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Abstract

The Multiple Inert Gas Elimination Technique, based on Micropore Membrane Inlet Mass

Spectrometry, (MMIMS-MIGET) has been designed as a rapid and direct method to assess

the full range of ventilation-to-perfusion (V/Q) ratios. MMIMS-MIGET distributions have not

been assessed in an experimental setup with predefined V/Q-distributions. We aimed (I) to

construct a novel in vitro lung model (IVLM) for the simulation of predefined V/Q distributions

with five gas exchange compartments and (II) to correlate shunt fractions derived from

MMIMS-MIGET with preset reference shunt values of the IVLM. Five hollow-fiber mem-

brane oxygenators switched in parallel within a closed extracorporeal oxygenation circuit

were ventilated with sweep gas (V) and perfused with human red cell suspension or saline

(Q). Inert gas solution was infused into the perfusion circuit of the gas exchange assembly.

Sweep gas flow (V) was kept constant and reference shunt fractions (IVLM-S) were estab-

lished by bypassing one or more oxygenators with perfusate flow (Q). The derived shunt

fractions (MM-S) were determined using MIGET by MMIMS from the retention data. Shunt

derived by MMIMS-MIGET correlated well with preset reference shunt fractions. The in vitro

lung model is a convenient system for the setup of predefined true shunt fractions in valida-

tion of MMIMS-MIGET.

Introduction

The worldwide volume of major surgical procedures is estimated at 243 million per year [1].

Morbidity and mortality after major surgery are associated particularly with postoperative pul-

monary complications like lung injury and acute respiratory distress syndrome (ARDS) [2, 3].

A worldwide multicenter observational study yielded a prevalence of ARDS due to all causes

of 10.5% among ICUs in 50 countries [4]. The Berlin definition of ARDS introduced a mild

(200mmHg< PaO2/FIO2� 300mmHg), moderate (100mmHg < PaO2/FIO2� 200mmHg)

and severe oxygenation stage (PaO2/FIO2� 100mmHg) of the syndrome [5]. ARDS hospital

mortality of mild stage was 34.9%, of moderate stage 40.3% and of severe stage 46.1% [4, 6].

However, there was evidence of under recognition and under treatment of this globally public
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health problem indicating a potential for improvement of health care for this patient cohort [4].

Shunt and CT scan based mean lung weight increased with severity of stage [5]. In a retrospec-

tive observational ARDS study systematic thoracic CT scans yielded most commonly consolida-

tions (94.1%) and ground glass opacities (85.3%) and health care was changed in 26.5% of cases

due to the results obtained from CT scans[7]. The use of extracorporeal membrane oxygenation

(ECMO), providing gas exchange without the need for mechanical ventilation in ARDS,

increased by over 400% between 2006 and 2012 in the United States [8].

Hypoxemia due to insufficient pulmonary gas exchange is a common reason for ICU

care of patients. However, information from readily available parameters like arterial PO2,

arterial PO2/FIO2 ratio, physiological shunt and deadspace is quite limited and error-prone

due to misinterpretation. Since P.D. Wagner’s studies in the early 1970’s, the multiple inert

gas elimination technique (MIGET) has provided useful insights into the physiology and

pathophysiology of gas exchange and hypoxemia, making it the reference method for the

assessment of ventilation-to-perfusion matching [9]. In the 2000’s a novel MIGET variant

was introduced that analyzed inert gas by micropore membrane inlet mass spectrometry

(MMIMS) instead of gas chromatography [10]. Compared to the conventional GC-MIGET,

MMIMS-MIGET appears to offer substantial advancement through reduction of analysis

time, sample volume, material and human resources [11]. MMIMS-MIGET shunt (MM-S)

calculated from a single-pore MMIMS has been shown to correlate well with Riley shunt in

a porcine lavage lung model [12]. An additional improvement in the current MMIMS-MI-

GET setup was the use of a multi-pore [11] probe instead of the single-pore probe used in

previous studies [10, 12]. The multi-pore variant offers an approximately 400-fold increased

sensitivity in its inert gas partial pressure measurement, resulting in much less susceptibility

for technical and analytical errors.

The conventional MIGET, as well as its underlying concept, have withstood the test of time

in numerous in vivo studies and was currently used in a volunteer study to evaluate a novel

functional proton magnetic resonance imaging technique to measure regional VA/Q ratio in

the lung [13]. MIGET and its MMIMS variant have also been compared with each other in ani-

mal experiments by Kretzschmar et al [11]. MIGET by MMIMS was feasible to evaluate the

impact of pressure support ventilation in a porcine sepsis lung injury model [14] or to assess

VA/Q distributions during cardiopulmonary resuscitation in anaesthetized pigs [15]. In sum-

mary MIGET has been proven valuable to get deeper insight to gas exchange and VA/Q distri-

butions in various animal and clinical experiments. So far, however, the use of a bench model

to test the validity, accuracy and precision, and reproducibility of these techniques has not

been described.

Currently, as part of modern artificial organ support systems, blood-gas exchangers or oxy-

genators are regularly used in clinical practice to replace (cardiopulmonary bypass) or support

the gas exchange function of the lung (ECMO and/or CO2 removal) [16]. Studies involving

such hollow fiber membrane oxygenators have reported a good correlation between measured

oxygen and carbon dioxide transfer with model-predicted gas exchange [17]. In a similar

experimental setup as in [14], Borland and colleagues presented a membrane oxygenator as a

model for lung nitric oxide and carbon monoxide transfer [18].

The general aim of this study is to test the accuracy, precision and reproducibility of the

MMIMS variant of MIGET shunt fractions under the stable and adjustable in vitro conditions

of an extracorporeal perfusion and membrane oxygenation circuit. Fitted with several parallel

“lung” compartments governing gas exchange, the in vitro lung model (IVLM) appears to pro-

vide a simple and robust model for creating predefined V/Q relationships. We hypothesize

that in an appropriate IVLM setup, various reference shunt fractions can be defined using
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controlled sweep gas and perfusion flow, which then allows comparison with shunt fractions

determined using MMIMS-MIGET.

The specific aims of this study were (I) to design an IVLM with five separate gas exchange

compartments connected in parallel to achieve resolution of shunt fractions between 0.0 and

1.0, and (II) to compare shunt fractions derived from MMIMS-MIGET with preset reference

shunt fractions of the IVLM (IVLM-S). We also aimed to compare measurements utilizing

saline as a priming and perfusion fluid with those using a human red cell suspension.

Materials and methods

Experimental setup of IVLM

The perfusion and gas exchange circuit of the IVLM consists of the following components

assembled as shown in Fig 1:

1. Pump: A micro-diagonal pump (DeltaStream DP-II, Medos,Stolberg/D) generating non-

pulsatile perfusate flow, at a maximum rate of 2500 ml/min within the present setup.

2. Gas exchangers: Five pediatric membrane gas exchange units (QUADROX-i Pediatric Oxy-

genators; MAQUET, Hirrlingen, Germany) in a parallel assembly. These hollow-fiber

microporous membrane oxygenators each contain two chambers; the first consists of gas-

permeable polypropylene fiber mats alternating with heat exchange mats made of polyure-

thane, while the second chamber contains only gas-conducting polypropylene fiber mats

Fig 1. Schematic of in vitro lung model setup.

https://doi.org/10.1371/journal.pone.0184212.g001
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arranged at 90˚ to each other in order to improve perfusate mixing outside the fibers and

hence, gas exchange. (www.maquet.com) Polypropylene fibers are permeable to anesthetic

gases through the micro pores. Each of these oxygenators could be perfused at up to 2500

ml/min perfusate flow and ventilated with sweep gas (air-oxygen mixture) using a gas

blender (Maquet Cardiopulmonary AG, Hirrlingen, Germany).

Total and compartmental perfusate flows were measured using in-line liquid flow meters

(Levitronix, Zurich, Switzerland). Total gas flow to the oxygenators was measured using a

thermal mass flow meter (TSI, Shoreview, MN, USA).

3. Fluorinated ethylene propylene circuit tubing (Tygon1, Saint-Gobain performance plas-

tics, Akron, OH, USA) which minimizes loss of inert gas from perfusate.

4. Priming fluid was either human RBC (SRBC) suspended in fresh frozen plasma and

saline at a hematocrit of 40 to 45% or normal saline (SNS)– 0.9% NaCl. Priming volume

was 2500 ml.

5. Heat exchanger: Warm water (38˚C) was circulated through all oxygenator units using an

external heater/cooler system with temperature control (HCV, Type 20–602, JostraFume-

dica, Muri/CH). A thermistor (Sams, 3M Health Care, Ann Arbor, MI, USA) was con-

nected to its fluid reservoir outlet for temperature monitoring.

The system was designed to be devoid of leaks, and the inlet ports were connected to the

bottom of the mixing chambers in order to facilitate air bubble free priming. In order to avoid

entrainment of air bubbles, the system was vented, pre-filled with priming fluid, and any

remaining air bubbles were removed prior to initiating an experiment.

Circuit prime

Human blood and saline were used as priming fluids. In the first experiment, expired human

blood products were used to simulate in vivo conditions using a target hematocrit of 40 to

45%. This was produced by mixing 500 ml packed red blood cells with 500 ml fresh frozen

plasma and 1500 ml normal saline. The blood products were obtained from the blood bank of

the University Hospital of Bern and identity of the donors was not available. Hence the source

of these blood products was completely de-identified. In the second experiment, the priming

solution utilized was 2500 ml of normal saline.

Perfusate flow measurement

Liquid flow meters (Levitronix, Zürich, Switzerland) measured perfusate flow in the model.

These flow meters function based on ultrasonic flow measurement principle with a measure-

ment error of ± 1% of the true value and the reproducibility error is less than ± 0.5% of the

true value. The difference in transit times of the piezo-electric pulses propagated along and

against flow is a measure of average fluid velocity along the path of ultrasonic beam. Total per-

fusate flow was measured with a main flow meter, while flow distribution to the five oxygena-

tors was quantified by individual, in-line perfusate flow meters.

Sweep gas flow measurement

The model was ventilated with air as sweep gas using a gas blender (Maquet Cardiopulmonary

AG, Hirrlingen, Germany). Individual gas flows to the oxygenators were estimated using a

thermal mass flow meter (TSI, Shoreview, MN, USA).
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Perfusate mixing chambers

Two cylindrical mixing chambers made of special glass (Trabold&CoAG, Bern, CH) are

located in the common inlet upstream, as well as in the common outlet downstream of the gas

exchanger assembly. The inlet chamber representing the “venous side” has a single input port

receiving perfusate from the pump, and five outlet ports connected to each gas exchange unit,

which are fitted with sampling ports. Inert gas solution was introduced upstream to this mix-

ing chamber via a three-way stopcock. The outlet (“arterial”) mixing chamber downstream of

the gas exchanger assembly has five inlet ports receiving perfusate from each of the gas

exchangers, and a single outlet port fitted with a sampling port. Perfusate then returns to the

pump (Fig 1). Thus, the upstream mixing chamber of the IVLM represents the mixed venous

compartment of pulmonary blood volume while the downstream represents the pulmonary

venous compartment or, in the presence of introduced anatomic shunt, also the systemic arte-

rial compartment. The circulating perfusate together with added inert gas solution was gently

mixed due to the surface design inside the mixing chambers. The outlet from the downstream

mixing chamber is connected to the inlet line of the centrifugal pump.

Preset shunt flow measurement

The scenario of a normal lung with V/Q ratio approximating 1 was simulated in the IVLM by

maintaining equal sweep gas (V) and fluid (Q) flows. In a single-unit gas exchange circuit both

V and Q were set to 2500 ml/min, whereas 500 ml/min per gas exchange unit was maintained

in a five-oxygenator circuit.

Intrapulmonary shunt occurs when functional lung units are perfused in a non-aerated

state, i.e., when their regional V/Q ratio is zero. To achieve this state in the model, one or more

gas exchangers, and hence sweep gas contact, were bypassed by shunt tubes with defined flow

(IVLM shunt, IVLM-S).

Reference shunt fraction was calculated as:

preset fractional shunt ¼ measured shunted flow = measured total flow to upstream mixing chamber

For a modeled shunt fraction of 0.2, one of the five gas exchangers were bypassed, thus

eliminating its perfusate flow. Its respective shunt tube flow was manually adjusted to 500 ml/

min using the individual upstream perfusate flow valves. All resultant flows were verified using

the in-line flow meters. Analogous maneuvers allowed shunting 2, 3, or 4 gas exchange units,

with respective shunt fractions then measured and calculated.

Selection of preset shunt fractions was conducted in a randomized manner, in order to pre-

vent systematic effects of residual disequilibrium shortly after step changes in inert gas concen-

trations. After changing inert gas infusion rate or shunt fraction, an equilibration period of no

less than 15 min was allowed prior to MMIMS-MIGET sampling.

Preparation and administration of inert gas solution for MMIMS-MIGET

The inert gas infusate [10] was prepared in a gas-tight 500 ml normal saline bag (500 ml) by

equilibrating gaseous sulfur hexafluoride (SF6, 90 ml gas) and krypton (Kr, 24 ml gas) with the

fluid, followed by the addition of liquid desflurane (DES, 100 μl), enflurane (ENF, 100 μl),

diethyl ether (DEE, 100 μl), and acetone (AC, 1 ml). Inert gas dose and resultant concentra-

tions were selected according to the sensitivity of the MMIMS device determined during previ-

ous IVLM experimentation. Inert gas solution was infused into the circuit upstream to the

inlet mixing chamber, using a volumetric infusion pump (Alaris GP, Cardinal Health, 1180

Rolle, Switzerland) at a rate representing approximatly1/1000th of the total pump flow. To
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maintain a meticulously bubble-free and closed system, two air-tight glass syringes remained

attached to the inlet port of the upstream glass mixing chamber in order to allow for limited

volume changes within the circuit (e.g., from inert gas infusion, sampling).

MMIMS MIGET with Multipore Probe

The theory and practice of multiple inert gas analysis and the derivation of ventilation-perfu-

sion distributions using the novel MMIMS-based variant of the MIGET have been described

extensively; in this study they were performed accordingly [10–12]. The version of MMIMS

technology used in this study utilizes a multi-pore MMIMS probe with 200 pores. Addition-

ally, current software updates (Version: MMIMSMainV43, Oscillogy LLC, USA) were per-

formed in order to enhance sensitivity and signal strength, to shorten measurement time, and

to facilitate data analysis. When compared to previous studies with single-pore MMIMS or

conventional MIGET using time-consuming gas chromatography, multi-pore MMIMS-MI-

GET demonstrated considerably improved sample turnover time and hence, better temporal

resolution (sampling intervals of 15 min are feasible, with 8 min for each sample analysis).

Measurement of inert gas concentrations and MMIMS-MIGET-derived

shunt fraction

After ruling out fluid leaks or air bubbles, the centrifugal pump was started at 2500 ml/min.

Temperature was controlled by a heat exchanger set to 38˚. After a few minutes’ equilibration

time, inert gas infusion was started and maintained for at least 15 min to achieve steady-state

inert gas concentrations. For each selected reference shunt setting, duplicate samples were

drawn at 15-minute intervals using gas-tight glass syringes (Cadence Science Inc1, Plainfield

Pike Cranston, RI) spiked with an anticoagulant (heparin).

With 0, 1, 2, 3 or 4 out of 5 oxygenators bypassed to achieve predefined reference shunts,

bubble-free samples were collected simultaneously from up- and downstream mixing cham-

bers and immediately processed for inert gas analysis using the MMIMS system (Beta Version

1.0, Oscillogy1, Folsom, PA, USA). Retentions were computed from the ratio of downstream

partial pressure to upstream partial pressure for each inert gas [12]. Although a similar sam-

pling approach could be employed to acquire mixed expired samples in order to compute

excretion, this proved to be impractical due to the inherent difficulty in handling highly solu-

ble gases (DEE & Acetone) with the present setup. Retention data and solubility coefficients

were converted, according to MIGET methodology as described by Evans and Wagner[19],

into a distribution of perfusion (as percentage of total perfusate flow) over 50 compartments

with defined ventilation-to-perfusion ratios. Fractional MMIMS-MIGET shunt in the com-

partment of interest was defined as MMS�V/Q < 0.005.

Statistical analysis

Using Wagner’s algorithm [20] programmed on Labview 8.0 (National Instruments, Austin,

TX), MMIMS-MIGET shunt fractions were calculated from inert gas concentrations. All met-

ric data are expressed as mean ± SD. Correlation between predefined shunt from IVLM and

MMIMS-MIGET shunt was described by linear regression and agreement with Bland-Altman

analysis [21, 22]. Origin 8.0 was used for data management and analysis (linear regression,

Bland-Altman analysis). As used in previous studies, the degree of experimental error was

inferred from the residual sum of squares (RSS) [12, 23]. Data analysis was carried out in an

explorative manner, with p< 0.05 considered as significant.
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Results

The IVLM allowed stable control of compartmental perfusate and sweep gas flows, as well as

reproducible inert gas transfer. Duplicate samples were taken at each reference shunt setting;

hence 10 samples were taken at five different time points. The reported IVLM shunt values

were calculated from the measured ventilation and perfusion flowrates during the experiment

in order to avoid the influence of handling errors.

Fractional shunt measurements were compared for asanguineous perfusate (n = 10), rang-

ing from 0 to 0.79 (IVLM-SNS) and from 0 to 0.81 (MM-SNS), respectively. For red blood cell

containing perfusate, IVLM-SRBC ranged from 0 to 0.91 and measured MM-SRBC from 0 to

0.83. As an indicator of experimental error, the MMIMS dataset had a residual sum of squares

(RSS) < 5 in 75% and RSS< 10 in 95%.

Correlation and agreement of IVLM-S and MM-S

Correlation between IVLM-S and MM-S was examined for 10 data pairs using linear regres-

sion analysis. As an example, Fig 2 illustrates the association between IVLM-SRBC vs

MM-SRBC (r2 = 0.96; P < 0.0001). Fig 3 demonstrates the respective association for saline

perfusate (IVLM-SNS vs MM-SNS, r2 = 0.99; P< 0.0001; duplicate sample data at each model

shunt).

Fig 2. Linear regression analysis with blood as priming fluid. Linear regression analysis for MMIMS-MIGET

based shunt fraction–with blood as priming fluid (MM-SRBC) on predefined in vitro lung model shunt (IVLM-

SRBC): MM-SRBC = 0.87*IVLM-SRBC-0.02 (r2 = 0.96, P< 0.0001). Duplicate data from 0 to 0.8 model shunt

fractions included. Solid line = linear regression; Dashed line = line of identity.

https://doi.org/10.1371/journal.pone.0184212.g002
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MM-S underestimated IVLM-S both in blood (bias ± 2 SD = - 0.085 ± 0.105) and saline per-

fusate (bias ± 2 SD = - 0.036 ± 0.118). Bland-Altman plots of the difference between MM-S

and IVLM-S are shown in Fig 4 (blood) and Fig 5 (saline). Overall coefficient of variation for

MM-SRBC was 4.8% and 10.2% for MM-SNS.

Discussion

This study demonstrates, as its primary finding, that the measurement of shunt fraction using

MMIMS-MIGET technology is valid in determining true shunt fraction in an in-vitro lung

model with artificial gas exchange. Good correlation exists between the measured MM-S and

the preset IVLM-S over a wide range of shunt fractions. Our results indicate a 3–8.5% underes-

timation of true shunt by the MMIMS-MIGET based methodology for blood-containing, as

well as asanguineous, perfusate (Figs 2 and 3). The overall precision was found to be good,

with limits of agreement at ± 10% shunt fraction.

The purpose of constructing this in vitro model of compartmental pulmonary gas exchange

was to provide a simple, robust and precise tool to produce predefined model V/Q relation-

ships for comparison with V/Q relationships measured by MMIMS-MIGET. In many previous

studies, MIGET was used as the “gold standard” for determination of true intrapulmonary

shunt fraction [20, 24, 25]. By establishing physically predefined and controlled shunt fractions

Fig 3. Linear regression analysis with saline as priming fluid. Linear regression analysis for MMIMS-

MIGET shunt fraction–with saline as priming fluid (MM-SNS) on predefined in vitro lung model shunt

(IVLM-SNS): MM-SNS = 0.91*IVLM-SNS +0.005 (r2 = 0.99, P< 0.0001). Duplicate data from 0 to 0.8 model

shunt fractions included. Solid line = linear regression; Dashed line = line of identity.

https://doi.org/10.1371/journal.pone.0184212.g003
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in the model, we are now able to utilize predefined IVLM shunt as the reference standard

when evaluating MMIMS-MIGET shunt.

We found good correlation (MM-SRBC: r2–0.99, MM-SNS: r2–0.96) of the tested method

to reference shunt; for clinical purposes, bias and precision appear satisfactory. However, the

slight bias and imprecision may not be exclusively due to error in MMIMS-MIGET. Similar to

any reference technique in this field, an IVLM does not categorically exclude potential sources

of systematic and unsystematic error. For example, as with potential error within MMIMS-MI-

GET, the respective determination of shunt fraction in the IVLM relies on SF6 excretion and

retention. At the current stage of model development, we utilized retention data only, which

limited our ability to minimize measurement error. Nevertheless, we found that the propor-

tional bias of 0.085 in blood and 0.036 in saline perfusate in the current study, using a multi-

pore MMIMS version, was already substantially improved compared to 0.15 in a previous

series from our group [12], in which single-pore MMIMS-MIGET-based shunt determination

had been compared to Riley shunt measurement in an animal model of lung injury. This may

also indicate that there are still various residual sources of systematic error in setups compar-

ing MMIMS-MIGET shunt to reference techniques. The overall error may include measure-

ment errors, sampling errors, and recovering shunt fractions from retention data [19].

Correlation of IVLM-S with MM-S yielded a bias comparable to previously published studies.

The bias values of this study were similar to 0.04 obtained by Kretzschmar et.al, which assesses

agreement between conventional MIGET with gas chromatography and MMIMS-MIGET

Fig 4. Bland-Altman analysis with blood as priming fluid. Bland-Altman analysis of MMIMS-MIGET based shunt

fraction–with blood as priming fluid (MM-SRBC) on predefined in vitro lung model shunt (IVLM-SRBC). Bias ± precision (2

SD) was -0.085 ± 0.11 with 95% limits of agreement (dashed) of -0.19 and 0.02.

https://doi.org/10.1371/journal.pone.0184212.g004
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[11]. In the animal study of Duenges et al., the range of possible shunt fractions was restricted

due to the limitations of lavage injury, whereas the full range in our IVLM may improve

numerical correlation.

In our current system, results from saline (IVLM-SNS Vs MM-SNS) and blood (IVLM-

SRBC Vs MM-SRBC) have demonstrated satisfactory bias and precision. We thus conclude

that crystalloid prime may be conveniently used for testing of reproducibility and further tech-

nical evolution of the IVLM setup; however, MMIMS-MIGET validation series in a clinically

relevant range of V/Q ratios will also require priming with realistic hematocrit levels or even

with whole blood.

The bias still indicated an underestimation of true shunt by MMIMS-MIGET in both blood

and saline. A better automated lung model with automated perfusate and sweep gas flow con-

trol may considerably reduce measurement error due to manual handling of the IVLM. A limi-

tation of this study is that precise settings of shunt in the IVLM, pertaining to the clinically

relevant range, could not be achieved due to inherent difficulties in mechanical maneuvering

of ventilation and perfusion flows. Upon automation of the lung model, we plan to perform

more extensive experiments in the clinically relevant range of 0 to 0.4.

The true potential of the MMIMS-MIGET lies in the bedside measurements of the whole

spectrum of ventilation-to-perfusion distributions and inequalities e.g. from shunt over a nor-

mal distribution to deadspace. In this study, we focused on introducing the in vitro lung

model and its measurements of shunt in detail. Separate studies are being carried out with an

automated lung model to realize other kinds of inequality scenarios in the model.

Fig 5. Bland-Altman analysis with saline as priming fluid. Bland-Altman analysis of MMIMS-MIGET based shunt

fraction–with saline as priming fluid (MM-SNS) on predefined in vitro lung model shunt (IVLM-SNS). Bias ± precision (2

SD) was -0.04 00B1 0.12 with 95% limits of agreement (dashed) of -0.154 and 0.082.

https://doi.org/10.1371/journal.pone.0184212.g005
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Conclusion

Known true shunt fractions were generated in a novel, five-compartment in vitro model of gas

exchange; using the multi-pore MMIMS-based MIGET system, we were able to measure shunt

with satisfactory accuracy and precision. Our results suggest that such a model of compart-

mentalized gas exchange may represent a convenient system to validate and test MIGET sys-

tems and underlying assumptions against preset V/Q relationships. Translation of MMIMS-

MIGET validation results from IVLM experimentation to animal and human studies will

allow repetitive assessment of ventilation-perfusion distribution within time frames short

enough to impact clinical decision making. Further refinements in the model, in terms of

maneuverability and control, will enable the extension of the range of V/Q ratios that can be

generated.

Supporting information

S1 Data. Data sets pertaining to MMIMS-MIGET samples. Data sets pertaining to

MMIMS-MIGET derived IVLM shunt fractions with blood and saline as priming fluids.
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