗

Lγ μψ∗
L

+η′′
L ψ̄∗

Lγ μψL + h.c. + (L → R) , (2.3)

where g2∗ = 4π and the η’s are constants of order one. They
are put equal to one in the literature when doing phenomeno-
logical and experimental studies, as well as the couplings f
and f ′. Moreover, only chirality in the current (2.3) is con-
sidered in most of the phenomenological and experimental
studies and we adopt the same choice in the following. We
retain the right-handed chirality in (2.3) to build the Majorana
mass term.

2.2 Composite models and Sakharov conditions

We now come to discuss in detail the Sakharov conditions.
First, by extending the SM sector with either the gauge-
mediated or contact interactions and Majorana composite
neutrinos, lepton-number violation is introduced. Second, we
replace the η’s, f = ± f ′ [44] with complex couplings, η̃α I

and f̃α I respectively, where α stands for the flavour index
of the SM lepton and I for the mass index of the composite
neutrino (in the literature these couplings are usually taken
as real). Whereas for the model in (2.1) such a complexifi-
cation is straightforward, this is not the case for the model
that comprises contact interactions in (2.2). Indeed we can
introduce complex couplings only for the operators in (2.3)
which are not self-adjoint, namely the operators multiplied
by η′′

L (η′′
R), within the context of a CPT-invariant theory.

The complex couplings are responsible for additional CP-
violating phases with respect to the SM ones. The corre-
sponding Lagrangian reads, in a basis where the composite
neutrino mass matrix is diagonal and expressing them with
Majorana fields N∗

I = ν∗
I,R + (ν∗

I,R)c, as follows:

L gauge = L SM + 1

2
N̄∗
I i /∂N

∗
I − MI

2
N̄∗
I N

∗
I

+ g√
2�

[
f̃α I ēασμν∂μW

−
ν PRN

∗
I + h.c.

]

+ g̃

2�

[
f̃α I ν̄ασμν∂μZν PRN

∗
I + h.c.

]
+ · · · , (2.4)

where dots stand for terms which are not relevant in the
following (comprising the charged-composite lepton), then
g̃ = √

g2 + g′2 andL SM is the SM Lagrangian with an unbro-
ken gauge group (massless fermions and gauge bosons). The
notation for the SM leptons is as follows: να for a neutral lep-
ton and eα for a charged lepton, with α = e, μ, τ . The appear-
ance of the physical Z boson is due to an assumption we
made, namely f = f ′. According to this choice one obtains
the field combination g̃Zμ ≡ gW 3

μ −g′Bμ. In this case there
is no interaction between composite neutrinos and photons.
On the other hand one may take f = − f ′ and then the field
combination g̃ Z̄μ ≡ gW 3

μ+g′Bμ would enter in (2.4), which
can be seen as a linear superposition of the physical eigen-
states, the Z boson and the photon. Such an assumption on
f and f ′ may be dropped and the Lagrangian would com-
prise more involved interactions with the fields Bμ and W 3

μ.
However, for illustration, and in order not to introduce many
different complex couplings, we assume f = f ′ → f̃α I .

For contact interactions the Lagrangian is

L contact = L SM + 1

2
N̄∗
I i /∂N

∗
I − MI

2
N̄∗
I N

∗
I

+ g2∗
2�2

[
η̃α I ψ̄γμPRψ ′ �̄αγ μPRN

∗
I + h.c.

] + . . . ,

(2.5)

where the SM lepton �α is either neutral, να , or charged, eα ,
and ψ̄γμψ ′ stands for either a SM lepton or quark current.

A remark here is in order: depending on �α being a neu-
tral or charged SM lepton, the accompanying SM current is
constrained to be a neutral or charged current accordingly to
preserve electric charge. As far as the complexifiaction of the
couplings is concerned, the assignment is η̃ ≡ ηRη′′∗

R , where
the complex nature of η̃ is only induced by η′′

R .

3 Composite neutrino widths

In this section we derive the expressions for the composite-
neutrino widths at order f̃ 2 and η̃2 in the Yukawa couplings.
Our fundamental object is the two-point function of the com-
posite heavy-neutrino field, which reads
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(a) (b)

Fig. 1 One-loop self-energy diagrams for the composite neutrino.
Solid lines stand for a SM lepton, either charged or neutral, and wiggled
lines for the SM gauge bosons (Z and W±). Solid double lines stand for

a composite neutrino: forward arrows correspond to the 〈N∗ N̄∗〉 con-
traction, whereas forward–backward arrows to 〈N∗N∗〉 and 〈N̄∗ N̄∗〉,
the latter being typical of a Majorana fermion

1 2 3 4 5 6 7 8 9 10
10 2

10 1

100

101

102

103

104

10 20 30 40 50 60 70 80 90 100
10 1

100

101

102

103

104

Fig. 2 Gauge- and contact-induced widths, in solid blue and dashed
orange, respectively. In the left panel the gauge- and contact-induced
widths are shown for masses spanning from 1 to 10 TeV, for a fixed
value of � = 10 TeV. In the right panel the same widths are shown for

different values of �, assuming a composite neutrino mass M∗ = 10
TeV. The gauge couplings are evaluated at the scale M∗, whereas
| f̃ Iα |2 = |η̃Iα |2 ≡ 1

−i
∫

d4x eip·x 〈|T (
N∗μ
I (x)N̄∗ν

I (0)
) |〉

∣∣∣∣
pα=(MI+iε,0 )

,

(3.1)

where |〉 stands for the ground state of the fundamental the-
ory. We compute corrections to the composite neutrino prop-
agator. We are interested in the imaginary part of the corre-
sponding loop diagrams that are related to a width according
to the optical theorem. This may appear too technical for a
leading order decay width, however, it helps in setting the for-
malism for the computation of the CP asymmetry in the next
section. Since we work in the unbroken electroweak phase,
all the SM particles are massless; on the contrary heavy com-
posite neutrinos are massive due to an unknown underlying
dynamics. We calculate the composite neutrino width in its
rest frame and at zero temperature. Its momentum can be
taken as pμ = Mvμ with vμ = (0, 1). In doing so the
non-trivial Dirac algebra due to the magnetic coupling can
be rather simplified due to non-relativistic projectors arising
from heavy-neutrino external legs (see appendix in [45]).
Moreover, the Majorana nature of the composite neutrino
has to be accounted for by the different contractions of the
Majorana spinors. This is shown in Fig. 1 with a solid forward
arrow and forward–backward arrow respectively, where the
wiggly line stands for either Z or W± gauge bosons. The
leading order result reads

�
gauge

I,α = (g′2 + 3g2)

32π

(
M∗

I

�

)2

| f̃ Iα|2M∗
I , (3.2)

where the superscript stands for the gauge-induced decay
width and the subscripts for the lepton flavour in the final
state and the composite-neutrino generation. Gauge invari-
ance has been explicitly checked. The imaginary part of the
loop amplitude is needed to obtain the width, or alternatively,
one can use cutting rules [46–48] to reduce it to a tree-level
computation with two particles in the final state.

Composite neutrino decays into a lepton/antilepton are
also induced from the contact-interaction Lagrangian (2.5),
which comprises dimension-six operators. At leading order
we find

� contact
I,α = 107

1536

g4∗
π3

(
M∗

I

�

)4

|η̃Iα|2M∗
I . (3.3)

In the case of contact interactions, the decay process is highly
inclusive and many different combinations are comprised in
the final state.3 Our result in (3.3) differs from that given
in [36], due to different final states allowed in the two dis-
tinct models. We find that the widths induced by the gauge

3 For να being a final state lepton in the composite-neutrino decay
process, we have to consider neutral SM currents. On the other hand
when a charged lepton eα appears as a decay product, charged SM
currents enter.
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Fig. 3 CP asymmetries
originating from the interference
between tree-level and one-loop
vertex and self-energy (or
wave-function) diagrams. Solid
double lines stand for heavy
composite neutrinos, solid lines
for SM leptons and wiggled
lines for gauge bosons. The
neutrino propagator with
forward and forward–backward
arrows have the same meaning
as in Fig. 2

(a) (b)

(d)(c)

and contact interactions are complementary in the parameter
space. Results are shown in Fig. 2. In the left panel we show
the gauge- and contact-induced widths for masses spanning
from 1 to 10 TeV, for a fixed value of � = 10 TeV. Gauge-
induced widths (solid blue line) dominate for M∗ <∼ 2 TeV
over the contact widths (dashed orange line). In the right
panel the gauge- and contact-induced widths for different
values of � are shown, assuming a composite neutrino mass
M∗ = 10 TeV. The different power suppression (M∗/�) and
couplings appearing in Eqs. (3.2) and (3.3) are responsible
for the relative importance of the two different widths. We
remark that gauge (contact) interactions induce a two-body
(three-body) decay of the composite neutrino. The comple-
mentarity of gauge- and contact-induced widths in the model
parameter space (M∗,�) has already been noticed in stud-
ies related to the phenomenology at colliders in a broken
SU(2)L×U(1)Y phase [32]. However, there are some differ-
ences from the situation considered here. For gauge interac-
tions, we do not need to consider further decays of the gauge
bosons in the decay NI → �α + gauge boson. Such particle
content is all that is needed to single out a LNV process and
induce leptogenesis. For the contact interactions, we have to
sum over many processes to consider the inclusive process
N∗
I → �α + X , where X stands for any fermion–antifermion

pair that does not carry a net lepton number. In the present
work we focus on composite neutrinos in the framework of
gauge-mediated interactions and inspect the corresponding
CP asymmetries. This is the subject of the next section. We
will treat in detail the CP asymmetries from contact interac-
tions elsewhere [49].

4 CP asymmetry

According to standard thermal leptogenesis, heavy Majorana
neutrinos populate the early universe with an equilibrium

abundance at temperatures larger than their mass scale and
then start to decay out-of-equilibrium when the temperature
of the plasma drops below the heavy-particle mass. Indeed
the back reaction, mainly inverse decays, are Boltzmann sup-
pressed in such regime. Here we consider an analogous situ-
ation, so that heavy composite neutrinos can decay into SM
leptons and antileptons in different amounts, due to the CP-
violating phases in f̃ Iα . The CP parameter is defined as usual:

εI,α = �(N∗
I → �α + gauge boson) − �(N∗

I → �̄α + gauge boson)∑
α �(N∗

I → �α + gauge boson) + �(N∗
I → �̄α + gauge boson)

,

(4.1)

where the sum runs over the SM lepton flavours, N∗
I stands

for the I th heavy composite neutrino species, �α is a SM
lepton with flavour α. We shall present the flavoured CP
asymmetries in the following. Indeed the unflavoured regime
is an appropriate choice at very high temperatures, namely
T >∼ 1012 GeV [50,51]; on the contrary the three lepton
flavours are resolved by the thermal bath and the CP asym-
metries are stored in each flavour.

The CP asymmetry can be calculated from the interference
between the tree-level and one-loop diagrams [52,53], and
we show them in Fig. 3 for the model under study. Diagram b
is referred to as the vertex diagram, whereas diagrams c and
d are often called wave-function (or self-energy) diagrams.
Moreover, diagram d is relevant only for the flavoured CP
asymmetry because its contribution vanishes when summing
over the lepton flavour in the final state. In analogy with the
standard leptogenesis case, we find that the contribution to
the CP asymmetry depends on the composite-neutrino mass
spectrum. In the literature two limits are often considered, the
hierarchical and the nearly degenerate ones. First we compute
the CP asymmetry for a mass spectrum M∗

1 < M∗
2 < M∗

3
and then we consider those limits of the mass pattern. The
interference between the tree-level and one-loop diagrams in
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Fig. 4 Self-energy diagrams for the I th composite Majorana neutrino. The imaginary parts, namely the cutting through lepton and gauge boson
lines, corresponds to the interference of tree-level and one-loop vertex diagram in Fig. 3. We show the two possible diagrams due to Majorana field
contractions

Fig. 5 Self-energy diagrams for the I th composite Majorana neutrino.
The imaginary parts, namely the cutting through lepton and gauge boson
lines, corresponds to the interference of tree-level and one-loop self-

energy diagrams in Fig. 3. We show the two possible diagrams due to
Majorana field contractions in each row

Fig. 3 may be computed from the imaginary part of the heavy-
neutrino self-energy at order f̃ 4. As mentioned in Sect. 3,
our fundamental object is the composite-neutrino self-energy
and now we study the corresponding corrections at order f̃ 4

instead of f̃ 2. Therefore two-loop self-energy diagrams are
considered and we show them in Figs. 4 and 5. Moreover, we
are interested in singling out the contribution to the leptonic
and antileptonic heavy-neutrino decays. This is necessary to
keep track of the different decay rates into matter or antimat-
ter according to (4.1). Cutting rules are exploited to select a
lepton or an antilepton as final state particle in the two-loop
diagrams [46–48]. A detailed example of their implementa-
tion for diagrams with the same topology can be found in
[54,55], where standard leptogenesis with heavy Majorana
neutrinos and seesaw type I is considered.

Following the same notation, we may write the flavoured
CP asymmetry (4.1) due to the vertex diagram, ε direct

I,α , and to
the wave-function diagram, ε indirect

I,α , in the general form
εI,α = ε direct

I,α + ε indirect
I,α

= −2
∑
J

Im(B direct + B LNV
indirect)

Im
[
( f̃ ∗

I f̃ J )( f̃ ∗
α I f̃α J )

]

| f̃ I |2

−2
∑
J

Im(B LNC
indirect)

Im
[
( f̃ I f̃ ∗

J )( f̃ ∗
α I f̃α J )

]

| f̃ I |2
, (4.2)

where ( f̃ ∗
I f̃ J ) ≡ ∑

α f̃ ∗
α I f̃α J . For the indirect contribution,

we separate the LNV and lepton-number-conserving (LNC)
contributions explicitly in complete analogy with the case of
standard leptogenesis [52]. The functions B direct, B LNV

indirect and

B LNC
indirect can be calculated by cutting the two-loop diagrams in

Fig. 3 and evaluating the remaining one-loop diagram. Then
only the imaginary part of the one-loop vertex and wave-
function diagrams is relevant and we find it to be finite. We
refer the reader to Appendix A for some details as regards
the loop integrals. The result for the CP asymmetry from the
vertex topology reads

ε direct
I,α = 5g4 + 2g2g′2 + g′4

3g2 + g′2
∑
J �=I

(
M∗

I

�

)2

×
Im

[
( f̃ ∗

I f̃ J )( f̃ ∗
α I f̃α J )

]

8π | f̃ I |2
F

[(
M∗

J

M∗
I

)2
]

, (4.3)

whereF(x) is defined, in a similar fashion to [52], as follows:

F(x) =
√
x

8

[
1 + 2x − 2x(1 + x) ln

(
1 + 1

x

)]
. (4.4)

The indirect CP asymmetry comprises two different contri-
butions and the result is

ε indirect
I,α = 5g4 + 2g2g′2 + g′4

3g2 + g′2
∑
J �=I

(
M∗

I

�

)2

×
⎧⎨
⎩

Im
[
( f̃ ∗

I f̃ J )( f̃ ∗
α I f̃α J )

]

8π | f̃ I |2
G LNV

[(
M∗

J

M∗
I

)2
]

+
Im

[
( f̃ ∗

I f̃ J )( f̃α I f̃
∗
α J )

]

8π | f̃ I |2
G LNC

[(
M∗

J

M∗
I

)2
]⎫⎬
⎭ ,

(4.5)
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where the loop functions are, respectively,

G LNV(x) =
√
x

8

1

1 − x
, (4.6)

G LNC(x) = x

8

1

1 − x
. (4.7)

They originate from the diagrams in the first and second row
of Fig. 5, respectively. The difference between the loop func-
tions for the indirect case can be traced back to the differ-
ent chiral projectors sandwiching the intermediate composite
neutrino propagator. Respectively a power of the intermedi-
ate, M∗

J , and incoming neutrino mass, M∗
I , are selected in

G LNV(x) and G LNC(x). The result in Eqs. (4.3) and (4.5) have
been obtained by summing the neutral and charged gauge
bosons contributions to the widths that enter the CP asym-
metry definition in (4.1).

4.1 Hierarchical and nearly degenerate limits

The expressions for the flavoured direct and indirect CP
asymmetry, given in (4.3) and (4.5), respectively, stand for a
quite general arrangement of the composite heavy-neutrino
masses. It is useful to discuss two limiting cases often con-
sidered in leptogenesis: the hierarchical case, where M∗

1 ≡
M∗ � M∗

i , with i = 2, 3, and the nearly degenerate case,
where M∗

2 = M∗ + � with 0 < � � M∗. In order to keep
the CP asymmetry expressions in a more compact form, we
consider a sum over the final lepton flavour in the following.
In the hierarchical case, starting from the CP asymmetries
given in (4.3) and (4.5), one can immediately find both the
direct and the indirect contributions, whereas for the nearly
degenerate case only the direct contribution can be derived
straightforwardly. The indirect contribution will be obtained
by taking into account a resummation in the heavy-neutrino
propagators.

Let us start with the hierarchical case. Here the lepton
asymmetry is generated by the lightest composite neutrino
because the heavier states decoupled from the dynamics
much before.4 It is then sufficient to study the evolution
equations for the lightest neutrino number density and the
corresponding lepton asymmetry induced in its LNV and
CP-violating decays. For a hierarchically ordered mass spec-
trum it is rather straightforward to obtain the expressions for
the direct and indirect CP asymmetries. One has to perform
an expansion in the small ratio M∗/M∗

i of Eqs. (4.3) and
(4.5) and sum them up. The result reads, at leading order in
M∗/M∗

i ,

4 This condition applies in standard leptogenesis with a seesaw type-I
realisation. It is often referred to as vanilla leptogenesis [56] where a
strongly hierarchical spectrum and the unflavoured regime is consid-
ered.

ε1 = −5g4 + 2g2g′2 + g′4

3g2 + g′2

(
M∗

�

)2

×
3∑

i=2

M∗

M∗
i

Im
[
( f̃ ∗

1 f̃i )2
]

12π | f̃1|2
+ · · · , (4.8)

where the dots stand for higher order terms in (M∗/M∗
i ). We

note in passing that the term proportional to

Im
[
( f̃ ∗

1 f̃i )( f̃α1 f̃
∗
αi )

]
in (4.5), which exactly vanishes in the

unflavoured regime, is suppressed by an additional power of
M∗/M∗

i . The direct and indirect contribution are of the same
order of magnitude (we find ε direct

1 /ε indirect
1 = −1/3, whereas in

standard seesaw type I with right-handed neutrinos we have
ε direct

1 /ε indirect
1 = 1/2 [52]).

On the other hand, the nearly degenerate case is more deli-
cate and can lead to an interesting situation, i.e. resonant lep-
togenesis [57–63]. In this case it is appropriate to distinguish
between the direct and indirect contributions. We consider
two heavy-neutrino species in the following to present the
results for the CP asymmetries.5 We first provide the expres-
sion for the direct asymmetry. In this case the general result in
Eq. (4.3) has to be expanded for � � M∗. A finite splitting
mass has to be kept, otherwise the asymmetry vanishes on
general grounds: the CP phases can be rotated away leading
to purely real effective couplings [58]. The CP asymmetry
for the composite neutrino of type 1 reads

εdirect
1 = 5g4 + 2g2g′2 + g′4

3g2 + g′2

(
M∗

�

)2 Im
[
( f̃ ∗

1 f̃2 )2
]

64π | f̃1|2

×
[

3 − 4 ln 2 + (11 − 16 ln 2)
�

M∗

]
+ · · · , (4.9)

whereas for the neutrino of type 2 we have

εdirect
2 = −5g4 + 2g2g′2 + g′4

3g2 + g′2

(
M∗

�

)2 Im
[
( f̃ ∗

1 f̃2 )2
]

64π | f̃2|2

×
[

3 − 4 ln 2 − (5 − 8 ln 2)
�

M∗

]
+ · · · , (4.10)

where the dots stand for higher order terms in the �/M∗
expansion. The sum of Eqs. (4.9) and (4.10) does not van-
ishes in the limit � → 0, however, the sum of the width dif-
ference between decays into leptons and antileptons entering
the numerator of (4.1) does vanish.

A rather different situation occurs for the indirect contribu-
tion. In this case the limit � → 0 does not provide a finite and
meaningful result. This can be seen by close inspection of the
structure of the functions G LNV(x) and G LNC(x) in Eqs. (4.6)
and (4.7): they go to infinity when setting a vanishing mass

5 On the one hand the third heavy neutrino can be much heavier and
decoupled already from the leptogenesis dynamics. On the other hand,
we can consider an almost degenerate spectrum of the three composite
neutrinos. We address both cases in Sect. 5.
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splitting (x → 1). The problem is quite well known in the
literature: the indirect contribution for nearly degenerate neu-
trinos can be understood as a mixing between the different
neutrino species that makes the mass eigenstates different
from the CP eigenstates [57]. Various approaches have been
considered afterwards to properly address this situation [58–
63]. The common idea is that the heavy neutrino may undergo
many interactions before decaying effectively into a lepton
and a gauge boson pair (in the original formulation a lepton
and Higgs boson pair). In doing so the intermediate neu-
trino acquires a finite width, and therefore its propagator is
regulated for a vanishing mass splitting. One may also con-
sider such resummation for the incoming neutrino (see e.g.
[59,60]), however, we introduce in the following the minimal
condition to obtain a well-defined result: only the width of
the intermediate neutrino is accounted for. In doing so, we
closely follow the original derivation given in Ref. [58] for
heavy Majorana neutrinos within seesaw type-I models and
we obtain similar expressions for the CP asymmetries.

The indirect CP asymmetries in the degenerate case read

εindirect
1 = −5g4 + 2g2g′2 + g′4

3g2 + g′2

(
M∗

�

)2

×
Im

[
( f̃ ∗

1 f̃2 )2)
]

128π | f̃1|2
M∗�

�2 + �2
2/4

(4.11)

and

εindirect
2 = −5g4 + 2g2g′2 + g′4

3g2 + g′2

(
M∗

�

)2

×
Im

[
( f̃ ∗

1 f̃2 )2
]

128π | f̃2|2
M∗�

�2 + �2
1/4

(4.12)

for the neutrino of type 1 and type 2, respectively, and the
unflavoured widths �2 and �1 can be read off Eq. (3.2) when
summing over α. Now the vanishing mass splitting limit
can be taken and one obtains a vanishing CP asymmetry
as well [58]. The expression of the CP asymmetries given in
(4.11) and (4.12) provides an interesting speculation: requir-
ing the condition � ∼ �1/2, �2/2, the CP asymmetry gets
resonantly enhanced. The corresponding expression is

ε1 = ε2  −5g4 + 2g2g′2 + g′4

(3g2 + g′2)2

Im
[
( f̃ ∗

1 f̃2 )2
]

4| f̃1|2| f̃2|2
. (4.13)

In the resonant case the CP asymmetry is not suppressed
by the smallness of heavy-neutrino mass splitting, nor small
ratios between the heavy-neutrino masses nor the ratio
M∗/�, the latter being typical of the model at hand.

5 Out-of-equilibrium dynamics

We discuss here the third necessary condition for a success-
ful leptogenesis, i.e. the out-of-equilibrium dynamics. For
the sake of the present discussion we consider only heavy-
neutrino decays and inverse decays [38,65]. The former pro-
cess can induce a lepton asymmetry due to the LNV and
CP-violating decay process, whereas the latter can wash the
asymmetry out (a gauge boson and a lepton/antilepton com-
bine to give a heavy neutrino). In order to observe a matter–
antimatter asymmetry today, processes that wash out the lep-
ton asymmetry have to be inefficient at some epoch during
leptogenesis. This usually happens when the temperature of
the thermal medium drops below the mass of the heavy par-
ticle responsible for the generation of the matter–antimatter
imbalance. In this regime inverse decays are Boltzmann sup-
pressed (∼e−M∗/T ), because SM gauge bosons and lep-
tons/antileptons, which are kept in thermal equilibrium with
the hot plasma, have typical energies much smaller than the
heavy-composite neutrino masses. In other words they can
hardly recombine into a massive state, with M∗ � T , given
that their typical energies is of order T . If heavy compos-
ite neutrinos are close to equilibrium till late times, namely
M∗ � T , then they can efficiently decay and generate a
lepton asymmetry, whereas inverse decays are strongly sup-
pressed.

There is a way to qualitatively study the out-of-equilibrium
dynamics in leptogenesis in terms of the so-called decay
parameter [38,53]. This quantity is given by the ratio of
the decay width of the heavy particle inducing a matter–
antimatter asymmetry (here the composite neutrinos) and the
Hubble rate. The former is evaluated at T = 0 and we can
then take the expressions in Eqs. (3.2) and (3.3) for gauge
and contact interactions, respectively. The latter reads

H =
√

8π3g eff(T )

90

T 2

M Pl

≈ 1.66
√
g eff

T 2

M Pl

, (5.1)

and it is taken at temperatures of order of the heavy-particle
mass, then H(T = M∗) in our case. Then g eff ≈ 100 is
the effective number of relativistic degrees of freedom at
temperatures above the electroweak crossover (we take it as
constant in the following estimations) and M Pl = 1.2 × 1019

GeV is the Planck mass. The decay parameter reads

KI = �I

H(T = M∗)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

| f̃ I |2
1.66

√
g eff

g′2 + 3g2

32π

M Pl

M∗
I

(
M∗

I

�

)2

,

|η̃|2
1.66

√
g eff

g4∗ 107

1536π3

M Pl

M∗
I

(
M∗

I

�

)4

.

(5.2)
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Fig. 6 Two examples for scattering diagrams involving a compos-
ite heavy neutrino. They may be relevant for a full evaluation of
the Boltzmann equations. Left �L = 1 wash-out process that con-

verts an antilepton-composite Majorana neutrino pair into a fermion–
antifermion SM pair. Right �L = 2 violating scattering mediated by a
composite heavy neutrino

100 101 102
101

102

103

104

10 2 10 1 100 101 102
10 18

10 15

10 12

10 9

10 6

Fig. 7 Left Contour level plots of the wash-out factors in the param-
eter space of the model (�, M∗) for gauge and contact interactions,
blue and orange band, respectively. The effective couplings are fixed at
| f̃ I |2 = 10−2 = |η̃I |2 = 10−2. Right lepton asymmetry from Boltz-
mann equations. The decay parameter is fixed at K = 106 and the
effective couplings as for the left panel. The solid and dashed blue lines

correspond to two and three nearly degenerate neutrinos. The resonant

conditions � = �I /2 and Im
[
( f̃ ∗

I f̃ J )2
]
/(| f̃ I |2| f̃ J |2) ≈ 1 imposed at

the same time [58]. The blue dotted-dashed line stands for the hierarchi-
cal case, with M∗

1 /Mi = 0.1. The grey band originates from uncertain-
ties in the value of the baryon asymmetry, efficiency factors converting
the lepton asymmetry and neglected flavour effects

The out-of-equilibrium dynamics is normally established
when the particle interaction rate, here measured by �I ,
equals (and later on is smaller than) the universe expan-
sion, i.e. interactions involving the composite neutrinos can-
not catch up with the expansion of the universe. However, a
detailed analysis requires one to study a set of rate equa-
tions, namely the Boltzmann equations with all the pro-
cesses taken into account [53,66,67]. The out-of-equilibrium
dynamics is captured by the evolution of the neutrino and
lepton-asymmetry number densities, which depend on input
parameters like the heavy-neutrino widths and the CP asym-
metries, together with all the wash-out processes, i.e. inverse
decays and scatterings that work against the generation of
matter–antimatter asymmetry. It is beyond the scope of this
work to solve the Boltzmann equations with all the relevant
processes for the model at hand (see Fig. 6 for an example
of scattering processes).

The decay parameter in (5.2) provides two limiting situ-
ations, called strong wash-out, KI � 1 and weak wash-out
KI � 1, and they correspond to a close-to- and far-from-

equilibrium dynamics respectively. When the strong wash-
out gets realized, the heavy states remain coupled with the hot
plasma until late times, when the temperature drops below
the mass scale M∗

I . Therefore the heavy composite neu-
trino enters a non-relativistic dynamics, being much heavier
than the typical momentum scale of the heat bath, T , and
inverse decays are Boltzmann suppressed. This ensures that
the composite-neutrino decays effectively produce a differ-
ent amount of leptons and antileptons. If one sticks to the
choice made in the literature for the couplings η’s, f and
f ′ in Eqs. (2.1) and (2.3) to be 1, and here it translates
into |η̃I |2, | f̃ I |2 ≈ 1, the condition KI � 1 is realized.
For example, for MI = 10 TeV and � = 100 TeV one
obtains KI ∼ O(109) for both gauge- and contact-induced
widths, respectively. Hence there is room for a wide win-
dow of the effective couplings, namely |η̃I |2, | f̃ I |2 > 10−9,
which allows for late effective decays in a strong wash-out
regime, hence ensuring the heavy neutrinos to be out of chem-
ical equilibration. We notice that a similar result has been
found in [36] for the contact-interaction type Lagrangian.
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As already mentioned, in order to be more quantitative one
has to solve a network of Boltzmann equations. Few parame-
ters have to be inserted into these equations, for example the
decay parameter and the CP asymmetries provided within a
given model [38,66]. Keeping the composite neutrino mass
of order 1–10 TeV and taking the effective couplings, | f̃ I |2
and |η̃I |2, not too small, the typical decay parameter for
the model at hand is quite larger than the typical values
considered in leptogenesis for the strong wash-out, namely
K ∼ 100–103 [38,65]. This is mainly due to the appearance
of the ratio MPl/M

∗
I ; see (5.2). In Fig. 7 left, we show the

contour levels for the wash-out factors from Eq. (5.2) for
gauge and contact interactions. The blue and orange bands
correspond to the wash-out range KI ∈ [

105, 106
]
, where the

effective couplings are fixed such that | f̃ I |2 = |η̃I |2 = 10−2

(we do not consider smaller couplings in order not to spoil
the descriptions in terms of effective operators whose coef-
ficients are expected to be of O( f, f ′, η’s) <∼ 1). It is worth
asking if we can still reproduce the order of magnitude of
the baryon asymmetry for some choice of the parameters
with very large wash-out factors. We perform an estimate as
follows. We take YB = (nB − nB̄)/s ≈ 10−10 [68], where
nB(nB̄) is the number density of baryons (antibaryons) and
s = heff(2π2/45)T 3 is the entropy density of the universe.6

Above the electroweak phase transition the sphaleron inter-
actions convert approximately one third of the lepton asym-
metry into a baryon one, therefore B ≈ −YL/3. We solve
numerically the Boltzmann equations for YL in a simplified
scenario where only decays and inverse decays are consid-
ered [38,58,65,69]. For the network of Boltzmann equations
we adopt the set up and formulation given in Ref. [58,69] for
the rate equations. We assume equilibrium abundances for
the composite neutrinos and a vanishing lepton asymmetry,
respectively, at early times.

As in standard thermal leptogenesis, we can classify dif-
ferent processes that contribute to the collision terms of the
Boltzmann equations (see, e.g., [53] for a detailed discus-
sion). For the model at hand, we find three classes of pro-
cesses that scale as f̃ 2g2, f̃ 4g4, f̃ 2g4 (the same classifica-
tion stands for g → g̃). In this work we retain only pro-
cesses of order f̃ 2g2, for estimating the evolution of the lep-
ton asymmetry.7 The corresponding processes are decays,
inverse decays and s-channel scatterings with on-shell con-
tributions of intermediate heavy neutrinos; see the diagram
on the right of Fig. 6. When the on-shell region is met, the
2 → 2 process is of order f̃ 2g2 instead of of order f̃ 4g4

6 Here heff are the relativistic degrees of freedom entering the entropy
density. This quantity is temperature dependent and differs (slightly)
from heff in Eq. (5.1).
7 Actually we have to work at the first non-trivial order g4 f̃ 4 when
calculating the numerator of the CP asymmetries as given in Eq. (4.1),
since the corresponding width difference in the numerator vanishes at
order g2 f̃ 2.

as one would expect. This is well known in leptogenesis and
it has been dubbed real intermediate state (RIS) subtraction
[66]. Also for the model under study, the s-channel scatter-
ing process can be split into two terms: a first one that is
of order f̃ 2g2 (corresponding to the pole region) and a sec-
ond one of order f̃ 4g4 (away from the pole region). The
former term, which we include in the numerical estimate,
also ensures that the lepton asymmetry vanishes in equilib-
rium.

The other scattering processes that contribute to wash-
out terms of the Boltzmann equations are t- and u-channel
�L = 2 scatterings mediated by heavy-composite neutrinos
(and �L = 2 s-channel contribution after RIS subtraction),
as well as �L = 1 scatterings involving a SM current; see
Fig. 6 left. They are of order f̃ 4g4 and f̃ 2g4 respectively.
Since we take f̃ ≈ 0.1 and the SM gauge couplings are per-
turbative, i.e. smaller than one in the energy range of interest,
we neglect these contributions in the following numerical
estimate for the lepton asymmetry (the same approximation
for the numerics has been adopted, e.g., in Ref. [58,69] and
discussed in Ref. [53]).

For the gauge interactions, the result of the lepton asym-
metry for both the hierarchical and the nearly degenerate case
is given in Fig. 7 right. In both cases we fix | f I |2 = 10−2,
the gauge couplings are evolved at one-loop level in the SM,
and the decay parameter is taken as K1 ≡ K = 106 (for
the nearly degenerate case with two (three) neutrinos we
take K2(,3) ≡ K as well). Moreover, we set M∗

1 /Mi = 0.1
with i = 2, 3 for the hierarchical case, whereas for nearly
degenerate neutrino masses we impose the resonant condi-
tion � = �1,2/2, having then �/M∗ ≈ 10−8–10−9 for
M∗

1 = 1–10 TeV (similar splitting have been also obtained
in [58,69]). According to such a choice of the parameters
the CP asymmetry is ε1 ≈ 10−7 for the hierarchical case
which, together with K = 106, provides a final lepton asym-
metry |YL | ≈ 10−16. This value is much smaller than the
one observed, respectively, blue dotted-dashed line and grey
band in Fig. 7. On the other hand, for the resonant case, we

further require that Im
[
( f̃ ∗

1 f̃2 )2
]
/(| f̃1|2| f̃2|2) ≈ 1 to max-

imise the asymmetry in Eq. (4.13) [58]. Therefore one obtains
ε1,α = ε2,α  −(5g4+2g2g′2+g′4)/(4(3g2+g′2)2) ≈ 0.13
for M∗ ≈ 1–10 TeV, the value of the heavy-neutrino mass
fixing those of the gauge couplings. In this case we find that
there is room for a lepton asymmetry of the right order of
magnitude; see the solid blue line in Fig. 7, given that a fine
tuning is implemented as described. We also consider the
case of three nearly degenerate composite neutrinos, simi-
lar to standard leptogenesis [70–72]. Indeed in the original
formulation of the model at hand the composite neutrinos
masses have been often taken to be the same. In order to
keep the description simple we take M3 ≡ M∗ + �, and
then M∗

2 = M∗
3 exactly. In doing so there is no contribu-
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tion from the neutrino with mass M2 to the CP-violating
decays of the neutrino with mass M3 and vice versa, whereas
both heavier states contribute to the CP asymmetry of the
lightest state (overall this results in the slight enhancement
of the lepton asymmetry in Fig. 7 right). The CP asymme-
tries for three nearly degenerate states are calculable from
Ref. [60].

6 Conclusions

In this paper we have studied the connection between com-
posite models for fermions and leptogenesis. In particular
we have considered the case of composite heavy Majorana
neutrinos that are comprised in effective gauge and contact-
interaction Lagrangians. These heavy states are actively
searched for at the LHC experiments. Majorana neutrinos
are a key ingredient for the leptogenesis mechanism provid-
ing a source of lepton-number violation. We have addressed
the three Sakharov conditions for the model at hand, in order
to check the minimal requirements for the generation of the
matter–antimatter asymmetry. One important assumption has
to be made: typical temperatures of the hot plasma have to
be smaller than the compositeness scale so that composite
neutrinos can contribute to the relevant degrees of freedom.
Preons, or whatever the sub-constituents may be called, are
not manifest and leptogenesis is then driven by heavy Majo-
rana neutrinos. Moreover, one has to assume for the effective
couplings, η’s, f and f ′ a complex nature, namely that they
can develop non-vanishing complex phases. We have stud-
ied how composite models, addressing other fundamental
questions, can work on the leptogenesis side with a focus on
the CP asymmetry. We find that leptogenesis can be imple-
mented in composite neutrino models described by the effec-
tive Lagrangians (2.4) and (2.5).

In the case of gauge interactions, we have calculated
explicitly the CP-violating parameters, defined in (4.1),
induced by heavy composite neutrino decays. This is our
main original result on the computational side. In a mass
arrangement that reads M∗

1 < M∗
2 < M∗

3 , we derived the
direct and indirect contribution to the CP asymmetry. The
corresponding results can be read off from Eqs. (4.3) and
(4.5), respectively. The one-loop diagram inducing the direct
contribution is more involved than the one in standard lep-
togenesis due to more complicated Dirac algebra and addi-
tional powers of the loop momentum, given in turn by the
magnetic-type interaction (see Eq. (2.4)). The indirect con-
tribution instead resembles more closely the standard result
in the literature. The suppression ratio M∗

I /� appears in the
expressions of the CP asymmetries as inherited from the
widths. Then we have provided the CP asymmetries in the
strongly hierarchical and nearly degenerate limits, including
also the case of resonant leptogenesis. The phenomenolog-

ical impact of a resonantly enhancement is really important
for the standard seesaw type I leptogenesis. Indeed it allows
one to lower the heavy-neutrino mass scale down to the TeV
scale. Here we do not gain much in this respect, as the mass
of the heavy composite neutrinos is expected to be of the
order of the TeV scale from the original set-up of the model
and LHC direct searches [33,34]. However, in the resonant
case, the absence of the suppression factor, (M∗/�)2, has a
numerically important impact on the lepton asymmetry from
composite neutrino decays. Indeed we solved the Boltzmann
equations in the simplified scenario where only decays and
inverse decays are considered. When keeping the compos-
ite neutrino mass of order M∗ ∼ 1–10 TeV and couplings
f I ∼ 0.1, only the resonantly enhanced CP asymmetry is
enough to reproduce the correct order of magnitude for the
lepton asymmetry. A very large wash-out and small CP asym-
metries prevent the same to occur in the hierarchical case.
We stress that we have not taken into account a full and sys-
tematic treatment in terms of the Boltzmann equations: only
the leading order processes, namely those at order f̃ 2g2,
have been considered. These are decays, inverse decays and
s-channel scatterings with on-shell intermediate composite
neutrinos. Flavour effects were not considered as well. More-
over, in order to properly handle the saturation of the reso-
nant enhancement for � <∼ �I /2, it would be necessary to
include also coherent transitions between the Majorana neu-
trino states [61–64]. However, this is beyond the scope of our
work.

As far as leptogenesis induced by gauge interactions is
concerned, the phase space parameter compatible with a
successful generation of the matter–antimatter asymmetry
is likely out of reach of present-day colliders. This is due to
the large values of the compositeness scale, � ≈ 102 TeV
for M∗ ≈ 1 TeV, together with smaller effective couplings as
usually taken in the experimental analysis. Correspondingly
production cross sections would be much suppressed and the
same for decays into SM particles.

We foresee at least two future directions for further devel-
opments of the topics here discussed. First, the lepton asym-
metry induced by contact interactions should be considered
and included in the leptogenesis dynamics. Contact inter-
actions are indeed an important ingredient in experimental
analyses and corresponding searches of composite neutrino
states. The CP asymmetries are not known for the model
studied in this paper, though partial results are available in
the literature that refer to models with similar effective oper-
ators as in Eq. (2.3) [36]. In the model considered in this
work, contact interactions provide much smaller values for
�, when M∗ is taken in the TeV range, compared to what
happens with gauge interactions (see Fig. 7, left panel, lower
orange band). Then it is worth addressing the CP asymme-
tries induced by contact interactions and the corresponding
lepton asymmetries in the near future [49]. Second, a com-
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plete study of the Boltzmann equations to assess quantita-
tively the leptogenesis mechanism within composite neu-
trino models is in order. The full set of processes enter-
ing the collision terms of the Boltzmann equations for both
gauge and contact interactions has to be considered for a
complete and conclusive analysis. In doing so one may give
more precise benchmarks on the mass scale, M∗, the com-
positeness scale, �, and effective couplings, the f ′ and η’,
which reproduce the correct matter–antimatter asymmetry.
One could then relate the parameter space compatible with
a successful leptogenesis to the present and predicted exclu-
sion bounds at the LHC (and possibly future colliders) for
composite neutrino models in terms of the very same param-
eters.
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Appendix A: Loop integrals

In the language adopted in the paper, the width can be traced
back to self-energy diagrams for the heavy composite neu-
trinos. In the computation of the CP asymmetry the decay
processes into lepton and antileptons have to be disentan-
gled. This amounts to properly cutting the two-loop self-
energy diagrams through a lepton or an antilepton line. The
remaining one-loop amplitude has to be evaluated and only
its imaginary part contributes to the asymmetry. Indeed the
real parts from the lepton and antilepton contribution cancel
in the numerator of the CP asymmetry (4.1). In the follow-
ing we show explicitly the vertex and wave-function one-
loop integrals that one has to evaluate to obtain the results
in Eqs. (4.4), (4.6) and (4.7). We denote with the generation
index I the incoming external neutrino, whereas we label the
internal one with J .

A.1 Vertex diagram

We start with the vertex diagram; the loop integral reads

Idirect = T λτρFλτρ , (A.1)

where the Dirac structure and one-loop momentum integral
are, respectively,

T λτρ = M∗
J (p − q)μ(p − q)ωσμν

/qσλησω
ν γ τ σρ

η, (A.2)

Fλτρ =
∫

d4�

(2π)4

i3�λ(p − �)τ �ρ[
�2 + iε

] [
(p − �)2 + iε

] [(� − q)2 − M∗2
J + iε] .

(A.3)

Here qμ and (p − q)μ are the lepton/antilepton and gauge
boson momenta, respectively, and we cut the correspond-
ing propagators in the two-loop diagrams in Fig. 4, whereas
the �μ denote the remaining one-loop momenta. The heavy
composite neutrino masses, M∗

I and M∗
J , are the only mass

scales appearing in the loop since the SM particles are
taken as massless. The incoming heavy composite neutrino
momentum is pμ. We perform the calculation by imposing
pμ = M∗

I v
μ with vμ = (1, 0), and therefore qμ = M∗

I /2uμ

with u2 = 0 after the cut. We remark that there are two
additional powers of the loop momentum with respect to the
vertex integral in standard leptogenesis with right-handed
neutrinos [52]. The origin is the derivative-type coupling in
the Lagrangian (2.4). The integral can be carried out with
standard one-loop techniques and we need only the imagi-
nary part of the integral (A.2) to obtain the CP asymmetry.

A.2 Wave-function diagram

Now we discuss the direct contribution to the CP asymmetry.
Here we have to split the discussion according to the two sets
of two-loop diagrams in the first and second row of Fig. 5.
Starting with the diagrams in the first row, the remaining
one-loop integral after the cut reads

Iindirect = UλτρGλτρ , (A.4)

where

Uλτρ = iMJ

p2 − M2
J

σλωγ τσρ
ω , (A.5)

Gλτρ =
∫

d4�

(2π)4

i2�λ(� − p)τ �ρ[
�2 + iε

] [
(p − �)2 + iε

] . (A.6)

Here we are interested in the real part of the loop integral
because, even though the intermediate neutrino propagator
contributes to the loop amplitude, it does not appear in the
loop integral (see (A.5)). Therefore the only mass scale that
appears in (A.6) is the incoming neutrino mass at variance
with the vertex integral where both the incoming and the
internal heavy-neutrino mass play a role. Finally there is a
third quantity to consider, namely the one-loop amplitude
when the sum over the final lepton/antilepton flavour is not
performed. In this case the diagram d in Fig. 3 also con-
tributes; it shows the two-loop amplitude in the second row
of Fig. 5. The corresponding one-loop integral reads

Iflavour
indirect = VλτρGλτρ , (A.7)
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where

Vλτρ = i /p

p2 − M2
J

σλωγ τσρ
ω , (A.8)

and the one-loop integral in (A.7) is again the one given in
(A.6).
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