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1 Introduction

B physics is the physics related to the decay and mixing of B mesons. These processes
require a change of beauty (B) quantum number, AB # 0, and must therefore be medi-
ated either by weak interactions or by physics beyond the Standard Model (SM). Weak
interactions (including interactions with the Higgs field) are mediated by heavy particles
with masses of order of the Electroweak (EW) scale, around pugw =~ 100 GeV. This scale
is very large in comparison to the center-of-mass energy of B-physics processes, around
myp ~ 5 GeV, and thus the weak interaction can be regarded as a local interaction, “factor-
izing” from the non-perturbative physics of mesons and of the strong and electromagnetic
effects operating at these low energy scales. If the physics beyond the Standard Model
(BSM) is also mediated by new particles with masses much larger than the B-physics
scale, BSM interactions will be also approximately local. This will be an implicit assump-
tion throughout the paper: that the BSM scale A is at least of the order of the EW scale,
A 2 upw > my. Therefore both in the case of Weak and BSM interactions, corrections
beyond the leading local contribution are suppressed by additional powers of my/ugw or
my/A, and completely negligible in comparison with current uncertainties in the compu-
tations of the leading matrix elements. As a result, B physics within and beyond the SM



is well described by an effective Lagrangian which includes QCD and QED coupled to all
six leptons and the five lightest quarks, plus a full set of local dimension-six operators
consistent with the field content and gauge symmetry below the EW scale:

d7 g 7b7 sHST Ve Vi,V
Luven = Locntam ™" + 3¢ 0. (L)
%

Here (91(6) denote the (bare) dimension-six local operators, and % are the corresponding

(2
(bare) couplings or Wilson coefficients. This effective theory is called the “Weak Effective
Theory” (WET). For a pedagogical account of the standard formalism we refer to the
classical reviews in refs. [1, 2].

One of the convenient features of Effective Field Theory is the framework it provides for
the resummation of large logarithms. In B physics, the perturbative hard-gluon corrections
to physical amplitudes lead to expansions of the type A = ) an(my, ppw, A, . .. )as(mp)”,
where a,, contain terms proportional to log"™ (m/pugw). Thus the series expansion contains
sub-series of the type > by[as(my)log(my/pew)]™. Since ppw > my, the logarithm
is large and these sub-series do not have good convergence properties, and they must
be resummed. This resummation can be performed with Renormalization Group (RG)
methods within the WET, and leads to a reorganization of the perturbative series. This
requires to know the renormalization-scale dependence of the renormalized operators in
the effective theory, which is given by the anomalous dimensions.

The WET has been studied extensively as an effective theory of the Standard Model
below the EW scale. Matching the SM to the WET perturbatively leads to initial con-
ditions for the Wilson coefficients C;(po ~ prw) as functions of the SM parameters (see
e.g. [3]). However, in the SM many of the matching conditions are negligible, and it is then
conventional to restrict the operator basis to a subset which is closed under renormalization
and contains all the operators with non-negligible matching conditions. This basis may be
called the “SM operator basis”. The anomalous dimensions of the SM operator basis are
known to high perturbative orders [3-13].

Beyond the SM it will typically be the case that operators outside the SM operator basis
are generated with relevant matching coefficients. This happens for example when match-
ing the WET to a general set of dimension-six terms in the SM [14-16]. Thus, the BSM
B-physics toolkit should contain the full set of anomalous dimensions, at least to the lead-
ing non-trivial order. Many bits and pieces of the full anomalous dimension matrix (ADM)
relevant for BSM physics have been calculated in the past, but no complete account is avail-
able to date. It is the purpose of this paper to collect and complete the calculation of the
one-loop anomalous dimensions in QCD and QED for the full operator basis in B physics.

We start in section 2 defining the Weak Effective Theory beyond the Standard Model
and constructing a complete and non-redundant operator basis. In section 3 we outline the
QCD and QED renormalization of the effective theory. In section 4 we discuss the calcu-
lation of the full set of one-loop anomalous dimensions and collect the results. In section 5
we solve the Renormalization Group Equation by constructing the evolution matrix and
discuss the one-loop QCD and QED scale dependence of the Wilson coefficients. A brief
numerical discussion is presented in section 6. In section 7 we conclude with a summary.



The appendices contain: a description of the complete set of results in electronic format
attached to this paper (appendix A), the Fierz identities needed to make the operator basis
minimal (appendix B), and the procedure to translate our results to other more traditional
bases used in the literature, first for magnetic and semileptonic operators (appendix C),
and then for 4-quark operators, together with a careful comparison of different sets of
results with previous calculations (appendix D).

Conventions
Throughout the paper we use the following conventions and definitions: we use the con-

vention o, = %[’yu, ], and define the strings of gamma matrices

Yuvp = Y Ww¥pr»  Ypvpe = T Vv VpYo -

The Dirac left- and right-handed projectors are defined as P, =(1—75)/2 and Pr=(1+75)/2,
with the 4-dimensional 5 defined as v5 = —4%6“”""’%,,,)0. With this definition, the following
relations hold in D = 4:

Yuvp = GuvYp = GupYv + GupYu + iE#ypa ¥*vs (1'2)
Yuvpoe = GuoGvp — Gup9ve + Juv9po + { [gl/ao'up + OvoGup — GpoOuv — OpuoGup
— 9uoOuvp — Upcrg,ul/] - if,u,l/po V5 5 (13)
1
Y5 = ie,ul/aﬁ o (1.4)

0123 — —e€p123 = +1. Throughout

The totally antisymmetric tensor is defined such that e
this paper we will use naive dimensional regularization with anticommuting ~5. This is
convenient since our choice of basis will ensure that no Dirac traces with 5 have to be
evaluated [8].

Finally, our convention for QED and QCD covariant derivatives is such that
Dyt = (O +ieQpA, +igsT"Gy) ¥ (1.5)

with Q.=—1. The field-strength tensors are then defined by ie Qy F, +ig: TG, =[D,, D,].

2 Complete operator basis beyond the SM

In this paper we consider a complete and non-redundant basis for AB # 0 operators beyond
the Standard Model. However, these operators will not always correspond one-to-one to the
operators traditionally chosen in the SM operator basis, for which matching conditions and
anomalous dimensions are very well known and standard. In order to be able to use, on the
one hand, these well-known SM results directly, and other hand, our results for BSM opera-
tors, it is convenient to separate SM and BSM contributions at the level of the Lagrangian:

7d? K 7b’ b 7T7 €y W 6 6
»CWET = ['EQUCD-CHSEDe T Vestsr) + ‘CI(EV)V + ['l(ss)M . (2'1)



Here E,(E%)V and EI(BGS)M are the effective Lagrangians resulting after integrating out the SM
and the BSM heavy degrees of freedom, respectively. The effective Lagrangian originating
from BSM physics is

1
L = \C/;g S0 +he. |, (2.2)

where the sum over ¢ runs over all the operator indices that will appear below. The su-
perindex (0) indicates that the Wilson coefficients and the operators in eq. (2.2) are bare
quantities and must be renormalized. The relationship between bare and renormalized
quantities will be discussed in section 3. The coefficients C; contain all BSM effects but no
pure-SM ones. Thus the SM matching conditions determine E(Efiz,, and matching conditions
involving BSM particles determine the C;. We organize the operators such that O; and
(’)ZT have AB > 0 and AB < 0, respectively. They can be grouped into classes according
to their flavour quantum numbers. This is useful because the flavour symmetries of QCD
and QED imply that the different groups cannot mix into each other. A summary of the
full list of non-redundant operators classified according to their flavour structure is given
in table 1. In order to keep a unified notation for all classes, we introduce a generic basis

for four-fermion operators, after which we list the operators in each class.

Generic basis for four-fermion operators

We adopt (except for Class I) the following generic basis of four-fermion operators a la
Chetyrkin-Misiak-Munz [8]:

O1 = (Y1 Pryu ) (¥37"4) Oy = (Y1 PRy T*92) (37" T*9a)

O3 = (Y1 Pr Ywp ¥2) (37" Pa) O4 = (1 PR T 2) (P57""° T94)

O5 = (1 Prab2) (Y34) O = (Y1 PRT"42) (13 T"a) (2.3)
O7 = (1 Pro™ ) (Y304 1), Og = (Y1 Pro™ T*o) (V30 T s)

Oy = (V1 Pr Yuwpo ¥2) (V37"7a) s O10 = (V1 Pr Yuwpo T2) (037""7 T4s)

where T4 are the SU(3) generators in the fundamental representation. In addition, opera-
tors with primed indices, obtained by interchanging Pgr <+ Pr, must be considered as well.
These will also be referred to as operators with “opposite chirality”.

The basis (2.3) has been used extensively in higher-order calculations [3, 7-13] because
it allows to avoid the evaluation of Dirac traces containing ~5 to any order in QCD and
QED, provided that ¢; and 9 have different flavours. In D = 4, it can be rewritten in terms
of the chiral basis — with Dirac structure of the form Pr,® Py, P, ® Pgr, v" Pr®~, P, Y PL,®
YuPr, " P, ® 0, Pr, ... — by means of the identities (1.2)—(1.4), see appendix B.

The operators with an even index, O3 468,10, must be considered only for four-quark
operators. In addition, when 7 = 3 or 192 = 14 not all operators are independent and
the basis can be reduced by means of Fierz identities. In such case we always choose to
remove the operators with an even index (see appendix B for more details).



Class Flavour structure Number of Ops. Other flavours ADM Example process

Class I sbsb 5+3 dbdb o B, — B, mixing
Class 11 b Ly (2+3)x9 b lvp A By— 7w
sbeu
Class TIT sbac 10+10 dbic A B~ - D'K-
dbeu
Class TV 5b3d 545 dbds Ay B - KK~
sbqq dbqq By — DTD;
Class V SbF,sbG S7+57 dbF, dbG Yy By — Xy
Y74 db e B K- utu~
Class Vb b0, 0 £ (' (5+5) x aber Avw  Bs—uort
Class Vv SbUvp (I+1)x dbTovy Zero B~ — K vy
ub fv° (342) x eb e AVita By —ntu v
Class VI 7% (2+1) x dbov© Avib B - K v
sbTv (1+2)x dbTv Avic B = K vv
“becu (5+5) x None Wita By — Aset
“bucu (2+2) x “bvece Avirs By —pe”
v°bucd
b uls 5x3 vehets e BY = pv
v°bccd
7ebuch 2x3 i Xod) Aviia A) — Byv
Class VII /bscd (5+5) %3 None Avite A) — Kte™
b3t (2+2) x3 bd’d A A = wte”
b3 (2+2)x3 bd’b Yy =) — Bte™
vbucd
Tbus 5x 3 vbc’s Avim Bt = pv
vbccd
vhuch 2x3 TbTh Avisi A) — Byv

Table 1. Summary list of non-redundant operators. The number of operators in each class is
indicated by (n+n') X ng, where n is the number of different operators modulo lepton flavours, n’ is
the number of operators with opposite chirality, and n, accounts for the different leptonic flavours.
All the operators with flavour structure given in the second column are defined in section 2, while
the ones in the fourth column are obtained by obvious replacements. The last column lists an
example of a process to which the corresponding class of operators contributes.



Class I: |AB| = 2 operators

For |AB| = 2 operators we use the traditional “SUSY basis” [17, 18] (but paying attention
to the different normalization in eq. (2.2)). In the case of |AS| = 2 this basis is given by

05" = (s7,Ppb) (5" Prb) O = (3, PLbg) (35PRba) ,
03" = (5PLb) (sPLb) o - = (59 Prb) (57" Prb)
Sb‘“’ = (8aPrbg) (35 PLba) , 3”51’ = (5Pgb) (3PrD),
0865” (SPLb) (5PRb) Sbs = (5aPrbg) (35 Prba) , (2.4)

where we denote with primed indices the operators with opposite chirality. The correspond-
ing |AS| = 0 operators 0% are obtained from O$**® by performing the substitution s — d.
Class II: |AB| = 1 semileptonic operators

In semileptonic operators we allow for lepton-flavour violation and non-universality, with
0,0 € {e,u,7}. Neutrinos are assumed to be left-handed and we shortly denote them by
vy = vg, 1. The operators can be either |AI| = 1/2 or |AC| = 1; the basis in the former
case is given by

0P = (@ Ppyd) (Tyve) . O = (a Prb) (v | (2.5)
Oubw (u Pr, " b) (Z o l/gl) , Ouwél (u P b) (Z l/g/) , OUbM (u P, o"" b) (Z O Vg/).

The corresponding |AC| = 1 operators Ofw/ are obtained from O}”W/ by performing the
substitution u — c.

Class III: |AB| = |AC| = 1 four-quark operators

A complete basis for |[AB| = |AC| = |AS| = 1 operators is given by

O = (5 Pryub) (17c) O = (3 Py, T*D) (3 T'c).

O5Pe = (5 Pg Yuvp b) (W Pc) , oPue = (5 Pg YupTAb) (@y"P Thc),

Ot = (3 Prb)(Tc), Ot = (3 PRT b)(@T"c), (2.6)
OsP¢ = (5 Pra" b)(Wou c) Ot = (5 Pr o™ Tb)(uo,, Tc),
sbuc _ (8 PR Vo po ) (u,y;wpac) ’ sbuc _ (8 PR Yyuwpo TA b) (ﬂ,y;wpa TAC) ’

plus the analogous set with opposite chirality
Osbuc Ogbuc (2 7)
! Pr, r—Pr 1, 7 '

and similarly for the operators Ofbcu with opposite sign for AC. The corresponding op-
erators O and O with |AS| = 0 (JAI| = 1) are obtained from Of“¢ and O*** by
performing the substitution s — d.



Class IV: |AB| =1, |AS| = 2 four-quark operators

A complete basis for |[AB|=1, |AS| = 2 operators is given by

O = (57, Py B) (57" d). O = (57, Prb) (57" d).
O™ = (5 PLb) (74, O™ = (5 2y Pr) (729 d),
0" = (s PLb)(s d), SbSd = (5 Prb)(34d),
OSbSd (50" PrLb)(Soumd), SbSd = (50" Prb)(Souwd), (2.8)
OSbSd (s Yuvpo PL b) (3y"F7d), SbSd = (3 Yuwpo PR b) (3y"P7d) .

Here we have chosen a different basis compared to the generic basis of eq. (2.3) to
avoid mixing between primed and non-primed operators. All color-octet operators are
Fierz-redundant and have been omitted (see appendix B). The corresponding set of
|AB| = |AI| = |AS| =1 operators O are obtained from O:%*¢ by performing the
substitution s — d.

Class V: |AB| =1, |AC| = 0 operators

There are three classes of such operators: magnetic, hadronic (four-quark) and semileptonic
operators. In the case of |AS| = 1, these are chosen as:

» Magnetic penguins:

1
Oty = a5 Prowb) P, 0%y = my (5 Proy T40) G
s S
1
Oty = 3o (SPLowb) P, Ofy = —my (5PLow TA0) G (29)
s S

Our conventions for the field-strength tensors have been specified in the previous section.
» Four-quark (¢ # s):

sbqq sbqq

= (8 Prud) (@"q), = (3 Pryu T7b) (@' T"q),
O3 = (3 Pryupb) (@"q) O3 = (3 Pryuw,T0) (@y"" T*q),
Oquq (5Prb)(qq), Oquq (53PrT*b)(qT"q),
O399 — (5 Py o b) (G0 q) | OLU = (5 Pp ot T4b) o Tq),  (2.10)
051"” = (5 PR Yuvpo b) (@7"74) OSb‘” = (8 PrYups T0) (@7 T"q) ,

where ¢ = {u,d,c}. In the case of ¢ = b, the color-octet operators O3%% A6810 are Fierz-
equivalent to the color-singlet ones (see appendix B for details) and are not included in the
basis. In addition, (for ¢ = {u,d, c,b}) the analogous set with opposite chirality is needed:

o5 — osbaa (2.11)

KA 7
Pp r—PR,L

The case ¢ = s needs a separate discussion because it is convenient to group primed and
unprimed operators in a different manner, which simplifies the mixing pattern:



» Four-quark (¢ = s):

01" = (37, PLb) (7" s), Of** = (57 Prb) (379" 5).
5 Yuwp Prb) (39"7s), 5 Yuwp PrD) (37"7s),

( ( (
=(s = (s
Sbss =(SPLb)(5s), Sbss = (sPrb)(5s),
=(s = (s
(s =(s

sbss sbss

Sbss =B PLb)(5ouws), Sbss = (530" Prb)(5ous), (2.12)
(’)Sbss = (5Yuwpo P b) (571777s), Sbss = (5Yuwpo Prb) (5777 s).

Again, the color-octet operators are Fierz-redundant and have been omitted (see
appendix B).

» Semileptonic:

O = (5 Pry,b) (I, O = (5 Py, b) ((y" 1),

O3 = (3 Pryuwp b) (Ly"00), O = (5 PLuyp b) (4P 1),

O = (5PRrb) (L), O3 — (sPLb) (@Y,

0P — (5 PR b) (Lo, ), O — (5PLo"™ b) (Lo '), (2.13)
Ogbw = (5 Pg Yuvpo b) (¢ Wpae/) OSbM (5P Yuvpo b) ( Wpae,)

OME = (3 Py b) (v ver) O = (5 Ppub) (T ver) . (2.14)

In semileptonic operators we also allow for lepton-flavor non-universality, and lepton-flavour
violation. The later case (¢ # ¢') is referred to as Class Vb, while the case with two
neutrinos is referred to as Class V.

The corresponding |AS| = 0 (JAI| = 1/2) operators are obtained from egs. (2.9)—(2.14)
with the replacement s <> d.
Class VI: lepton number violating operators

The operators that violate lepton number (but not baryon number) can be divided in two
groups: operators with one charged lepton and a neutrino (Class VIa) and operators with
two neutrinos (Class VIb and VIc). We use the notation ¢ = C@T and ¥ © = ¢7C, where
C' denotes the charge-conjugation matrix.

» Class VIa: the following operators violate lepton number by —2 units.
O — (7 Pr 4" b) (Cyuvg), O — (7 Prb) (Cvg), O — (7 Pr o b) (Cowvi),
OWH — (1w Pp A" b) (Cyuvi), O — (u Pp b) (Cvg). (2.15)

The corresponding |AC| = 1 operators (’)fmlc are obtained from (’)fwlc by performing the
substitution u — c.

» Class VIb: the following operators violate lepton number by —2 units.

0P = (5 Prb) i), O = (5 Pro™ b) (o), OP" = (5 PLb) ().
(2.16)



» Class Vic: the following operators violate lepton number by +2 units.

O = (5Prb) (Tfvy), 0N = (5PLot b) (Ffowve), OF"Y =(EPLb) (Tive).
(2.17)

In class VIb and Vlc if we swap the generation indices ¢ <+ ¢’ the operators do not change
since (7 v;) = (V5v;) and (7f o"v;) = (V5 o"v;). Therefore, for each possible £¢' pair
only one must be considered. The corresponding |AS| = 0(|AI| = 1/2) operators are

obtained from egs. (2.16) and (2.17) with the replacement s — d.

Class VII: baryon number violating operators

Baryon-number violating operators relevant for B physics can be divided in two groups:
operators that conserve B—L (Classes VIIa-VIId) and operators that violate B— L (Classes
VIle-VIIi).! All operators violate also L: they contain either a charged lepton (Classes
VIla, VIIb, VIle, VIIf and VIIg) or a neutrino (Classes VIIc, VIId, VIIh and VIIi).

» Class Vlla:

0P = eapr (" Pryuba) (T3 7" un), 0P = eapr (" Ppyuba) (€579 un),

Ogbcu = EaBA (ZC PR Yuvp ba) (6?3 ’lep U)\) ’ O@bcu = EapA (ZC PL Yuvp boc) (E% ’ijp ’LL)\) )
Oébcu = EaBA (ZC Pr ba) (6% u>\) , Ogl/)cu = EapA (Zc Py, ba) (Eg u,\) , (2.18)
0P = eqpr (I° Prouw ba) (€5 0™ uy),  OF™ = eapr (€ Proy, ba) (€5 0™ uy),
OF" = capn (I Prtuupe ba) (67477 1), OF" = capn (€ Po vy ba) (€577 )

Operators of the type 00U = ¢,4, ( Iy ba)(ﬂ% % cy) are all related to O by transpo-
sition of the second current, and are not independent.

» Class VIIb: the cases (’)fb““ and (’)fbcc are constrained by transpositions of the second
current. A set of independent operators is chosen as:

= capr (° Pryy ba) (@57 wy) = capr (O PLyuba) (@5" w),
0P = eapx (€ PRoyw ba) (@ o™ wn), 0P = eapn (£ PrLoyw ba) (@0 uy) . (2.19)

The corresponding operators Ofbcc are obtained from Ofb““ by the substitution v — c.

» Class Vllc:

Ogbus = EapA (ﬂj Pr, ba) (EC,B Ysa), Oebus = Eafr (72 Prvywp ba) (Ufi PP sy),
Og)us = €apA (fﬁ PL ba) (E% S)\) s Ogl/)us = Eap) (ﬁg PL Oy ba) (ﬂ% ot 5)\) s
OF™* = capa (75 P Yywpo ba) (T3 177 53) (2.20)

The corresponding operators Of/b“d, Of,bcs and (’)f/de are obtained from Of,b“s by the sub-
stitution of the quark flavours s — d, u — ¢ and (s,u) — (d, ¢) respectively.

"'With B here we denote baryon number, not to be confused with beauty, as in the rest of the paper.



» Class VIId: the cases Ofb“b and Ofbd’ are constrained by Fierz identities; here we choose
the following minimal basis of independent operators:

OV = eapx (7§ Pr oy ba) (W57 ), OF* = eapx (7 Prba) (@G b)) (2.21)

In addition, Oébd’ (9%“1’|uﬁ
The following classes correspond to B — L violating operators.

» Class VIle: the operators

O = capr (L Pruba) (559" dr) O = apr (L PLyuba) (559" dy),

05 = eapn (L PrYuwpba) (5577 dy),  OF* = capn (0 PLYuwp ba) (55797 dy) |
OébSd = Eafr (ZPR ba) (8,3 dy), OKbSd = Eafr (ZPL ba) (5,8 dy), (2.22)
07" = opr (( PR oy ba) (550 dy), 054 = eapx (L PL oy ba) (350 dy),
Ongd = (Z PrYupo b o) (E,% P dy) Oglzsd = €apA (ﬁ Pr,vuwpo ba) (5% P dy)

mediate transitions of the type Ag — KTe™. The corresponding operators (’)fbdS are related

to (’)bed by transpositions of the second current and are not independent.

» Class VIIf: the cases 09 and O** (mediating transitions such as AY) — 7Fe” and
Eg — K™Te™ respectively) are constrained by transpositions of the second current. A set
of independent operators is:

OF* = eapr (L PRAuba) (357" 510), O =eapr (EPLyuba) (557" 51)
O$b58 = cap (Z Prou, ba) (5% o sy) Ogss = EaBA (Z Prouw ba) (5% ots\),  (2.23)

with the corresponding operators (’)fbdd obtained from Ofbss by the substitution s — d.

» Class VIIg: the set Obeb (mediating, e.g. Eg — BTe™) is constrained by Fierz identities,
resulting in only four independent operators. We choose:

Oébsb Oébsb

= capr ((PRYuba) (35702, = capr (EPLYuba) (359" 02)
O%Sb Eafr (EPR Oy ba) (5% ot b)\) , O%Sb = Eafr (EPL Ouy ba) (5% ot b>\) , (2.24)

Lbdb (bbs

and the operators are obtained by the substitution s — d. The operators
and (’)fbbd are related to the former by transposition of the second current, and are not

independent.

» Class VIIh: the set of operators in class VIIh and VIIi correspond to the classes VIlc
and VIId, respectively, where 7 is substituted with 7, and where the left-handed projector
is interchanged with the right-handed one because of the opposite chirality of v and v°.

O™ = eap (Te PrYuba) (@57 1) 05" = eap (Te PR Yuvp ba) (W57 53)
O = eapx (Ve Prba) (U5 51), O = eapr (Vi Prow ba) (UG 0™ 53)
O = eap (V0 PR Yuwpo ba) (@577 s3) . (2.25)

The corresponding operators (’)fb“d, (’)fbcs and (’)bed are obtained from Ofbus by the sub-
stitution of the quark flavours s — d, u — ¢ and (s,u) — (d, ¢) respectively.

~10 -



» Class VIIi:
O™ = eogn (o PRYuba) (@5 by),  OP™ =eqpy (¢ Prba) (@by).  (2.26)

In addition, O%® = O%ub|, .

3 Renormalization of the effective theory

The Wilson coefficients and dimension-six operators appearing in eq. (2.1) are bare quan-
tities and have to be renormalized. The relationships between bare and renormalized
quantities are given in terms of matrix-valued Z factors:

" =z5¢, 09 =z00;. (3.1)

The renormalization matrix Z@ = 79 takes care of field renormalization, and possibly the
renormalization of masses and couplings that might appear in the normalization of the
operators (specifically in O, oy Og0) g). In our set-up Zo is always a diagonal matrix. The
renormalization matrix ZC = Z¢ takes care of the renormalization of the Wilson coefficients
and includes operator mixing. These renormalization factors depend on the renormalization
scale and provide the renormalized Wilson coefficients and operators with the corresponding
renormalization scale dependence. In particular, since the bare coefficients do not depend
on the scale, one finds that (in matrix notation)

ac o dZe -
= —Z_l ¢ = 3T 2
dlog i ¢ dlog,uc v e (3:2)

which defines 4, the anomalous dimension matrix.

The renormalization factors Z are calculated by subtracting the UV divergences of
bare amplitudes perturbatively in a chosen renormalization scheme. In this paper we will
regularize UV divergences by means of dimensional regularization in D = 4 — 2¢ dimen-
sions, and subtract the divergences in the MS scheme. However, the one-loop anomalous
dimensions will not depend on the renormalization scheme.? Scheme dependence only af-
fects the finite one-loop terms, and all terms starting at two loops, which also depend on
the choice of the evanescent operators.

Given the normalization of the operators in section 2, one loop corrections are always
suppressed by one power of «, where « is either ag or aey (the loop expansion coincides
with the coupling expansion). A generic renormalized amplitude can then be written as

os 1 Qem 1
A= {@j P [52;;8 +620° + Agj} +oms [52;““ + 620" + Ag;n] } C; (O;)tree
+ finite terms + O(a?, 02, 0s0tem) ; (3.3)

where the first two terms in each square bracket are the counterterm contributions, the

matrices AS, Ae™ are the UV divergent pieces of the bare one-loop amplitudes, and (O;)te®

2Barring the mass ratio issue mentioned below eq. (4.24).
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are the tree-level matrix elements of the operators. The scale dependence is contained in
the parameter

AN =

1
=_ - + log(4m) — log p? . (3.4)

The requirement that the one-loop divergences in the bare amplitudes are cancelled by the
counterterms leads to the equation:

AT — 2‘7 [ 94" — 2525} + (Z: [— 9 Aem _ 2525m] + 02,02, astem) . (3.5)

The renormalization factors §Z¢ are given by

o ag 1 0, (6% 1 O,em
ZJ =6 + ﬁg(szﬁ S+ ﬁgazﬁ ML 02,02, stem) (3.6)

with

—2CF ;5 for 4-quark operators
5795 _ —CFdij for 2-quark-2-lepton operators
Y %(110,4 —12Cp —4fTp)  for electromagnetic operators

% (2C4 —3CF — fTF) for chromomagnetic operators
with Cy =3, Cr=4/3, Tr =1/2, f =5, and

—%(Q%+Q%+Q§+Qﬁ) 9;; for 4-fermion operators (@1F¢2)(@3F'w4)
(5Z§ o= —3(7Q? + Q?)  for electromagnetic operators (3.8)
—3(7Q% + Q%) for chromomagnetic operators

The one-loop divergences in the bare amplitudes (the matrices As and flem) are ob-
tained by calculating all one-loop QCD and QED corrections to the relevant amplitudes,
expressing them in terms of tree level matrix elements of the operators in the basis, and
keeping only the 1/e poles. This requires the evaluation of elementary one-loop penguin
and vertex diagrams with one insertion of a dimension-six operator. A representative set
of the diagrams that have to be calculated is shown in figure 1.

4 Complete anomalous dimension matrix at one loop

The complete one-loop ADM is obtained from eq. (3.5) inserting the results for the Z
factors and one-loop divergences outlined in section 3. We have calculated all the entries
of the ADM, and compared our results for the entries that were already known, finding
perfect agreement there. A summary of pieces that were known and how to compare them
to our results (in our new basis) is given in appendix D.

The full anomalous dimension matrix for the full set of operators listed in table 1 has
the following block-diagonal form:

’A}/ = Diagonal{’%, ’AYII; &III? fAYIVv :YV7 ’AYVb7 62><2a ’AYVIaa ﬁAYVIb? :YVIca PAYVIIaw ey PAYVIIi} . (41)

The different blocks 4; have dimensions specified in table 1, and are given sequentially in
the remainder of this section.
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(a) (b) (c) (d)
X :i E/ ; \ iz % T
(e) (f) (g)

Figure 1. Representative set of one-loop penguin and vertex diagrams needed for the evaluation

(h)

of the anomalous dimension matrix at order oy and o, .

Class I: |AB| =2

We combine all Class I operators into the following vector:

H
O, = {Obeb, O;bsb7 O?s)bsb’ OibSb, Ongb, 0#367 OS?Sb, Og?sb ) (4‘2)
%
The block 4; in the order specified by O is given by
4 0 0 0 00 0 O %0000000
0-22 0000 0 0-5¥ 0 000 0
0% 2 0000 0 0% -50 000 0
. a0 0 0 -1600 0 O Qem [0 0 0 =2 000 0
A= — + == 3, (4.3)
47 10 0 0 -6 20 0 O 4t 100 0 0 —30 0 O
00 0 0040 O OOOOO%OO
00 0 0 00-23 00 0 0 00—35%
16 32 16 _ 4
00 0 000 3 5 00 0 0 007 —3
The ADM corresponding to the set O;ibdb is identical.
Class II: |AB| = 1 semileptonic
All Class IT operators are combined into the vector:
aﬁ _ {(QELMZ’7 Ogbﬁ’7 O'lu/bﬂ/’ Ogle” O?Pﬂgl}‘ (44)
In this order, the block 4 is given by:
00000 —-40 00 O
, |0-8000) 03000
&11:4—; 00000 +4e: 00-20 0 (4.5)
000-80 000 3% %
0000 § 000 8-

The ADM corresponding to the set Ofw, is identical.
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Class III: |AB| = |AC| = 1 four-quark

We group the unprimed Class I1I operators into the vector
—
Ous = {057, 08, O, ..., OFe, 0ffe) = {05, O}, (4.6)

where in the second equality we have divided the set into two subsets. With this notation,
the block Ay has itself a sub-block-diagonal form:

R f‘lll?‘l 0
= N 4.7
Vi < 0 F}a[?m > ( )

with the following sub-blocks:

0 -20 0 2 oo -2 0
40 52 4 5 40 4
ploa_ % [ =9 —%F 5 3 Qem | 0 g 0 —3 (4.8)
Mo 4r | 0 —128 0 20 Ar |25 0 -2 0 |’
256 160 40 _ 2 0 256 ( _4o0
9 3 9 3 9 9
-6 0 0 -2 0 0 -2 0 3 0 0 0
4 5 10 4
O A P RS S
poe0_0s | 082 R =320 2| awm |-F 0 F 0 5 0
" dr | & 4 8 9 1 _5 4r | 0 =8 o Z o 2
1024 1024 1408 94
0 —512 —10924 384 —16 32 0249 M8 o 8 0
_ 1024 _ 640 256 1184 64 46 o 024 1408 (5 _ 94
9 3 3 3 9 3 9 9 9
(4.9)

The anomalous dimensions for the set of primed operators (’)f,buc are identical, as well as
the ones for the sets (’)Zdbuc, (’)fb‘m and (’)fbcu and their primed counterparts.

Class IV: |AB| =1, |AS| = 2 four-quark

The operators in Class IV are ordered and grouped into the following vector:
a7 sbsd ysbsd sbsd ysbsd ysbsd
OIV - {Ol B (93 5 05 5 07 5 (99 }, (410)

with respect to which the block Ay is given by:

3 116 -4 -1 22 0 0 0
-2 64 —16 —1 -2 0 0 0
N Qs 53 11 1 Qem o0 4 2
™ o0 o0 -2 @ 5 & 0 o 32 _28 _2
25% 13600 664 212 122 209
003 -7 —% 0 0-% % 9

The anomalous dimensions for the set of primed operators (’)f,bs‘i are identical, as well as
the ones for the set Oglbds, and its primed counterpart.
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Class V: |AB| =1, |AC| =0

The block 4y is the largest one, given by a 57 x 57 matrix (plus an identical copy for the
primed operators). This block can itself be divided in sub-blocks, which is instructive since
this already unfolds most of the features of the mixing pattern. We order the complete

basis of Class V operators into the vector:

Oy = {Of, Oy, O3, O, O3t5F, O35, O3y, O, 03, 5, 05, O, 0375 }
(4.12)
which defines also the different sub-blocks in the matrix. Then,
A A Zu H“ | H" Nu | N | Nu
pu
Z4 Al A He | q? N¢ | N4 | Nd
Bd
Zu A A HY | Hv Nu | N | Nu
) B K
W T IG g c | D plp|P | (4.13)
I Id I D|lc|J|P|P|P
E
Lv LA Lv Q| Q F |G| G
Lv Le Lv Q| Q G| F |G
Lv Le Lv Q| Q| |M|G|G|F

where the empty entries represent zeroes. The different sub-blocks are as follows:

The diagonal entries are given by:

0 —20 0 2 D4+8Q, 0 -2 0
40 4 5 0 2
Ao % | =9 165 5 | Gemp 0 3 0 -3 (4.14)
4r | 0 —128 0 20 dr T 22 480Q, 0 -2 0 |’
256 40 2 128 20
5 40 5 -3 0 5 0 -3
-6 0 0 -2 0 0 -2 0 3 0 0 0
0 2 -5 -2 0 0 0o -2 o0 s 0 0
pu_s| 032 F =320 =2 am|-F 0 F 0 5 0
C4r| & 4L 8 96 2 -2 dr | 0 =% 0 20 3|
0 —512 —1924 384 —16 32 024 1 o0 % 0
_ 1024 _ 640 ﬁ 1184 64 46 8 1024 09 1408 09 _94
9 3 3 3 9 3 9 9 9
(4.15)
-6 0 0 -2 0 0 -2 0 -2 0 0 0
0 2 -5 -2 0 0 0 -3 0 -2 0 0
Ad_as| 0 32 i -32 0 -2 | Qem 2.0 -2 0 -20 (4.16)
CAr | & 2 % 926 5 -3 47 0o 2 o0 -2 o -2 "
0 —512 —182% 384 —16 32 -2 0 B 0 R 0
1024 _ 640 256 1184 64 46 0 _512 o 128 (3 20
9 3 3 3 9 3 9 9 9
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8 2 128 _32 _2 _32 2
9 9 9 9 9 27 9
_I60 50 320 _80 _5 _80 20
~ o« 9 9 9 9 «a 79
=% 2 1 _Ix o2 L | Gem ) B g 4
N I A B N T B AP,
00 -5 3 3§ 0 0 5
32 _ 4 896 _ 4832 _ 194 32 g _512
9 9 9 9 9 27 9
14 16 8
EZO‘S<_332 0) O‘em<9—83 ,
000 0 O -4 2 0 0 0
000 0 O -162 0 0 0
- Qs Qem 20 2
F=_—~100-8 0 0 1 0 0 -2 -2 0
™
000 5 0 o o % % -2
00 0 _ 512 -8 0 0 _ 512 _ 128 4

The mixing among the four-quark operators is given by the following matrices:

“
]
.

IC)C)

|0

no

=
N

0©

o O O

4 1 6 4 1 28
_654 1? _gﬁ 6§4 T %740000
9 5 ~9 9 9 34 0000
A Gs T Qem 2
D=—1135 "3 9 ~§ m|t | 0000,
0o 0 0 0 0 0 0000
32 4 128 32 2 32
9 9 9 ~ 9 9 —ﬁOOOO
0000 16 000
Zq_as O%OO aemQ 0 000
470000 Ar “11 8000 |
0500 0 000
0 5 00 ~% 000
fq: S 2 em 2
0 0 00 0 000
0-300 2 000
0 0 0 00 ~£0000
4 1 16 4 1
fr=S| "9 "9 9 3 |4 Yemg 0 0000
a7 0O 0 0 00 47 1 _%0000
40 5 160 40 5
~9 9 9 9 18 0 0000

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

The matrices describing the mixing of four-fermion operators into electro- and chromomag-

netic operators only contain an as part, due to the normalization of 07, Og/. They are

given by:
0
0
ag | —16x,
Tam |0
256z,
0

0
0 0 O
0 O

O j o Qg 1 1 _
—dz, |’ 4T o8 A ’

0 B1o

—222 128

64x, 3

~16 —

0 0

0 0

0 0
8r, 0
—128x, 0

(4.24)



The matrices K and M depend on the parameters x. = m./my, and x; = m,/my, respec-
tively, that make the ADM scale- and scheme-dependent. However such dependece can be
removed in principle by including in eq. (2.9) new dipole operators normalized with m, or
m. instead of my,.

The mixing among operators containing different leptonic flavours is given by:

80000
20000
G=2"100000 (4.25)
o . :
00000
00000

The mixing of the semileptonic operators into four-quark operators is given by:

-2000 50000
—-89000 80000
“ Qlem 3 A Qem 9
mz4ﬂ% 0 000 ], Q=47T 00000 | . (4.26)
0 000 00000
0 000 00000

The mixing of four-quark operators into semileptonic operators is given by:

28
20000
9
eny, [ 0 0000 e | 0000
Ne — Zem p==m] _2 ) 4.2
47TQq -800000 |’ 4 098888 (4.27)
0 0000
20000

Finally, for the lepton-flavour violating operators in Class Vb, {Oll’sfg} with £ # ¢/ we find:

000 0 0 22 0 0 0
000 0 0 -2 0 0 0
N Qs Qem 20 2
v=—100-8 0 0 |+ 0o 0 -2 -2 9 (4.28)
4m 000 8 o am 0 32 %6 _ 2
00 0 —52 38 00— -5 4

All these matrices replicate exactly for the corresponding sets of primed operators, as well
as for the operators mediating b — d transitions. We also reiterate that the ADM for the
Class Vv operators (’)il{% vanishes.

Class VI: lepton number violating

We group the Class VI operators in the following way:

bee'c bee'e bee'e bee'c bee'e bee'e bee'e bee'e
OVIa — {Oqf ; Og 5 O’? 5 Oqf’ ; Og’ } ; OVIb - {Og 5 O’? ) Og’ } ;

— cp! cp! cp!
Ovi. = {05, 050, 08"} (4.29)
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The blocks Ay._. are given by:

00000
0-800 0
fvn=—-=100 800 [+
’}/VIa 47_[_ 3
00 00O
00 00-8
-80 0
v = Avie = = 0 2 0
Tvib = Vvie I 3
0 0 -8

Class VII: baryon number violating

-20 0 00
03 ¢ 00
Gem | g g —40 g g
4 9
00 0 —40
00 0 03
_2
Qo 3(2)0
- 020
4 9
0 0-2

We define the following vectors for the Class VII operators:

(THZ — {Ofbcu’ Ogbcu’ Oébcu’ Oébcu’ OSbCU} 7
O, = {0}, 04, 08, 08, 0f1),
m — {(besd7 Ongd, Ogbsd, Ogbsd’ Ongd} ’
(Tng — (Ot othshy

Lbub Lbub
OVIIi:{Olu ,O5u }

The blocks Ay, — Jvin are then given by:

2 -0 0 0 X 0 0 0
16 -3 0 0 0 0 %o o0
N Qg O O 1 1 O Qlem 0 O 14 0
Tvila e i : + g 5
00 —4 3 ¢ 0O 0 0 —
0 0 64 —16 =3 0 0 O %
2 _ % _% 0 + Qlem L:f 0
Yy = 1 0 1 i 0 _% ,
2 -30 0 0 24 0 0
6-3 0 0 O 33—2 % 0 0
N N Qg 1 Qlem 4
Wie =Ym=-—| 0 0 1 7 0 + 0 0 —3 —
4 1 41 8
00 —4 3 ¢ 00 § -
128 3
0 0 64 —16 =3 00— %
. 5 as (1 0) , Gem [—3 0
Avia = Yvis = . _% 9 + e % 9 ]
2 —% 0 0 O —% 0 0 O
6 -3 0 0 0 0 —% 0 0
A Qs 1 Qem 4
wie=-—110 0 1 5 0 |+ 0 0 -2 0
4 1 4 4
00 —4 3 3 0 0 0 —3
0 0 64 —16 =3 0 0 0 O

145} 14}
OVIIb = {01 uu7 07 uu}

Lbub Llbub
OVHd - {Ol/u ,O5/u 5

; lb 142
Oy = {01 ss, 07 ss} ,

)

(4.30)

(4.31)

(4.32)

—_—
OVHh _ {O{bus7 Ogbus, Ogbus, Ogbus, Ogbus} 7
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(4.33)

(4.34)

(4.35)

(4.36)

(4.37)



wm

1
o Og -3 Qem
= = 4.38
Yviit . ( 0 1) ( 0 % ) ( )
. as ({10 Qlem % 0
= = 4.39
Yviig i (0 2) + A ( 0 % ( )

ADMs for other sets corresponding to primed operators (when existing) or other operators

with different flavours, as specified in table 1 and section 2, are obtained by replication of
the appropriate matrices given above.

5 Renormalization-group evolution

Given the anomalous dimension matrix and the renormalization group equation (RGE)

d_) 5 S m
C :,AyTC Zé ﬁ(m)Tchae &(o 1)Tc+0( o2, gm,asaem), (5.1)
T 47

dlog i

the solution for C;(u) in terms of the initial (matching) conditions C;(ug) is expressed in
terms of the evolution operator matrix U (u, o),

. R . 1 t s !/ - !/ .
C(u) = U(p, o) Clpo) = T{exp [—2/ ar' & (p );y(l,o)T + ae('u):y(ﬂ,l)T}} Cluo),
0 7r
(5.2)
where t = In(ud/u?) and the t-ordered exponential is defined as the Taylor series with

each term t-ordered, with ¢ increasing from right to left. The matrix U (1, o) can be
decomposed as follows:

U, po) = Us(p, o) + AUe(p, o), (5.3)

where Us(u, f10) is responsible of the evolution in pure QCD, while AU, (u, p1o) describes
the additional evolution caused by electromagnetic interactions.? The leading order result
for the pure QCD evolution matrix reads:

(1) 5
2 > Qs Lo 255 r—1
Us(p, poo) =V ( ) V=, 5.4
( ) as(:u) ( )
D
where the matrix V diagonalizes 40T
A00) = 15007 (5.5)

(17

and Y10 are the diagonal elements of the diagonal matrix Ap O The exponent contains

the coefficient 5 = 23/3 of the leading order QCD beta function £(gs) = —f3§ 1252 with

f =5 active flavours. It is convenient to define the parameter ns; = ns(u, o) = ﬁ‘;o)) SO

that we can write the QCD one-loop evolution matrix as
Ol o) =V [nf] V7, (5.6)

with the vector of exponents @ = 71:0) /(243).

3Generalizations to higher orders of these expressions can be found in refs. [19, 20].

~19 —



The matrix AUe(,u, o), responsible for the extra evolution in the presence of QED
interactions, can be calculated order by order in aepn; at first order it is given by [19-21]:

A

1 77 / O‘em(:u/) ~(0,1)T 77 /

AUe(p, po) = =5 [ dt Us(p, ') — =577 Us(p', po), (5.7)
0 7I8

where p’ is such that ¢ = In(ud/u’?). Neglecting the running of aey, and employing the

leading order expression for Uy in (5.4), the integration in eq. (5.7) yields

N Qlemn ~

AUe(pty o) = —m5———V K 1y V -1 5.8
where the entries of the matrix K (11, o) are given by:

-+1 . .
(s’ —n%)/(a; —a; — 1) ifa;—a; #1,

(5.9)
ng In (1/n5) if a; — a; = 1.

Kij(p, po) = (V_IW(O’I)TV)@ X {

In the rest of this section we provide explicitly the vectors @ and the matrices V for
each operator Class. For convenience, we also provide the complete evolution matrices

U(p, o) in a MATHEMATICA notebook attached to the arXiv version of this paper — see
appendix A.

Class I: |AB| = 2 operators

The vector @ is given by:

- 6 14++v241 1—+241 24 3 6 1++241 1—+241 (5.10)
ar =14 == ~ 552753’ 58 : ‘
Y123 23 7 23 7 237237230 23 7 23
The matrix V is given by:
1 0 0 000 0 0
—15+241 —15—/241
0 +2 > 0 00 0 0
0 1 1 000 0 0
- 0 0 0 1-%£0 0 0
Vi = 3 (5.11)
0 0 0 010 0 0
0 0 0 001 0 0
0 0 0 000 —15—"—2\/ 241 —15—2\/ 241
0 0 0 000 1 1
Class II: |AB| = 1 semileptonic operators
The exponents a; are given by:
12 12 4
= ——,0,——,=>. 12
aH {07 237Oa 237 23} (5 )

The matrix V is simply Vu = 1545.
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Class III: |AB| = |AC| = 1 four-quark operators

The vector @ is given by:

R 24 12 6 3 —17—+241 24 1+ /241 1—\/24 3 V241 —17
dp=4——=—=y——y—y—=y———————, —— .
o 23’ 23'23°23° 23 7 237 23 23 237 23
(5.13)
As in eqs. (4.6), (4.7) we decompose the matrix V into two sub-blocks:
; .
V;II - 0 ‘/}5 10 y (514)
with
_8 4 _8 064
3 3 73 73
o —16 —4 —4 —16
‘/I}I ‘= 1 1 2 _4 |> (5.15)
6 3 3 3
1 1 1 1
53 86 _ 21/241 2(43+3v/241) 53
5 — V241 —64 - =5 = 0 —% +v241
—16 0 —16 —16 —64 —16
. 79 11\/241 16 —207+7\/24 —207— 7\/24 0 79 _ 11y241
Vit =l 2(51— \/ﬂ) (51+\/ﬂ) . - (5.16)
27 + \/24 0 16 27 —+/241
5343+/241 1 —43+3\/241 —43— 3\/24 0  53=3v241
48 120 120 48
1 0 1 1 1 1
Class IV: |AB| =1, |AS| = 2 operators
The exponents a; are given by:
. 24 1++/241 1—\/24 6 3
Qry — ey (5.17)
237 23 23 723723
The matrix V is given by:
0 0 0 —4 —96
0 0 0 1 6
Viv=| —64 —16 -16 0 —64 (5.18)
4(364++/241) 4(36—+/241)
16 5 5 0 16
1 1 1 0 1

Class V: |AB| =1, |AC| = 0 operators

The corresponding vector @ and matrix V in this class are 57-dimensional, and thus it is
not practical to present them explicitly here. In addition, the diagonalization of the ADM
block 4y cannot be carried out analytically, and therefore the expressions are necessarily
numerical with finite precision. The complete numerical expression for the 57 x 57 evolution
matrix Uv(u, o) can be found as MATHEMATICA notebook attached to the arXiv version
of this paper.
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Class VI: lepton number violating operators

The vectors @ and the matrices V for classes VIa-c are

12 4 12
-~ _ ) _ _= 1
aVIa {07 237 23707 23} 9 (5 9)
VVIa = j-5><5 ) (520)
12 4 12
> o ) _< 21
Avib avic { 23’23’ 23} ’ (5 )
VVIb = VVIC = i3><3- (5-22)

Class VII: baryon number violating operators

For Class VIla, Vllc, VIle and VIIh the vectors @ and the matrices V are given by:

3 3 3 3 3
a. pu— a. pu— aq. pu— a. p— _—— — _—— — — '2
Avita = Qvile = Avite = Avim { 93746’ 23’ 23 46} ) (5 3)
and
-4-16 0 0 O
1 0 0 O
VVHa — VVIIC - VVIIe - VVIIh - 0 *16 *16 *64 . (524)

0 4 20 16
0 1 1 1

o O O =

For Class VIId and VIIi the vector @ and the matrix V are given by:

o . 3 3
Ayia = Ay = { } , (5.25)

216
N . ~1

Vg = Vo = 2 . 5.26
VIId VIIi 10 ( )

For the Classes VIIb, VIIf and VIlg, the anomalous dimensions are diagonal and therefore
VVIIb = VVIIf = VVIIg = i2><2 ) (5.27)

and the vectors @ are given by

- . 3 3 o 3 3
Ay, = Qg = {_92, _46} ) Ayirg = {46’ 23} . (5.28)

6 Numerical example: Class-V spectra

As mentioned in the previous section, the number of operators in Class V is too large to
present here explicitly the evolution matrix Uy (see appendix A). Nevertheless, we would
like to discuss a simple way to visualize the matrix Uy by making use of bar plots, as those
presented in figure 2.
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(a) Contribution to the Wilson coefficients at the scale p, assuming C2*° (uw) = 1.
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(b) Contributions to C7., (i) for a matching condition C;(uw) = 1.

Figure 2. Examples of spectra of Class V. Purple and green bars correspond the QCD and QED
renormalization-group evolution given by the matrices Us and AU, respectively.
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The solution of the RGE (5.2) can be written in components as
Ciup) =D Uiy (o o) Ci(w) = > [Us(#b»,uw) + AUe(NbaNW)]U Ci(pw).  (6.1)
J J

The values of the Wilson coefficients can be displayed in a bar plot providing a sort of
spectrum of Class V. We distinguish two types of plots: we can show all C; (), for a given
set of matching conditions C;(uw ), or for a fixed ¢ we can show all single terms appearing
in the j-summation in eq. (6.1) stemming from each C;(uw ). These two plots can be
employed to convey different types of information:

» C;(up)-spectrum: it shows the value of all Wilson coefficients at the scale py,, C;(up),
for a given set of matching conditions C;(uw ).

A simple example is given in figure 2a. Each operator O; in Class V corresponds to a bin
on the z-axis; its Wilson coefficient at the scale py, is represented by a bar (with positive or
negative value). As matching condition we simply set Cgbbb(,uw) = 1 and all others equal to
zero. Purple and green bars correspond to the QCD and QED contributions given by the

matrices U, and AUQ, respectively. The two scales are chosen to be uy = Mz and p, = myp.

In general, more than one C;(uw ) is different from zero, so that the sum over j must be
taken in eq. (6.1). For instance, once a specific new physics scenario is considered and the
whole set of matching conditions is known, the C;(up)-spectrum gives an overall view of
the sizes of the Wilson coefficients at the scale .

» C;(pw)-spectrum: it shows, for a fixed i, each partial contribution to C;(p) in the
sum (6.1).

Figure 2b shows each partial contribution to C?W(,ub) for an initial condition C;(uw) = 1
(for all j); operator names are on the xz-axis. We note that the bars can be viewed also as
the value of C;(up) if only the corresponding C;(uw ) is set to be non-zero at the scale fuyy.
From this perspective, suppose that |C;(up)| < k, then k times the inverse of the bar size
can be regarded as the corresponding constraint on C;(uy ). In our case we could read for
example |C5P ()| < k/5 or [C8%¢(uw)| < k/107% ete. It is understood that this rough
estimate holds under the assumption that only one Wilson coeflicient is different from zero
at the scale pyy.

The same kind of spectra can be drawn for linear combinations of Wilson coefficients;
for example figure 3 shows the Cg,-spectrum of the SM-like operator Cy,, defined as
« *
o VinVis Coulpm) = CT (1) + 10 C5™ (1uy), (6.2)
with Cj(puw) =1 for all j.

7 Conclusion

General analyses of B-physics processes beyond the SM require control of the
renormalization-group evolution below the electroweak scale. This evolution is well known
for the dimension-six operators in the WET that have non-negligible matching conditions
in the SM. However, in a general New Physics model, many other operators may re-
ceive relevant matching conditions. The first step is to write down the most general set
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Figure 3. Contributions to Cy, as defined in (6.2) assuming C;(uw) = 1 for each operator O; in
Class V.

of dimension-six operators in the WET. We have built a complete, minimal and suitable
basis of operators relevant for B-physics. This basis is presented in section 2.

We have also calculated and collected the complete set of one-loop anomalous dimen-
sions of these operators. The anomalous dimension matrices for each operator class can be
found in section 4. The evolution equation for the Wilson coeflicients necessary to evaluate
the coefficients at the B physics scale in terms of the matching conditions at the EW or
the New Physics scale, with resummation of QCD and QED leading logarithms is given in
egs. (5.3), (5.6) and (5.8). The explicit results for the different blocks corresponding to the
different classes of operators (see section 2) are also given in section 5. The evolution ma-
trices are given for convenience in electronic format as a MATHEMATICA package attached
to the arXiv version of this paper, and discussed in appendix A.

The results of this paper will be useful in any attempt to automatize completely gen-
eral analyses of physics beyond the SM which take into account consistently experimental
constraints from B-physics. These results have already been incorporated into the modular
program DsixTools [22].
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A Complete numerical results for the RG evolution matrices

From the results presented in section 5 one can easily construct all the matrices U (ns)
needed for the evolution of all Wilson coefficients. In the case of Uy (1), we have not
presented the explicit expressions for the 57-dimensional vector dy and rotation matrix V4,
but they can be obtained by diagonalization of the ADM given in eq. (4.13).

For convenience, we provide a MATHEMATICA package attached to the arXiv ver-
sion of this paper called EvolutionMatrices.m, which contains all the matrices Uy (ns) for
J =11I,..., VI, as a function of the coupling ratio ns = as(uo)/as(p) and the QED fine-
structure constant aen,. After correctly specifying the path and evaluating the package

<<‘‘EvolutionMatrices.m’’

the variables Us[I], Us[II], etc. contain the QCD evolution matrices U, corresponding to
each class of operators, and the variables , Ue[I], Ue[II], etc. contain the corresponding
QED contributions AU,. For example, the complete evolution for Class V operators to
first order in QED is obtained doing;:

<<‘‘EvolutionMatrices.m’’

UclassV = Us[V] + UelV];

and similarly for the other operator Classes.

B Fierz identities for four quark operators

In this appendix we give the (four-dimensional) Fierz identities that allow to remove the
redundant color-octet four-quark operators in Classes IV and V. The discussion is framed
in the context of Class V operators, but the case of Class IV is completely analogous as
for Class V sbss operators.

It is convenient, also for the following comparison with previously published results,
to introduce the following Fierz basis of four-quark operators. For ¢ = u, d, ¢,b we define:

Fi = (37, Prb) (@v" Prq) F3 = (SavuPrbg) (@57 Praa) ;
F3 = (37.Prb) (@v" Prq) , Fi = (BavuPrbs) (@s7" Praa) ,
Fi = (5Pgrb)(qPrq) , Fé = (5aPrbg)(G5PrYa) »
Fi = (3Prb)(qPLy), F§ = (3aPrbg)(@sPra) ,
Fg = (50" Prb)(qo,wPrq) , Fly = (50 0" Prbg) (45 0w PrAa) ; (B.1)
while for ¢ = s:
i = (5 PrLb) (sv"Prs) F3 = (SavuPrbs) (557" Prsa)
5 = (57uPLb) (57" Prs) , Fi = (BavuPrbs) (357" Prsa) ,
5 = (5PLb)(3PLs), Fé = (5aPrLbs)(35PLsa) ,
7 = (SPLb)(sPgs) Fg = (5aPrbs)(5sPrSa) ,
F5 = (56" Ppb) (S0, Prs), Fio = (Ba 0" Prbg) (58 0, Prsq) - (B.2)
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The analogous set of primed operators with opposite chirality is obtained interchanging
P, +» Pg everywhere. For ¢ = s,b not all operators are independent and Fierz identities in
D = 4 allow to remove half of them. In this work, we choose to express the even operators
in terms of the odd ones via the identities (with anticommuting fermion fields):

Ft=Fr, Fib = —2Ft,
]:-s,b _ _lfs,b N lj—_-s,b f-s,b _ _lj—_-s,b
6 275 T gl9 8 2737
1
Fib— —6F5" + 5}"5“’. (B.3)

Note that with the operator definitions given in egs. (B.1) and (B.2), primed and unprimed
operators do not mix, which is the main reason for the different definition in ¢ = s operators.
The reason for choosing to eliminate the color-octet operators (the ones with even indices),
is that one-loop closed penguins involving O or %% will not appear.

Using the identities (1.2)—(1.4) and the relation among matrices of the fundamental

representation of SU(V),
1

2
the F operators can be expressed in terms of the four-quark operators of Class V in

1
TT{ = =0udkj — 7 OOkt (B.4)

egs. (2.10) and (2.12) by means of the following linear transformation:
Fi =Ry O;bqq, qg=u,d,s,c,b, (B.5)

where R = diag(f% A, R B) is a block diagonal matrix where the 4 x4 sub-block Ra maps O1_4
into F{_,, and the 6 x 6 sub-block Rp maps O5_19 into F¢_,,; their explicit expressions are

1 1 1
-3 0 35 0 is 0
-0 L o0 1 -2 1 2 1 1
3 12 3N °3 3¥ 3 18N 24
. L2 i1 i RPN S
_ 3N 3 12N 6 _ 3 3 5
Ba=| 4" o 21 o> Be=| i s 1 o T 1 (B.6)
A 2 3N 3 3N 3 48N 24
3N 3 12N 6 0O 0 1 0 0 0
0o 0 &% 2 0 0

The same transformation applies to primed operators. Eq. (B.5) allows us to obtain the
Fierz identities for the operators 0***" and 0**** in egs. (2.10) and (2.12):

O = —%01 + 2%103 - 205 + %07 + %097

Oy = —2(91 + %(93 - L?)605 + 2(97 + T1209’

Os =301+ 103 — 205 — 07— =05
(98:(’)5—%(97—%0%

O = —?01 + %03 _ %05 + 207 + %og. (B.7)
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The same 4D identities hold for the primed operators, for Class IV operators (2.8), and
for the corresponding operators with s <+ d. These identities are useful in the calculation
of the one-loop anomalous dimensions, and set a reference for the subsequent definition of
Fierz evanescent operators necessary for fixing the scheme in higher order calculations [33].

C Semileptonic operators: traditional basis

In this appendix we provide the transformation rules to translate the Wilson coeffi-
cients of semileptonic operators between our basis and a more “traditional” one, e.g.
refs. [15, 16, 24, 25].

» Class IT operators: we consider the basis in refs. [15, 16] for [AB| = |[AC| = 1 oper-
ators. In this case the operators are equivalent to ours, with a redefinition of primed and
unprimed operators necessary to block-diagonalize the ADM. The dictionary is given by:

Cy=C, oy =ct, cs=cg", Cy=c, op=c9.  (C1)
The same relations hold for b — ulyy.

» Semileptonic Class V operators: the translation in this case requires a bit of work.
We start with the “Fierz” basis for semileptonic operators:

Fo = (57, PLb) (Ty*0), Fit = 3y Prb) (tyPst'),
FY' = (sPab) (10, TP = (EPrb) (sl
FU = (50"b) (Tot'), Fifs = (50b) (loust'), (C.2)

plus the four primed operators .7:5,6,10, g pr obtained from the unprimed by interchanging

P; ¢ Pg. The operators F are given in terms of Class-V semileptonic operators in
eq. (2.13) by

00’ 14 774
where we have combined the operators in the following way:
?M/:{Féélvflegwr”lvfwlvfulvffgvfe’gla 156/,’;@(;’7‘/—_‘1!;3/}, (C4)
BSbM _ {Ofb_% ,Ols_bga . (C.5)

The explicit expression of the 10 x 10 matrix Ry is

)

0

)

=
| — o
wlot

O O O O = RO O

(C.6)

_ o O O O O
]
o

|
wlut
o=
[es}
[es}
S O O O O O O o O

o oo oo oo oo

O O O O O O O O wot=

O O O O o o o o
O O O O O O
o O
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We define the “traditional” basis of operators and Wilson coefficients by the Lagrangian:

4G
Lo = \/f VZthS{C7 O7+4 C3 Og + C7 O + Cg Og + Cg Ogr
+ Y [CEO+ iy Ol + C5 O + Ch O + CF OF: + Cf; OF:,
l=e,u,T

+ C§ 08 + CYy Oy + C% 0% + Ch, OF } } , (C.7)

where the different operators are related to our operators by:

Xs os
4 809"

Q (6%
of = 2F* 0., s
¢ 4 "7 T 4

These definitions are consistent with refs. [24, 25], but not with refs. [15, 16] where the
CKM elements are not factored out. Thus it is important to have this in mind when using

—070,, Ogo = (C.8)

the matching conditions in refs. [15, 16]. These definitions are also consistent with the
usual values quoted for the SM Wilson coefficients: CSM(my) ~ —0.3, C§M(my) ~ —0.17
and C§ SM(my) ~ —C4{SM(my) ~ 4.

It follows that the Wilson coefficients C; in this “traditional” basis are related to the
Wilson coefficients of Class-V operators in egs. (2.9) and (2.13) by

ViV Cr = G5, ViV Ch = Gy

LV G =G Vi Gl = iy,

OZTn Vi Vit Cf = ot 4 1008 OZ: Vi Vit CL = C3v 4 10080
VRV Ol = 665, ViV Ol = 6C3,

O;‘f ViVt O = ce 4 40050 O;: ViVt O = Csbt 1 g0t
O:f;mw;; Ch =240 O:f—:w;; Ch, = —240%

aem thV}s Ch = Csbez 8O 4 - Cst st

O;e;n ‘/tb‘/?; 0%5 Csb@f Cgbég Csbff +8 Csbff ] (Cg)

D Comparison with the literature

In this appendix we compare our results from section 4 with previously published results
for the anomalous dimension matrices.

General remarks

Historically, the AF = 1 effective Hamiltonian does not contain all the operators in
egs. (B.1) and (B.2), but only the subset that corresponds to the low energy effective
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theory of the weak interactions in the SM. They are usually divided in three classes
depending on the leading order mechanism that induces them in the full theory:*

o Current-current operators arising from a tree-level exchange of a W-boson; we can
denote them by (in the notation of eq. (B.1))

Pl = FC, PR = i (D.1)

e QCD-penguin operators coming from penguin diagrams with a gluon exchange; since
the quark-gluon couplings are flavour independent, the summation over all possible
quark flavours is taken:

Ps=) Fi, Pi=) 73,
q q

Ps=> Fi, Ps=> Fi. (D.2)
q q

o EW-penguin operators originating in the SM from photon or Z penguins and box
diagrams; they correspond to the combinations

3 3
Pr=13D ek, Ps=3 D eoFi,
q q
3 3
PQZQ;Gq]:f» 7)10:2;%]:5' (D'3)

The operators fg,...,lo usually are not considered in the SM.

We will now compare the ADM matrices presented in section 4 with the previously pub-
lished results. As already stated in section 2, in QCD the operators (’)quq with ¢ = u,d, c
mix through vertex-correction or closed penguin diagrams (see figures la—1c), while for
q = s,b they mix in addition with open penguins (see in figure 1d). However, the one-loop
ADM of the operators (D.2) and (D.3) receives contributions from both open and closed
penguins since for ¢ = b, s also the operators with even indices participate. Moreover, pen-
guin diagrams appear with a multiplicity factor f given that more than one quark flavour
is allowed in the loop. For a comparison with previous published results, it is necessary
therefore to extract these three contributions; in some cases, when this is not possible, a
comparison is performed by recombining our results in section 4 in order to obtain the
ADM for the operators (D.2) and (D.3). Usually the ADMs are expressed in the Fierz
basis, 4, and must be converted into our basis by means of the transformation (B.5):

’AYO - RilfA}/]:R . (D4)
Also for ¢ = s,b the ADM has to be reduced to the minimal basis by applying the Fierz
identities in (B.3) and by eliminating from the ADM the rows and/or the columns corre-
sponding to the even (redundant) operators. In the following it is understood that such

transformations have to be applied in the comparison whenever necessary.

4We ignore here for simplicity possible global normalization factors, as for example Vi, V;%, since they do
not affect the ADM.
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QCD mixing

Early calculations of genuine vertex corrections to four-quark operators Fi_, can be found
in [26, 27]. One- and two-loop ADM in QCD for |AS| = 1 were calculated in refs. [4, 5]; the
contribution of vertex correction diagrams to the mixing of F{ , can be read, for example,
from the ADM of QCD and EW penguin operators (D.2) in section 3.1 of [4].

In ref. [28] the one- and two-loop ADM for |AF| = 2 were calculated; the results are
expressed in terms of four-quark operators with a generic flavour structure, denoted by
Qig). The vertex corrections for the operator F7_,, can be extracted by identifying the
operators defined in eq. (13) of [28] with

1 1 1
Qf = S 573, Q5 = 578 F
1 1 1 1 1
+ +
Q3::|:Z]-:‘f+§}"q, Q4=§f§$1}"g$ﬁﬂ’o,
1 1
Qf = £3F - S F {Flo: (D.5)

the above relations take into account also that in [28] 0¥ is defined as o#” = %[7“,7”].
When g = b, s the Q™ operators vanish and Qf = F}, QF = F4, Q5 = F¥, Qf = F2,
a5 =7,

The contribution to the |AF| =1 ADM from one loop penguins where first evaluated
in [29-31]. The penguin contributions to the Class-V ADM due to insertions of four-quark
operators can be retrieved, for example, from section 3.2 of [4]. The operators P4 and
Ps can mix only via closed penguin diagrams, so that the relative contribution to the
ADM originating from the insertion of ]:51,4, with ¢ = u,d, ¢, is obtained by setting the
number of flavours f = 1 in the results for P4 and Pg. On the contrary, P3 can mix only
through an open penguin; the ADM contribution due to 7 b g just one half of the result
for P3. Moreover, we note that the mixing of ]:?’S into F§ via an open penguin is related
through Fierz identities (B.3) to the mixing pattern of the operators FJ, from which the
contribution to the ADM can be extracted as well. The ADM of the operators F2_,, were
also calculated in [32, 33].

Vertex corrections to four-quark operators do not depend on the flavour, so they can
be employed to calculate directly the ADM of the operators in Classes I, ITI and IV. They
also contribute to the diagonal sub-blocks A, B and C of Class V where, however, penguin
contribution must be included as well: closed penguins for A% and B and open penguins
for C. The off-diagonal sub-blocks of the Class-V ADM in (4.13) are generated only by
penguins: closed penguins for the sub-blocks Z9 and H? and open penguins for 19 and D.

The one-loop QCD mixing of the operators 07, and Og, appearing in the sub-block
E in (4.13) was calculated in [34, 35]. Given the normalization of the four-quark operators
in Class V, the only operators mixing into Oz, and Og, at O(a,) are O, and (’)gf’?f’g,
corresponding to the sub-blocks K and J in (4.13); the mixing was calculated in [32].
We recall that in the SM, where only QCD and EW penguin operators are considered, the
mixing between Ps, ..., Ps and Or,, Ogg vanishes at one-loop. Therefore the leading O(cvs)

contribution to the ADM arises from two-loop diagrams, calculated in [36, 37]; with our
2

conventions, these mixing contributions enter in the ADM only at order «s.
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The QCD mixing of semileptonic operators in Classes II, V and VI (the blocks 4y, F
and Yyigp,c) is determined simply by the anomalous dimension of the quark current. The
operators with vector current do not have an anomalous dimension in QCD due to current
conservation. The ADM of scalar and tensor currents can be recovered from the results
of ref. [38]. The ADM of baryon-number violating operators in Class VII are new to our
knowledge; a calculation with a UV cut-off can be found in ref. [39].

QED mixing

Electromagnetic corrections to the mixing of four-quark operators in the |AS| = 1 Hamilto-
nian were computed in [40] at one-loop and in [5] at two-loops. From appendix A of [40] it
is possible, for example, to extract the contributions to the ADM due to vertex corrections
and the penguin diagrams. Vertex corrections are recovered from the ADM sub-block rela-
tive to the mixing of EW penguin operators into QCD penguin operators; it is easy to see
that such mixing is driven only by vertex corrections. The sub-block of the ADM giving the
mixing between QCD penguin operators and the EW ones yields the contributions arising
from closed penguin diagrams, which are denoted by the number of up- and down-type
quarks f, and fg4, and open penguins, given by the remaining f,,, f4-independent part once
the vertex corrections are subtracted.

Vertex corrections determine the ADM entries of the operator Off’f’m, in Class I, the
sub-block f%ﬁ4 of Class III, and the entries relative to the operators Of??fd in Class IV. In
Class V, the sub-blocks fl, B (C’) receive a contribution from vertex corrections and closed
(open and closed) penguins. The off-diagonal sub-blocks in (4.13) are generated by closed
penguins for the sub-blocks Z9 and H? and both open and closed penguins for 19 and D.
Also the sub-block N and P, giving the mixing of four-quark operators into semileptonic
ones, can be obtained from H and I by appropriate substitution of the quark charge with
the lepton charge. In a similar way the results for G, L and O can be derived from H by
removing a factor of three (the lepton in the loop does not carry color) and substituting the
quark charges with the leptonic one. The QED mixing of the magnetic operators O7,, Ogg,
the sub-block E of (4.13), was calculated in [41], at one loop, and in [42] at two loops,
where the mixing of the semileptonic operators

@=30r  ad  Qu-3 Sop - <o (D.6)
is also presented. The QED mixing of semileptonic operators in Class V (corresponding
to the blocks F' and 4y1,) can be recovered from the results of ref. [43], where the one-loop
ADM of an effective Lagrangian for y — e transitions in calculated.

To our knowledge, the O(ce) term in the ADM of Class I (only for the operators
03{’;%,13,), Class II, the sub-block f‘ir’ﬁ 10 of Class III and Class VII are new. In Class V, the
results of the sub-blocks B and M , and the entries of C relative to the operators Oglf]g are

also new.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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