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INTRODUCTION

Snore sound (SnS) excitation localisation can be a
helpful method to support targeted surgical planning
for the treatment of both primary snorers who are
asymptomatic and do not have breathing interruptions
during sleep, and patients suffering from obstructive
sleep apnea (OSA),>” a chronic serious sleep disorder,
which is affecting 13% of men and 6% of women in
the US population.*® OSA increases the risks of stroke,
hypertension, myocardial infarction, and other car-
diovascular diseases, and is associated with diabetes
and vulnerability to accidents.?” The surgical options
for individual subjects can be manyfold due to the
multifactorial mechanisms of SnS generation and
depending on the individual anatomy.?>** Therefore,
in medical practice, it is helpful for ear, nose and throat
(ENT) experts to understand the individual anatomical
site of SnS generation, and the obstruction mechanism.
Drug-induced sleep endoscopy (DISE)’ can be used to
identify the location of SnS. However, it requires
additional time, causes cost, and means physical stress
for the subjects. In addition, DISE is performed in an
artificial state of sleep. Another solution, multi-chan-
nel pressure measurement,®**3 requires to introduce a
thin tube with multiple pressure sensors into the upper
airway of the subject. This method can be used during
natural sleep, however, the tube in the upper airway is
not tolerated by every subject. Thus, a non-invasive
method, e.g., analysis of SnS, can make diagnosis
much easier both for doctors and patients compared
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FIGURE 1. Diagram of the proposed system.

with the two methods mentioned above. Furthermore,
this method can facilitate the development of
portable devices for human SnS monitoring.*®

SnS has been proven to carry information about the
site and degree of obstruction in the upper airway of
the subject.’” However, studies on how to use the
audio information to localise the excitation of SnS are
very limited (refer to a recent literature review in Ref.
17). In the work done by Ng et al.,’” wavelets had been
used to form the representations to classify benign and
apneic snores; the results are promising whereas the
method was not performed on localising the SnS
excitation. In addition, formants, spectral peak fre-
quency, and psychoacoustic metrics were investigated
to find the relationship between the human upper air-
way dimensions and the attributes of snores.*> Nev-
ertheless, the studies were still limited to the field of
diagnosing benign and apneic snores. Moreover, some
studies'***® showed the encouraging results on ana-
lysing tracheal respiratory sounds, and proposed an-
other less-invasive method to screen OSA. The same as
aforementioned works, those studies are not in terms
of finding the locations of SnS excitation, which can be
more helpful to ENT experts.

Qian ez al. published pilot work on using acoustic
signal processing combined with machine learning for
the recognition of SnS.***!*** The results of their work
were promising and encouraging. Nevertheless, the
number of independent subjects they used are of lim-
ited size, i.e., 24 in Refs. 41,45 and 40 in Refs. 39,40
The main aims of this study are as follows: firstly, we
extend the number of independent subjects to 219,
which will give more persuasive results. In addition,
this newly released database is publicly accessible,
which makes the relevant studies reproducible and
comparable. Secondly, a novel method based on multi-
resolution wavelet transformation (WT)*' and bag-of-
audio-word (BoAW) approach® is proposed to im-
prove the current baselines achieved by standard fea-
tures and classifiers. Finally, a brief comparison
between our proposed method and the state-of-the-art
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methods used in most recent submissions of the IN-
TERSPEECH ComPARE Challenge 2017 Snoring sub-
challenge® will be given, which can hopefully attract
more researchers’ interests in this topic.

MATERIALS AND METHODS

In this section, the database we used will be firstly
introduced. Then the methodology part will give a
description of the proposed system. The diagram of the
proposed system is shown in Fig. 1. Firstly, the frame-
based low-level descriptors (LLDs) will be extracted
from the SnS via the multi-level WT. Then, BoOAW
approach can transfer the LLDs into higher represen-
tations for the classifier’s training and testing.

MPSSC Database

The Munich Passau Snore Sound Corpus
(MPSSC)'¢ was first released for a sub-challenge in the
INTERSPEECH 2017 Computational Paralinguistics
Challenge.*” The MPSSC contains audio from selected
audio—video recordings taken during DISE® at three
medical centres in Germany, i.e., Klinikum rechts der
Isar, Technische Universitit Miinchen, Munich, Al-
fried Krupp Hospital, Essen, and University Hospital,
Halle.

Detailed information about the SnS data acquisition
system, data selection and labeling can be found in
Ref. 16 In the audio-track of the DISE videos, snore
events were separated using a combination of auto-
mated and manual selection steps. The selected snore
events were then labelled by an ENT expert by
watching the DISE videos and based on the VOTE
classification'® (“V represents the level of the velum,
‘O’ represents the oropharyngeal area, ‘T’ represents
the tongue base, ‘E’ represents the level of the
epiglottis). Only the snore events which showed one
clear vibration source were included in the corpus, the
ones with mixed or unclear source of vibration were
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FIGURE 2. Locations of snoring vibrations or obstruction
according to the VOTE scale.

TABLE 1. The number of snore events per class in each
partitioned splits, as originally used in Ref. 49.

Train Dev Test z
\% 168 161 155 484
(0] 76 75 65 216
T 8 15 16 39
E 30 32 27 89
b 282 283 263 828

excluded. Figure 2 shows the corresponding vibration
locations in the upper airways.

The final MPSSC database contains 828 snore
events from 219 independent subjects. The overall time
duration of the MPSSC is 1250.11 s, and the average
length of the events is 1.51 s (ranging from 0.73 to
2.75 s). Balanced by class, centre, gender, and age, the
whole database was partitioned into train, develop-
ment (dev), and test set. Table 1 illustrates the number
of snore events per class in each partitioned split. For
the sake of comparability, we used the same splits as in
the INTERSPEECH 2017 Computational Paralin-
guistics Snoring sub-challenge.*’ Figure 3 illustrates
the waveforms and spectrograms of typical four types
of SnS events.

Wavelet Features

The wavelet features were first introduced to the
SnS classification task in Ref. 41 which proposed its
superiority to other conventional acoustic features like
formants, mel-scale frequency cepstral coefficients
(MFCCs), fundamental frequency, etc. In previous
studies,™*' we used an early fusion (multiple kinds of
feature sets are directly fused into one feature set be-

fore fed into the classifier) of two kinds of wavelet
energy feature (WEF) sets, i.e., wavelet transform en-
ergy (WTE), and wavelet packet transform energy
(WPTE) as the feature representations. In this work,
we separately investigate and compare WTE and
WPTE. In addition, the early fusion of the two
aforementioned features are studied. To be consistent
with the previous study,*® the early fusion of WTE and
WPTE features are named as WEFs.

Wavelet Transform Energy

The WTE features are extracted by discrete WT
(DWT),** which operates only on the outputs of the
lowpass filter at the subsequent levels of the decom-
posed signal (see Fig. 4a). We calculated the vector of
percentage of WTE at the jth level as:

2
Ey, = — 2 x 100, (1)
’ Zj:ix WJZ

where w; are the coefficients generated by DWT at the
jth decomposition level. Then the mean, variance,
waveform length (the sum of the absolute differences),
and entropy are calculated from the vector (see Eq. 1)
as basic WTE representations. In summary, for a jth
decomposition of WT, we will generate 4 X (Jymax + 1)
WTE LLDs (Jiax family of approximation coefficients
plus one family of detail coefficients in the first level).
Jmax 18 the maximum level for wavelet decomposition
by a certain wavelet type.

Wavelet Packet Transform Energy

The WPTE features are extracted by the wavelet
packet transformation,*> which not only decomposes
the components of the ‘approximation’ (by lowpass
filter), but also the components of the ‘detail’ (by
highpass filter) (see Fig. 4b). In Ref. 20 the normalised
bank filter energy was defined as:

N, 2
Znékl (wjvkvn)
Nk

EVj,k = 10g ’ (2)
where w;; represents the coefficients calculated by
WPT from the signal at the subspace V;i. N;i is the
total number of wavelet coefficients in the kth subband
at the jth level. The scale of k is 0,1,2,...,2 — 1.
Totally, 2/»x+! — 1 WPTE based LLDs are generated.
Figure 5 shows the multi-resolution time—frequency
analysis by WPT for typical four types of SnS events.

Conventional Features

To evaluate the methods proposed, we compare
other features demonstrated to be efficient in SnS
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FIGURE 3. The examples of waveforms (top row) and spectrograms (bottom row) for the snore event labelled as type of V, O, T,
and E. The waveforms are normalised and the amplitude has an arbitrary unit (au).
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recognition like Formants®'>!

(the first three formant

frequencies calculated from the /inear predictive coding
coefficients’), MFCCs,** subband energy ratios (SERs,

the ratios of the energy in every subband to that of the
whole sound spectrum),® and spectral frequency fea-
tures (SFFs, the peak, centre, and mean frequency of
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FIGURE 5. The examples of multi-resolution time—frequency analysis of four types of SnS by WPT (top row: J = 2, bottom row:
J = 7). Wavelet type: ‘haar’. J decomposition level. The audio examples are the same as used in Fig. 3.

the whole sound spectrum and the mean frequency in
every subband).”® The detailed definitions of these
LLDs can be found in Ref. 39 Based on the study in
Ref. 39 we further applied functionals to the extracted
frame-level LLDs. The functionals refer to the statis-
tical information of each LLD contour comprised of
continuous LLDs, including maximum, mean, mini-
mum, and bias of the linear regression estimation of
LLDs in one instance. In this study, functionals are the
counterpart which will be compared with BoAW
approach.

In addition, we involve the large scale acoustic
feature set ComPARE™ (extracted by the open-source
toolkit, oPENSMILE'?), which was sclected as the
official baseline feature set in snore sub-task in the
INTERSPEECH 2017 Computational Paralinguistics
Challenge.*” The LLDs used in CoMPARE are listed in
Table 2, and the functionals can be found in Ref. 11 In
total, 65 LLDs, and 6373 statistic features are used in
ComPARE.

Bag of Audio Words

In the BoOAW approach (see Fig. 6), the acoustic
LLDs extracted from each audio instance are sum-
marised and represented as a term-frequency histogram.
Compared to the bag-of-words approach known from
natural language processing, where text documents are
represented as word histograms, the numerical LLDs
extracted from the speech signal need to undergo a
vector quantisation (VQ) step first. The VQ is done
employing a codebook of template LLDs (‘audio
words’) which is previously learnt from a certain
amount of training data. Although the codebook
generation usually employs K-means clustering,>® sim-
ilar results can be achieved using a random sampling of
the LLDs* (using the default random seed in OPEN-
XBOW), where the sampling follows the initialisation
step of K-means+ + clustering,” i.c., far-off LLDs are
prioritised. Instead of assigning each LLD to only the
most similar word in the codebook, the N, words with
the lowest Euclidean distance are considered, which



usually results in an improved robustness of the
approach.*® Counting the term-frequencies, i.c., the
number, each audio word has been chosen as the
nearest neighbour for the LLDs in one audio instance,
the term-frequency histogram is generated. In the
resulting histogram, the logarithm (with a bias of 1) is

TABLE 2. CowmParE acoustic feature set: 65 LLDs.

Four energy related LLDs Group
RMSE, zero-crossing rate Prosodic
Sum of auditory spectrum (loudness) Prosodic
Sum of RASTA-filtered auditory spectrum Prosodic
55 Spectral LLDs Group
MFCC 1-14 Cepstral
Psychoacoustic sharpness, harmonicity Spectral
RASTA-filtered auditory spectrum bds. 1-26 (0—8 kHz) Spectral
Spectral energy 250-650 Hz, 1 k=4 kHz Spectral
Spectral flux, centroid, entropy, slope Spectral
Spectral roll-off pt. 0.25, 0.5, 0.75, 0.9 Spectral
Spectral variance, skewness, kurtosis Spectral
Six voicing related LLDs Group

Fo (SHS and Viterbi smoothing) Prosodic
Probability of voicing Voice quality
Log. HNR, jitter (local and o), shimmer (local) Voice quality

Refer to Ref. 11 for more details.
RMSE root mean square energy,
transform, HNR harmonics to noise ratio.

RASTA relative spectral

Clustering
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then taken from the word frequencies, in order to
compress the range of values.

In this study, the open-source toolkit oPENXBOW?’
is used. In order to reduce the effect of different
magnitudes between the LLDs, they are subject to
standardisation. Accordingly, also the resulting term-
frequency histograms are standardised before they are
fed into a classifier. The codebook size and the number
of assignments are empirically fixed to 5000 and 10 in
initial experiments, respectively.

Naive Bayes Classifier

In this study, a Naive Bayes classifier has been
chosen due to its efficient performance both in terms of
classification accuracy and implementation speed in
our initial experiments. Further, Naive Bayes classi-
fiers are known to be less prone to overfitting than
other classifier types especially on small datasets,
which is an important aspect in this case.

The Naive Bayes classifier is based on a conditional
probability model, which assigns given instance prob-
abilities p(C;|xy, ..., x,) for each of A possible classes
¥ (C= (C1,...,Chp)), where the vector x=
(x1,...,x,) represents o features. For Naive Bayes
classifiers, the assumption is made that each feature is
independent of the value of the other features when
given the class variable. Therefore, based on the Bayes
Theorem,”” and the chain rule for repeated applica-
tions of the definition of conditional probability, the

v[o[T]E]
TT1 T

LLD Standard Naive
Extraction -isation Bayes
(T T ™ =
[ mean + | 12345 Standard
| stddev | i Codebook | -isation
\ . \ . / -
é é 4 ] N
LLD Standard Vector Histogram log(x+1)
Extraction -isation Quantisation Generation L 9 )

LLDs over time

Huslin
[ | 12345
- 12345 Normalised
Standardis_ed LLDs Term frequency term frequency
over time histogram histogram

FIGURE 6. An example of the whole bag-of-audio-words approach process. The codebook generation is only performed in the
training phase. In this example, there are 13 frame-level LLDs extracted for each frame. The codebook size is 5.
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conditional distribution over the class C can be written
as:

PGl ) = (@) [[peIC. ()
i=1

where Z = p(x) is constant, i.e., independent from the
class, when the feature values xi,...,x, are known.
When constructing a classifier, the maximum a poste-
riori*® decision rule is used:

# = argmaxp(C;) [ [ p(xiIC2), (4)
re{l,...,A} i—1

where p is the predicted label.

Evaluation Metrics
Classification Evaluation

The unweighted average recall (UAR)* is used as
the metric to evaluate the models’ performance due to
the highly unbalanced distributions of instances among
classes in the SnS dataset. The UAR is defined as:

SA | Recall;
Leimt D (5)

where A is the number of classes, and Recall; is the
class-specific recall, i.e., the ratio of instances of class 4
that is classified correctly of the A-th class.

UAR =

Significance Tests

To compare the difference of the classification per-
formances, i.c., the UARs of two methods, a one-tailed
z-test is used in this study. The standard score z can be
calculated as”:

s ma — mgp ‘ (6)
\/2m(l —m)/NS
where m = (mp + mp)/2, ma and my are the measure
value (i.e., UAR) of methods A and B, respectively, NS
is the total number of instances. In the one-tailed case
(e.g., ma > myp), the p-value is calculated as:

p=1-0(z)<z, (7)

where ®(-) denotes the standard normal cumulative
distribution function, o is the significance level (e.g.,
0.05, 0.01, 0.001). Generally, the p-value represents the
probability of rejecting the null hypothesis. A smaller
p-value means a more significant difference between
the compared two methods. In this study, p<0.05 is
considered as the threshold to demonstrate the signif-
icance level.

EXPERIMENTAL RESULTS

Experimental Setup

When extracting the LLDs, the whole instance is
firstly segmented into numerous chunks (usually 30—
40 ms). Then the frame-level LLDs are extracted from
these chunks. In our previous study,*® we found that
the frame length and the overlap of the analysed
chunks for extraction of LLDs can affect the final
classification performance. We transfer the empirical
knowledge from massive experiments in Ref. 40 to
design the frame length and overlap as Table 3 shows.

On the other hand, some other parameters are
optimised via initial experiments on the train and
development sets. The wavelet type, and the maximum
decomposition level Jy,x are listed in Table 4. The
names of wavelet types and the decomposition scripts
are based on the Wavelet Toolbox*® of Matlab by
MathWorks. The LLDs of SERs and SFFs (subband
mean frequency>?) are extracted based on the subbands
at 500 Hz. The original audio files are normalised,
mono channel with a sampling rate of 16 kHz and
16 Bit resolution. The ComPARE feature set is ex-
tracted by the oPENSMILE toolkit.'> All other feature
sets are extracted by the scripts of Matlab.

Before fed into the classifier, all the features (both
for functionals and BoAW) are standardised to elimi-
nate the effects by outliers. The unbalanced MPSSC
data are upsampled when training the classifier. In this

TABLE 3. Configurations of each feature set.

Frame length Overlap length Dimensions of

(ms) (ms) LLDs
Formants 16 12 3
MFCCs 32 24 13
SERs 32 8 16
SFFs 32 16 19
ComParE 20 10 65
WTE 16 4 16
WPTE 32 16 1023
WEF 64 32 87

TABLE 4. Parameters for wavelet features.

Wavelet types Jmax
WTE ‘bior2.8’ 3
WPTE ‘haar’ 9
WEF ‘coif5’ 5
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FIGURE 7. Results UARs (%)] achieved by each acoustic feature set within Functionals and BoAW. Feature sets showing
significant improvement (p<0.001, one-tailed z-test) by BoAW compared with Functionals on test set are marked by an asterisk.

study, we manually replicate the MPSSC data to
achieve an equal distribution of all snore classes.*

The Naive Bayes classifier is implemented by the
open-source toolkit WEKA.!> The parameters of the
classifier (using kernel density or normal estimator) are
optimised on the development set and applied to the
test set. The BOAW methodology is implemented using
the toolkit described in Ref. 47.

Results

Figure 7 illustrates the experimental results of each
feature set both on development and test set. In this
study, we find that, on the test set, significant
improvements are only achieved with the ComPARE
and WEF sets (p <0.001, one-tailed z-test).

Among the Functionals, WTE and WEF perform
best with an UAR of 49.9, and 49.7%, respectively.



1008

TABLE 5. Confusion matrices by the ComParE feature set
with Functionals and BoAW.

Pred — \ O T E Recall (%)
Functionals
\Y 109 35 4 7 70.3
(0] 36 23 5 1 35.4
T 9 6 0 1 0.0
E 6 18 2 1 3.7
BoAW
Vv 49 73 10 23 31.6
(0] 14 37 3 11 56.9
T 8 0 7 1 43.8
E 1 5 1 20 741

TABLE 6. Confusion matrices by the WEF feature set with
Functionals and BoAW.

Pred — \ (e} T E Recall (%)
Functionals
Vv 95 50 2 8 61.3
(0] 26 26 1 12 40.0
T 7 7 2 0 12.5
E 2 2 0 23 85.2
BoAW
Vv 77 61 8 9 49.7
(0] 12 44 1 8 67.7
T 4 0 12 0 75.0
E 1 3 0 23 85.2

Furthermore, Formants (UAR of 49.3%) and SFFs
(UAR of 49.2%) show comparable performance to the
two aforementioned wavelet features when using
Functionals. The LLDs of CoMPARE yield to others
when applied with Functionals, only reaching an UAR
of 27.4%.

On BoAW, WEF and CoMPARE achieve the best
results among all feature sets, with an UAR of 69.4,
and 51.6%, respectively. MFCCs are comparable to
WPTE (UAR 48.1 vs. 50.1%). In particular, LLDs of
ComPARE considerably improve the performance from
27.4 to 51.6% (p <0.001, one-tailed z-test) when using
BoAW rather than Functionals. In addition, the best
model, i.e., the enhanced WEF feature set, reaches an
UAR of 69.4%, which improves 19.7% from the
baseline by Functionals (p<0.001, one-tailed z-test).
However, for the feature sets of Formants, SFFs,
SERs, and WTE, BoAW decreases the performances
(on the test set) compared with Functionals.

Tables 5 and 6 present the confusion matrix of the
two best performing models on the test set for Com-
PARE and WEF, respectively. One common finding,
both for CoMPARE and WEF, is that BoAW decrease
the Recall on the recognition of “V’ type snores. Nev-
ertheless, for ‘T’ type snores, BoAW can dramatically

improve the Recall for ComPARE (from 0.0 to 43.8%,
p<0.001, one-tailed z-test), and WEF (from 12.5 to
75.0%, p<0.001, one-tailed z-test), which is the main
contribution of the improvement in UAR. In particu-
lar, for CoMPARE, the Recall of recognising ‘E’ type
snores has been improved from 3.7 to 74.1%
(p<0.001, one-tailed z-test), which results in another
considerable enhanced performance for the final U4AR.
On recognition of ‘O’ type snores, ComPARE and WEF
respectively show an increase of 21.5% (p <0.01, one-
tailed z-test), and 27.7% (p <0.001, one-tailed z-test)
on Recall after using BoAW instead of Functionals.

DISCUSSION

Main Findings in this Study

We can see that, for analysis of SnSs, WT based
features outperform the Fourier transformation based
features in our experiments. A possible explanation for
this excellent performance might be that, the WT
contains a better balance of time and spectral infor-
mation in a non-stationary signal (e.g., SnS) than the
traditional Fourier transformation, which is always
subject to a Heisenberg-alike time—frequency trade-
off.®

It is noticeable that the classification results using
Formants is comparable to MFCCs, SFFs, and SERs
even though it has a low dimension of only three LLDs
(see Table 3). Previous studies have shown that For-
mants have the capability to reveal the status of the
human upper airway.*"*? Future work can be done on
finding more sophisticated formant-related features,
and combining them with wavelets for the classifica-
tion of SnS. Most features showed a superior perfor-
mance to CoMPARE when applied with Functionals.
ComPARE needs considerable improvement for en-
abling it to fulfil the task on SnS classification (to some
extent, the usage of BoAW helps CoMPARE achieve
this target). SERs has not shown efficient performance
in this study, which might be caused by the difficulties
on designing a reasonable sub-band region for
extraction of LLDs. Among the wavelet features, WTE
performs best when using Functionals while it yields to
WPTE and WEF when using BoAW. As a compli-
mentary feature to WPTE, WTE makes the final fused
feature set WEF reach the best performance with
BoAW.

From Tables 5and 6, we can see that, for some rare
types of SnS, i.e., ‘O’, ‘“T" and ‘E’, BoAW can improve
their Recalls compared with Functionals, which will be
beneficial to the unbalanced distribution of MPSSC
data. The types ‘V’ and ‘O’ are still the most misclas-
sified samples (both for Functionals and BoAW). Most



TABLE 7. List of results of the INTERSPEECH ComPARE
Challenge 2017 Snoring sub-challenge on the final test set.
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TABLE 8. Confusion matrix of the best model achieved from
the work by Amiriparian et al. The source is from Ref. 1.

UAR
(%) Main methods

ComPARE features

SVM (linear kernel)

CNN-based spectrum features

SVM (linear kernel)

CNN-based spectrum features

Evolutionary feature selection

SVM (linear kernel)

ComPARE features

MFCC, HNR, F0, ZCR

SVM (linear kernel)

Kaya and 64.2 ComPARE features, MFCC
Alexey '8! RASTA-PLP, Fisher vector

WKPLS, WKELM

Dual source-filter model

SVM (radial basis function kernel)

MFCC, LPCC, PLPC, spectro-
gram

ComPARE features

Correlation feature selection

SVM, RF, CNN

MFCC, RPS, SC

Cosine distance

Wavelet features

BoAW, Naive Bayes

Official baseline*® 58.5
Amiriparian et al.'t  67.0

Freitag et al."®f 66.5

Gosztolya et al.' 64.0

Rao et al*? 52.8

Nwe et al.33 52.4

Tavarez et al® 50.6

Our method 69.4

CNN convolutional neural network, SVM support vector machine,
RASTA-PLP representations relative spectra perceptual linear
prediction, WKPLS weighted kernel partial least squares, WELM
weighted kernel extreme learning machine, LPCC linear predictive
cepstral coefficient, PLPC perceptual linear prediction coefficients,
RF random forest, RPS relative phase shift, SC spectral contrast.
1 Marks the two submissions without participation in the challenge;
1 marks the submission of the winner in the challenge.

probably, this is due to the small sample size in our
dataset, a limitation that should be targeted in future
work.

Comparison with the Results of the INTERSPEECH
CoMPARE Challenge 2017 Snoring Sub-challenge

Table 7 shows the main results of submissions to the
INTERSPEECH CoMPARE Challenge 2017 Snoring
sub-challenge. Our proposed method outperforms the
winner system in this challenge, which achieves the
UAR of 64.2% on the final test set. Among the excel-
lent results (the ones with above 60.0% UAR), we find
that, sophisticated features are essential for the final
performance of the model. It is noticeable that, some
deep learning based techniques"'* have been proven to
be feasible to extract efficient features for SnS classi-
fication. However, the extremely limited number of
SnS instances restrained the capacity of models directly
using deep neural networks, which was found in our
initial experiments and noted in Ref. 14 Since numer-

Pred — \ (6] T E Recall (%)
Vv 96 27 17 15 61.9
o 19 38 3 5 58.5
T 1 2 10 3 62.5
E 0 2 2 23 85.2

ous hyper parameters need to be tuned when training
deep neural networks, limited data size can easily make
the model overfitting.

From Tables 5 and 6 we can find that, for this
highly unbalanced SnS dataset, a minor change in the
recall of the smallest class (i.e., the “T" class), will
dramatically change the resulting U4 R. Table 8 shows
the confusion matrix of the best model from the work
by Amiriparian er al.' Compared with the proposed
method in this paper, the best model in Ref. 1 has a
better recall performance on the class of “V’ (61.9 vs.
49.7%). For the ‘O’ and the ‘T’, the proposed method
outperforms the model (67.7 vs. 58.5 and 75.0 vs.
65.2%, respectively) presented by Amiriparian et al.
The two models show an equal recall on the ‘E’ class,
ie., 85.2%. We also need to note that, for this data-
base, there is a huge gap between the performance on
the dev and the fest set, for both the proposed method
and other compared methods. One reasonable expla-
nation for this phenomenon is that, MPSSC is a da-
tabase collected from three different medical centres,
which makes the corpus more complicated than only
using one single source data set. Besides, tuning
parameters for models is largely dependent on human
experiences, which needs to be overcome in future. One
possible direction of future work could the combina-
tion of deep learnt spectrum features''* with our
proposed wavelet features via a BoAWs approach.

CONCLUSIONS

In conclusion, we applied an enhanced wavelet
features via BoAWs approach for the task of classifi-
cation of snore sounds by excitation localisation in the
upper airway. The snore sound data were collected
from 219 independent subjects from three medical
centres. Experimental results showed that our pro-
posed method achieves 69.4% UAR, which signifi-
cantly outperformed the official baseline of the
INTERSPEECH ComPARE Challenge 2017 Snoring
sub-challenge of 58.5% (p <0.005, one-tailed z-test). In
future work, we will continue to collect more SnS data,
and apply further state-of-the-art machine learning
methods like deep neural networks®' to study SnS.
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