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Abstract 

Abortions in cattle have a significant economic impact on animal husbandry and require prompt diagnosis for sur‑
veillance of epizootic infectious agents. Since most abortions are not epizootic but sporadic with often undetected 
etiologies, this study examined the bacterial community present in the placenta (PL, n = 32) and fetal abomasal 
content (AC, n = 49) in 64 cases of bovine abortion by next generation sequencing (NGS) of the 16S rRNA gene. The 
PL and AC from three fetuses of dams that died from non‑infectious reasons were included as controls. All samples 
were analyzed by bacterial culture, and 17 were examined by histopathology. We observed 922 OTUs overall and 267 
taxa at the genus level. No detectable bacterial DNA was present in the control samples. The microbial profiles of the 
PL and AC differed significantly, both in their composition (PERMANOVA), species richness and Chao‑1 (Mann–Whit‑
ney test). In both organs, Pseudomonas was the most abundant genus. The combination of NGS and culture identi‑
fied opportunistic pathogens of interest in placentas with lesions, such as Vibrio metschnikovii, Streptococcus uberis, 
Lactococcus lactis and Escherichia coli. In placentas with lesions where culturing was unsuccessful, Pseudomonas and 
unidentified Aeromonadaceae were identified by NGS displaying high number of reads. Three cases with multiple 
possible etiologies and placentas presenting lesions were detected by NGS. Amplicon sequencing has the potential 
to uncover unknown etiological agents. These new insights on cattle abortion extend our focus to previously under‑
studied opportunistic abortive bacteria.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Infectious abortion in ruminants is a problem in animal 
husbandry worldwide. Its importance is related not only 
to economic loss in animal production but also to infec-
tious risks posed to humans and other animals [1, 2].

The most common bacterial abortive agents involved 
in ruminant abortion are Brucella spp., Coxiella burnetii 
and Chlamydia abortus [2–4]. While Brucella spp. and C. 
burnetii are typically involved in bovine fertility problems 
as abortion, stillbirth and weak offspring [5], chlamydial 
infections may cause a variety of syndromes including 
conjunctivitis, polyarthritis, encephalomyelitis, mastitis 
and other urogenital tract infections [2]. In humans, bru-
cellosis, Q fever (C. burnetii) and chlamydiosis should be 
considered among the most common zoonotic diseases 

around the world [2, 5]. Moreover, there is increasing 
evidence supporting the implication in bovine abortion 
of other Chlamydia-related bacteria [2, 4, 6]. Other bac-
terial agents sporadically associated with bovine abor-
tion that can also cause serious zoonotic diseases are 
Salmonella spp., Campylobacter spp., Leptospira spp. 
and Listeria monocytogenes [2, 5]. However, many of the 
bacterial causes of abortion involve opportunistic patho-
gens and often remain undetected. These organisms are 
common inhabitants in the host and environment and 
can occasionally enter the blood stream of the dam, sub-
sequently infecting the placenta and producing sporadic 
abortion [7].

Laboratories conducting abortion diagnostic examina-
tions should perform standard tests covering the major 
abortive infectious diseases; however, costs dictate that 
these tests are limited to the most common etiologies 
[8]. For example, first-line routine bacteriological abor-
tion diagnostics in cattle in Switzerland only include 
serology and staining for B. abortus and C. burnetii 
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(Swiss ordinance on epizootic diseases, article 129). In 
general, success rates for abortion diagnoses are low. 
Rates ranging from 23.3 to 45.5% were reported in the 
United States and a diagnostic rate of 22.5% in England, 
Wales and Scotland [9, 10]. While positive results for the 
before-mentioned diseases are notifiable and gathered 
in a national database, this does not imply causality of 
an abortion and, hence, no true diagnostic rates can be 
reported from Switzerland. In addition, problems such as 
inappropriate sample collection and submission, incom-
plete case history, environmental contamination and/or 
poor condition of the fetus may further hamper achieving 
an etiological diagnosis [7]. The placenta is considered 
the most useful sample; however, after abortion, the pla-
centa is exposed to several environmental contaminants 
and detection of an agent in the placenta only does not 
imply that it actually passed on to the fetus. Thus, fetal 
abomasal fluid and organs are also required for culture 
and molecular detection [5].

Increasing knowledge of the bacteria that are involved 
in cattle abortion is crucial for optimizing the diagnos-
tic approach and revealing emerging pathogens. Cul-
ture-independent DNA technology based on sequencing 
of the rrs gene encoding 16S rRNA has the potential to 
uncover both known and novel microorganisms [11]. 
Thus far, no study has focused on the bacterial microbi-
ota present in bovine abortion material.

The objective of this study was to characterize the 
microbiota of samples from cattle abortions using high 
throughput sequencing of the V3–V5 region of the 16S 
rRNA gene to provide new insight into the bacteria that 
may play a role in bovine abortion.

Materials and methods
Sample collection
Samples from 64 bovine abortion cases from different 
cantons of Switzerland that were submitted for routine 
abortion investigation were collected from October 2012 
to March 2014 [Bern (n = 40), Luzern (n = 6), Solothurn 
(n = 5), Aargau (n = 3), Vaud (n = 3), Basel-Land (n = 2), 
Fribourg (n = 2), Jura (n = 2) and Valais (n = 1)]. From 
the 64 cases of aborted cows, we analyzed 81 samples [32 
samples of placenta (PL) and 49 of fetal abomasal content 
(AC)]. Samples of placenta and fetal organs were handled 
in the microbiology laboratory under the laminar flow 
hood. The fetal abomasal content was obtained by punc-
ture with a sterile needle and syringe and was transferred 
to a sterile tube.

As negative controls we included healthy placentas and 
fetuses obtained from cows in calf submitted for necropsy 
to determine the cause of death of the dam by routine 
diagnostics. Sampling was done under aseptic conditions 
disinfecting the surface prior to puncture/incision with 

an antimicrobial solution (Neoform K Spray, Dr Weigert 
GmbH & Co. KG, Hamburg, Germany). The amniotic 
fluid was extracted by puncture with a sterile syringe and 
transferred to a sterile tube; the uterus was opened with 
a sterile scalpel and a cotyledon of the PL was transferred 
to a sterile container. The samples were relocated to the 
microbiology laboratory in an aseptic tray and processed 
as described above. The samples were used as negative 
controls after confirmation of the cause of death of the 
dam as non-infectious.

DNA extraction from the PL, AC and amniotic fluid (AF)
For the extraction of the total genomic DNA, a piece 
of PL (approximately 2  cm) was cut and suspended in 
5  mL of 0.85% NaCl in an  IKA® DT-20 tube [12]. For 
the extraction of the AC/AF DNA, 1 mL of content was 
used. The tissue and the content were homogenized twice 
for 30 s at 6000 rpm, using the IKA ULTRA-TURRAX® 
tube drive  (IKA®-Werke GmbH & Co. KG, Staufen, 
Germany). From the homogenate, 500 µL were used to 
make the DNA extraction using the  PowerSoil® DNA 
Isolation Kit (Mobio, Carlsbad, CA, USA). Fluorometric 
quantification was performed to test the DNA quantity 
using the Quantus™ Fluorometer (Promega, Dübendorf, 
Switzerland). The DNA extraction procedure was per-
formed with two extraction control tubes containing only 
reagents.

PCR, Illumina MiSeq sequencing and sequence data 
processing
A classic polymerase chain reaction (PCR) amplification 
of the 16S rRNA hypervariable V3-V5 region was per-
formed to verify the presence of bacterial DNA before 
sequencing. The primers used were: 357F_hmp (5′-CCT 
ACG GGA GGC AGC AG-3′) and 929R_hmp (5′-CCG 
TCA ATT CMT TTR AGT-3′). PCR was performed 
at a final volume of 30 µL of reaction mixture contain-
ing: 1X PCR buffer, 2  mM MgCl2, 0.4  µM forward and 
reverse primer, 200 µM dNTPs, 0.25 µL of 5 U/µL ther-
mostable DNA  FIREPol® Polymerase Solis BioDyne, 
21.25 µL of sterile water and 2 µL of DNA solution. The 
following conditions were applied: 94  °C for 3  min, fol-
lowed by 35 cycles of 95 °C for 30 s, 54 °C for 30 s, 72 °C 
for 45  s, and a final elongation step at 72  °C for 8  min. 
Amplification was carried out in a Biometra T profes-
sional gradient Thermocycler (Biometra GmbH, Göttin-
gen, Germany) and the PCR products were analyzed by 
agarose gel electrophoresis with a 100-bp DNA ladder 
as a molecular weight marker (Promega AG, Dübendorf, 
Switzerland) to check the products for the expected size 
(572-bp). We included pure genomic DNA from Escheri-
chia coli and water as positive and negative controls for 
the PCR, respectively. PCR-positive samples presenting a 
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concentration of ≥ 10 ng/µL by the Quantus™ Fluorom-
eter were considered suitable for sequencing. The two 
negative control tubes were included in the PCR.

To sequence the V3–V5 regions of the bacterial 16S 
rRNA gene, two-step PCR libraries using the primer pairs 
357F_hmp and 929R_hmp were created. Subsequently, 
the Illumina MiSeq platform and a v3 600 cycle kit were 
used to sequence the PCR libraries. The produced paired-
end reads that passed Illumina’s chastity filter were 
subjected to demultiplexing and trimming of Illumina 
adaptor residuals (no further refinement or selection). The 
read quality was checked with FastQC software (version 
0.11.5) [13]. Locus specific V345 adaptors were trimmed 
from the sequencing reads with Cutadapt v1.9.2.dev0 [14]. 
Paired-end reads were discarded when the adaptor could 
not be trimmed. Trimmed forward and reverse reads of 
the paired-end reads were merged using a minimum 
overlap of 15 bases. Sequences were then quality filtered 
allowing a maximum of one expected error per merged 
read, and those containing ambiguous bases were dis-
carded. The resulting data were clustered by USEARCH 
version 8.1.1861 [15] at a 97% identity level to form opera-
tional taxonomic units (OTUs) while discarding single-
tons and chimeras in the process [16]. OTUs were aligned 
against the core set of the Greengenes v13.8 [17] database, 
and taxonomy was predicted with a minimum confidence 
threshold of 0.7. Libraries, sequencing and generation of 
the OTU table were performed at Microsynth AG (Bal-
gach, Switzerland). The core microbiome was calculated 
from the BIOM table to group the samples by organ (PL 
or AC). The bacterial distribution at the phylum, class, 
order, family and genus level was summarized and plot-
ted using the script summarize_taxa_through_plots.py in 
QIIME 1.9.1 [18].

Statistical analysis
The sequencing depth was normalized by sub-sampling 
the dataset randomly to 9000 reads per sample. The OTU 
dataset was normalized by log2-transformation. Paleon-
tological Statistics (PAST; v3.12) software [19] was used 
for alpha-diversity analyses including observed species 
richness, the mean number of OTUs; Shannon Diver-
sity Index, a measure of species that combines species 
abundance and evenness; and Chao-1, an estimation of 
true species diversity. Data ordination by principal com-
ponent analysis (PCA) and assessment of differences 
between microbial profiles of the two groups by one-way 
PERMANOVA (Bray–Curtis similarity distance) was 
performed. The significant differences in alpha-diversity 
were calculated in both types of abortion samples, AC 
and PL using the Mann–Whitney U test in XLSTAT 2012 
software (Addinsoft, Barcelona, Spain). The p values were 

corrected using Bonferroni correction. p  <  0.05 were 
considered statistically significant.

Isolation and identification of bacteria—broad spectrum 
culture
For the identification of culturable bacteria present in the 
abortion material (PL and AC) and in the healthy fetuses 
(PL, AC and AF), 100  µL from the homogenized sam-
ples were cultured in trypticase soy agar with 5% sheep 
blood, MacConkey agar and PALCAM Listeria agar for 
up to 48 h at 37 °C. Additionally, 1000 µL of the homoge-
nate were enriched in Müller–Kauffmann Tetrathionate-
Novobiocin broth for detection of Salmonella spp., for 
24 h at 37 °C, and 100 µL were then plated onto Brilliant 
Green Agar and Salmonella Chromagar (Oxoid) and 
incubated at 37  °C for 24  h. For detection of Campylo-
bacter spp., 1000  µL of the homogenate were enriched 
in Thomann Transport and Enrichment medium [20] 
for 48 h at 37  °C, and 100 µL were plated onto Skirrow 
agar (Oxoid) after incubation at 37  °C in a microaero-
philic atmosphere for 5 days. The isolates were identified 
by matrix-assisted laser desorption/ionization time-of-
flight mass spectroscopy (MALDI-TOF MS) (Biotyper 
3.0, Bruker, Daltonics GmbH, Bremen, Germany) 
using the direct transfer protocol recommended by the 
manufacturer.

Histopathology
To establish a correlation between the sequencing anal-
ysis and pathological changes, we evaluated a subset of 
17 placentas histopathologically. Cases with positive 
results for parasitology (including Toxoplasma gondii 
and Neospora caninum), virology (including bovine viral 
diarrhea virus and Schmallenberg virus) and/or pres-
ence of intralesional fungal organisms were excluded to 
avoid misinterpretation of etiological causes. The parasi-
tological and virological analyses were carried out upon 
senders’ request at the Institute of Parasitology, Vetsui-
sse Faculty, and the Institute of Virology and Immunol-
ogy (University of Bern, Switzerland), respectively, and 
are not further discussed in the present study. Samples of 
placental cotyledons were fixed in 10% buffered forma-
lin and routinely embedded in paraffin. Sections  (4 μm) 
were mounted on Thermo Scientific™ SuperFrost Plus© 
(Braunschweig, Germany) slides and stained with hema-
toxylin and eosin (HE).

Results
16S rRNA gene—PCR screening
We confirmed the presence of bacterial DNA in the 81 
samples of abortion material. The healthy fetal samples 
were all negative; no bacterial DNA was amplified in the 
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control samples including the two negative extraction 
control tubes.

Sequencing overview
A total of 81 samples from 64 bovine abortion cases, 
were analyzed to investigate the composition of the bac-
terial microbiota. Samples were used to generate deep 
V3–V5 16S rRNA gene profiles. A total of 5  220  804 
high-quality reads were obtained, with an average of 
64 454.37 ± 33 447.726 sequences per sample. The over-
all number of OTUs detected was 992 based on a 97% 
nucleotide sequence identity between reads. The num-
ber of reads per sample ranged from 9  918 to 169  878 
(median 61  745; mean 64  454; SD 33  448). After sub-
sampling 9 000 reads/sample, 913 OTUs remained in the 
dataset that was used for further analysis.

Microbial profile analysis
Principal component analysis showed significant clus-
tering by organ (p = 0.0001, F = 2.979, PERMANOVA) 
(Figure 1). Microbial profiles from the PL showed signifi-
cant higher values of actual species richness (number of 
OTUs) (Figure  2A) and the estimated species richness 
or Chao-1 (Figure 2C). The Shannon Diversity Index did 
not show significant differences (Figure  2B). On aver-
age, samples from the AC showed 42 ± 1 (SEM) OTUs, 
whereas samples from the PL showed 110  ±  1 (SEM) 
OTUs.

Composition of the associated bacterial communities 
in the AC and PL
At the phylum and class level, 16 and 35 subcategories 
were identified in the abortion material samples, respec-
tively (Figure  3). The number of phyla found in the PL 
and AC were 15 and 9, respectively, while the number 
of shared phyla was 9 (Table 1). The three predominant 
phyla were Proteobacteria (AC = 87.35%; PL = 72.13%), 
Firmicutes (AC =  10.51%; PL =  15.66%) and Bacteroi-
detes (AC = 1.99%; PL = 7.81%), accounting for 99.85% 
of the bacterial communities in the AC and 95.6% in the 
PL (Table  1). Only Proteobacteria and Firmicutes were 
present in all samples. Of the 35 class level-subcategories, 
34 were found in the PL, whereas only 18 were present in 
the AC.

At the genus level, 267 taxa were observed in the 
samples (AC =  162; PL =  255); however, 28.1% of the 
sequences could not be identified at the genus level. The 
most abundant genus was Pseudomonas (AC =  47.14%; 
PL  =  22.56%), followed by unclassified genera 
derived from Enterobacteriaceae other (AC  =  8.60%; 
PL = 13.92%) and Aeromonadaceae other (AC = 7.09%; 
PL = 8.60%) (Figures 4, 5).

Culture
Only 8 of the 64 cases contained a possible abor-
tive bacterial agent in large quantity and pure culture 
(Table 2): Escherichia (E.) coli (n = 2), S. uberis (n = 2), 

Figure 1 Two-dimensional ordination of the microbial profiles of the abomasal content and placenta by principal component analy-
sis (PCA). Significant differences; p < 0.01, PERMANOVA.
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Figure 2 Diversity analysis: microbial profiles of the abomasal content and placenta. A Observed species richness; B Shannon Diversity 
Index, C Chao‑1. *Significant differences; p < 0.01, Mann–Whitney test.
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Campylobacter (C.) fetus subsp. fetus (n = 1), Lactococcus 
(L.) lactis (n =  1), Trueperella (T.) pyogenes (n =  1) and 
Vibrio (V.) metschnikovii (n = 1). No growth was observed 
for the healthy fetal samples on any culture media.

Histopathology
Histopathological results are summarized in Table 3. For 
two of the 17 cases evaluated, the NGS method revealed 
that more than 85% of the reads belonged to the genus 
Pseudomonas. One case (12Ue1096_Pl) revealed mild 
necrotizing placentitis with vasculitis and mixed inflam-
matory infiltrate characterized by neutrophils, lympho-
cytes and macrophages. The second case (12Uel503_Pl) 
displayed multifocal acute necrosis but without the asso-
ciated inflammatory infiltrate.

Moderate necrotizing placentitis with mixed inflam-
matory infiltrate and vasculitis was present in a sample 
(13Ue1008_Pl) from which 89.92% of the reads belonged 
to the genus Vibrio. The corresponding bacterial culture 
yielded pure growth of V. metschnikovii.

Figure 3 Relative abundance of phyla (internal circle) and class (external circle) in the abomasal content and placenta.

Table 1 Phylum-level composition. Relative abundance of 
phyla in the abomasal content and placenta

Phylum Abomasal content (%) Placenta (%)

Acidobacteria – 0.004

Actinobacteria 0.13 1.42

Bacteroidetes 1.99 7.81

Chloroflexi – 0.001

Cyanobacteria 0.01 0.03

Fibrobacteres – 0.02

Firmicutes 10.51 15.66

Fusobacteria 0.01 2.74

Gemmatimonadetes – 0.0003

Lentisphaerae – 0.01

OD1 0.0005 –

Proteobacteria 87.35 72.13

Spirochaetes 0.003 0.07

TM7 – 0.0003

Tenericutes 0.00431 0.10

Thermi – 0.01
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Similarly, in cases with a high number of reads for 
Streptococcus that were identified as S. uberis in pure 
culture (13Ue1137_Pl and 13Ue1275_Pl), mild to mod-
erate necrotizing placentitis with mixed inflammatory 
infiltrate and vasculitis was observed. Mild suppurative 
placentitis without vasculitis was the primary lesion in 

a case with 96.19% of reads belonging to the Enterobac-
teriaceae family. In this case, E. coli was isolated in pure 
culture (13Ue1143_Pl). The case (14A20_Pl) with a high 
number of reads for Aeromonadaceae (73%) displayed a 
mild necrotizing placentitis with mixed inflammatory 
infiltrate without vasculitis.

Figure 4 Most abundant genera present in abomasal content (A) and placenta (B) (only taxa with relative abundances of ≥ 0.5%).
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While the samples from 13Ue491_Pl, 13Ue851_Pl and 
13Ue1218_Pl showed lesions as described below, we did 
not identify a specific possible pathogen from a high 
number of reads and/or isolated in culture. The sample 
13Ue491_Pl showed a mild necrotizing placentitis with 
lymphohistiocytic inflammation. Moderate suppura-
tive placentitis with necrosis and vasculitis was present 
in sample 13Ue851_Pl. In sample 13Ue1218_Pl, a mild 
necrotizing placentitis with mixed inflammatory infil-
trate and vasculitis was observed.

Two samples did not show lesions. Five samples pre-
sented severe autolysis and were not suitable for identify-
ing lesions.

Figure 6 shows the principal component analysis of the 
microbial profile for the placentas that presented lesions 
associated with an infection and the placentas presenting 
severe autolysis. Placentas presenting clustered lesions 
and showed less variability than the placentas with autol-
ysis. Significant differences were observed between the 
two groups (p = 0.0075; F = 3.266; PERMANOVA).

Figure 5 Heat map showing the relative abundances of the most abundant genera identified in the AC and PL microbiota (only taxa 
with relative abundances of ≥ 0.5%).

Table 2 Abortive agents isolated in pure culture/large number and the corresponding most abundant genera found by 
NGS

Sample ID Organ Abortive agents isolated in pure culture Most abundant genera found by NGS (≤ 75% of the reads)

13Ue197_Pl PL T. pyogenes Fusobacterium (74.04%), Trueperella (11.28%), others (14.71%)

13Ue755_Pl PL E. coli Enterobacteriaceaea (94.2%), others (5.8%)

13Ue1008_Pl PL V. metschnikovii Vibrio (89.92%), others (10.08%)

13Ue1137_Mg AC S. uberis Streptococcus (99.62%), others (0.38%)

13Ue1137_Pl PL S. uberis Streptococcus (99.33%), others (0.67%)

13Ue1143_Mg AC E. coli Enterobacteriaceaea (99.17%), others (0.83%)

13Ue1143_Pl PL E. coli Enterobacteriaceaea (96.18%), others (3.82%)

13Ue1275_Pl PL S. uberis Streptococcus (37.24%), Enterobacteriaceaea (25.92%), Lactococcus (21.27%), 
others (15.57%)

13Ue1450_Mg AC L. lactis Lactococcus (86.52%), others (13.48%)

14A26_Mg AC C. fetus subsp. fetus Campylobacter (60.38%), Pseudomonas (36.03%), others (3.59%)

14A26_Pl PL C. fetus subsp. fetus Pseudomonas (98.97%), others (1.03%)
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Discussion
Studies on the bovine microbiota have gained impor-
tance in the last 5 years with the characterization of the 
microbiota of the rumen [21–24], the complete gastro-
intestinal tract [25], the nasopharynx [26], milk [27–29], 
the teat [30] and the vagina and/or uterus [31–34]. In 
contrast to previous studies that focused on implicat-
ing specific bacteria from bovine abortion material by 
bacterial culture and targeted molecular detection [4, 6, 
35–38], we studied the total bacterial microbiota present 
in abortion material from cattle using a 16S rRNA ampli-
con sequencing approach. In addition, we used a broad-
spectrum bacterial culture to compare and confirm the 
sequencing results.

This study revealed that the taxonomic groups pre-
sent in the bovine abortion material were Proteobacteria 
(AC = 87.35%; PL = 72.13%), Firmicutes (AC = 10.51%; 
PL  =  15.66%) and Bacteroidetes (AC  =  1.99%; 
PL =  7.81%). In a previous publication, the microbiota 
from the abomasal mucosa of healthy dairy cattle exhib-
ited relative abundances of Firmicutes (27.4%), Bacte-
roidetes (20.95%) and Proteobacteria (19.82%) [25]. The 
composition profiles from the placenta and abomasal 
content showed significant differences (p = 0.0001), with 
the placenta exhibiting more taxa, while some phyla were 
not present in the abomasal content. This is not surpris-
ing since the placenta is often contaminated with bacteria 
from the vagina and vulva as well as the environment [7, 

39]. Therefore, the infectious process of specific aborti-
genic bacteria, such as Chlamydia spp., may be confined 
to the placenta, which makes this organ indispensable to 
thoroughly investigate the abortion material [39, 40].

Figure 5 shows that the microbiota varied between the 
different abortion cases pointing at a possible causative 
genus. Some cases showed one prevalent taxonomic unit 
(one red square present) with many reads associated with 
lesions in the placenta, whereas other cases had profiles 
that were more equally distributed (presenting several 
squares from light blue to red) and were devoid of his-
tological lesions. After interpretation of results, it was 
possible to reveal different taxonomic profiles showing 
two principal components accounting for 53% of the 
total data variability and thereby clearly splitting autol-
ytic samples from those with infectious bacterial causes 
on the X-axis (Figure  6). These observations followed 
the key points for establishing an etiological diagnosis 
and distinguishing the exogenous microbiota from a real 
fetal infection [40, 41]. These points include isolating the 
agent in a relatively pure culture and/or a large number 
from the fetal tissues and/or the placenta and the pres-
ence of gross and microscopic lesions consistent with a 
bacterial infection in the placenta. Ideally, additional tests 
should exclude other common abortigenic agents includ-
ing viruses, fungi and parasites. Our findings revealed 
opportunistic abortive agents that are not detected by 
the routine diagnostic approach that focuses on epizootic 

Figure 6 Two-dimensional ordination of the microbial profiles of the placentas presenting infection or autolysis by principal compo-
nent analysis (PCA). Significant differences; p < 0.01, PERMANOVA.
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bacterial agents. Most of the bacterial agents that cause 
abortion in cattle are commensal or environmental bac-
teria that, as opportunistic pathogens, produce sporadic 
abortions [5]. These opportunistic organisms are usually 
categorized into two groups: (1) bacteria belonging to 
the commensal microbiota of the mucosal surfaces and 
(2) common environmental bacteria [39]. Most reports, 
including the broad-spectrum screening of bovine abor-
tions, are based on bacterial cultures [42–44]. Culturing 
may be a powerful method for isolating bacteria if the 
conditions are compatible with the microbial target and 
sample type, but it may fail to identify novel or uncultur-
able pathogens [45, 46]. As expected, the NGS method 
revealed many genera that were not evident from bacte-
rial cultures. One of the advantages of the parallel cul-
ture-based approach is the ability to assign species-level 
identification and overcome the restricted taxonomic 
result of the NGS method that amplifies only a fragment 
of the 16S rRNA gene [47]. The following opportun-
ists were identified by NGS and isolated in pure culture 
(Table  2): Vibrio (identified as V. metschnikovii in cul-
ture), Streptococcus (identified as S. uberis in culture), 
Lactococcus (identified as L. lactis in culture), Trueperella 
(identified as T. pyogenes in culture), unidentified Entero-
bacteriaceae (identified as E. coli in culture), and Campy-
lobacter (identified as C. fetus subsp. fetus in selective 
culture). For V. metschnikovii, S. uberis, L. lactis and E. 
coli, tissue was available for histopathological analysis, 
and we confirmed lesions in the placentas. In the cases 
with placental lesions in which a possible agent was only 
detected by NGS with a high number (≥70%) of reads, 
we detected unidentified Pseudomonas and unidentified 
Aeromonadaceae.

Vibrio metschnikovii has been identified by bacteriolog-
ical culture in cattle, swine and horse abortions [48], and 
L. lactis, which is mainly associated with bovine mastitis 
[49], has also been isolated from a bovine abortion [43]. 
It is likely that the suspected abortive agents, unidenti-
fied Pseudomonas, S. uberis and E. coli, may spread via 
the amniotic-oral route to the fetus and produce infec-
tion (Table  3); however, causality between these patho-
gens and abortions has not been confirmed [42, 50, 51]. 
Interestingly, Pseudomonas was the most prevalent genus 
revealed by the NGS approach and it was present in all 
the samples analyzed (Figure 5). The implication of Pseu-
domonadaceae in human periodontitis was previously 
revealed by NGS [52]. A previously unidentified mem-
ber of the family Aeromonadaceae, which was producing 
placental lesions, was later identified by NGS. This sug-
gests that culturing opportunistic environmental bacteria 
may be difficult. To our knowledge, only two previous 
studies, reported in 1972 [53] and 1993 [51], identified 

Aeromonas hydrophila and Aeromonas spp. as etiological 
agents of bovine abortion.

One pure culture of T. pyogenes partially matched 
the NGS results since the number of reads was lower 
(11.28%) than those of the most abundant genus, Fuso-
bacterium (74.04%). T. pyogenes cooperates with environ-
mental anaerobes, such as Fusobacterium necrophorum, 
to produce infections, such as endometritis in cows, and 
increases the possibility of uterine inflammatory con-
ditions while intensifying disease symptoms [54–56]. 
Fusobacterium is known to cause sporadic bovine abor-
tion [57, 58], but the impact of mixed infections on abor-
tions has not yet been determined. Moreover, anaerobic 
bacteria may be underestimated as abortifacients since 
anaerobic cultures are not normally part of routine diag-
nostic procedures [41]. The NGS approach was also 
able to identify multiple possible abortive taxa from the 
same sample in 13Ue851_Pl and 13Ue1275_Pl (Table 3). 
Unidentified Enterobacteriaceae (46.46%) were found 
together with Enterobacteriales (24.33%) and Serratia 
(16.14%), and S. uberis (37.24%) were found alongside 
Enterobacteriaceae (25.92%) and Lactococcus (21.27%). 
As previously suggested, mixed infections may play an 
underestimated role in ruminant abortions [4].

It is often difficult to assess the presence of potentially 
infectious bacteria in cultures, particularly in cases where 
rare opportunistic agents, e.g., Lactococcus, Streptococcus 
or Vibrio, are identified, as they tend to be overlooked as 
contaminants. The amplicon sequencing approach how-
ever, gives additional information through the number of 
reads obtained [59]. This is especially noteworthy in the 
case of Pseudomonas that was not apparent in the cul-
ture. Another advantage is the ability to simultaneously 
screen for the broadest possible bacterial variety without 
requiring a costly detection method, such as qPCR, DNA 
arrays or antibody detection [59]. Interpretation of the 
NGS results must be done cautiously though, keeping in 
mind that further analyses are needed to determine cau-
sality. Another challenge in investigating cattle abortion 
is that the sample site may not correspond with the loca-
tion of the active infection [60]. Additionally, depend-
ing on the DNA extraction method and the amplified 
variable regions of the 16S rRNA, some bacteria may 
be over- or underrepresented [61, 62]; e.g., we did not 
detect Chlamydia, Leptospira or Coxiella in the sequenc-
ing results, whereas these bacteria have been reported in 
bovine abortions in Switzerland [4]. This might be due to 
a lower affinity of the primers or a lower taxonomic reso-
lution of the amplified fragment to the specific 16S rRNA 
gene in these pathogens. These limitations of the ampli-
con sequencing approach have previously been discussed 
in view of its suitability for diagnostics [45].
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Histopathological analysis of tissue with a high degree 
of autolysis is not recommended due to loss of tissue 
architecture and cellular detail. NGS, however, allowed 
us to associate a specific microbiota to the autolytic tis-
sue. Unlike the infectious cases, the autolytic placentas 
did not show a dominant taxon. In these cases, a variety 
of bacterial genera, represented at a similar percentage 
of reads, appeared to be involved in the tissue spoilage 
(Table  3, Figure  6). Most of these bacterial genera are 
also causative agents of meat spoilage [63, 64]. Moreover, 
a high grade of contamination with commensal micro-
biota from the gastrointestinal tract, such as the families 
Rickenellaceae, Ruminococcaceae, Peptostreptococacceae, 
Enterobacteriaceae or the order Clostridiales [25] was 
detected in some samples. The presence of other envi-
ronmental or/and commensal bacteria can lower the 
ability to accurately detect an etiological agent as has 
been described for the parasite Tritrichomonas foetus 
[65]. Our results highlight the importance of adequately 
preserving the samples in sterile, chilled containers and 
rapidly transporting them to the diagnostic laboratory to 
avoid autolysis and contamination.

Although amplicon sequencing has been discussed as 
a diagnostic approach [60], the aim of our study was not 
the evaluation of NGS as a diagnostic tool but as a novel 
research approach to gain deeper insight into the micro-
biota present in abortion material. Our study emphasizes 
the difficulties of applying 16S amplicon sequencing to 
abortion diagnostics, such as the nature and suitability 
of the sample and the presence of contaminants. NGS 
helped us uncover abortifacients that went undetected 
by traditional methods and identify possible multi-infec-
tions. Nonetheless, standardization of workflows and 
cut-offs for diagnostic purposes based on the interpre-
tation of percentage of reads is difficult to achieve and 
analysis would not be cost-efficient, especially since iden-
tification at species level cannot be achieved by NGS only 
but is required for an etiological diagnosis.

The targeted fragment of the 16S rRNA gene was not 
amplified in the three negative controls, indicating the 
absence of bacterial DNA; furthermore, no growth on 
the different culture media was observed. In our study, 
the negative control samples were extracted in the nec-
ropsy hall in aseptic conditions directly from the uterus 
of a dead cow having a minimal contact with the envi-
ronment and no contact with the commensal microbiota 
from the vagina. Our ideal negative control sample would 
be a healthy fetus and the placenta extracted through the 
vaginal tract from an interrupted pregnancy of a healthy 
cow. However, from an animal welfare point of view this 
experimental setup would not be commensurate to the 
expected gain of knowledge and thus is not approved by 
the Swiss Federal Animal Protection Law (455, article 

19, paragraph 4). A recent study reported the existence 
of a microbiota associated to the bovine placenta, but 
the authors could not exclude a possible contamina-
tion of the biopsies during sampling [66]. Moreover, the 
extraction of the mentioned biopsies was done through 
the vaginal tract of the live cows exposing the samples to 
the commensal microbiota. Although the authors took 
care to apply antimicrobial solution before and between 
sampling, this does not ensure elimination of DNA which 
then may persist, e.g. leading to the reported presence of 
the phyla Planctomycetes, a slow-growing decomposer of 
organic matter [67] and Euyarchaeota, a methanogenic 
archaea group from the rumen of cattle [68] in the pla-
centa and the amniotic fluid. A previous work showed 
for the first time the presence of prenatal microbiota 
in human placentas [69]. However, a subsequent study 
concluded with a new sample set that the previous one 
could not distinguish between placental microbiota and 
contamination introduced during DNA purification [70]. 
Our findings indicate that under timely and sterile sam-
pling conditions, bacterial microbiota is likely absent 
from these tissues.

Our study underlines the potential of amplicon 
sequencing to identify or confirm unknown etiologi-
cal agents, such as unidentified Pseudomonas, S. uberis, 
L. lactis, V. metschnikovii and unidentified Aeromona-
daceae. These new insights encourage adaptation of the 
diagnostic focus and extension of the spectrum of under-
studied opportunistic abortive bacteria.
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