
J
H
E
P
0
6
(
2
0
1
7
)
0
5
6

Published for SISSA by Springer

Received: April 12, 2017

Accepted: June 1, 2017

Published: June 12, 2017

Surveying 4d SCFTs twisted on Riemann surfaces

Antonio Amariti,a Luca Cassiab and Silvia Penatib

aAlbert Einstein Center for Fundamental Physics,

Institute for Theoretical Physics, University of Bern,

Sidlerstrasse 5, Bern, ch-3012, Switzerland
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1 Introduction

Two dimensional (super) conformal field theories ((S)CFTs) play a central role in the

worldsheet description of string theory and in the formulation of the AdS3/CFT2 corre-

spondence. Moreover, being the conformal group infinite dimensional, many exact results

can be extracted from their algebraic structure. Classifying 2d CFTs is anyway a difficult

task and finding new examples of conformal theories is not straightforward.

A powerful laboratory to build infinite families of 2d CFTs is supersymmetry. SCFTs

in 2d can be obtained by compactifying 4d SCFTs on curved compact 2d manifolds. In

this process some of the original supersymmetry charges survive whenever Killing spinor

equations arising from requiring fermion variations to vanish, admit non-trivial solutions.

In general, this does not happen since on curved manifolds there are no covariantly con-

stant Killing spinors. However, as suggested in [1] (see also [2, 3]), this problem can be

circumvented by performing a (partial) topological twist, i.e. by turning on background

gauge fields for (a subgroup of) the R-symmetry group along the internal manifold in such

a way that its contribution to the Killing spinor equations compensates the contribution

from the spin connection. More generally, one can also turn on properly quantized back-

ground fluxes for other non-R flavor symmetries. In this case preserving supersymmetry

also requires to set to zero the associated gaugino variations.
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Although this procedure does not allow to extract the matter content of the 2d theory,

useful information on its IR behavior is provided by the 2d global anomalies that can be

obtained in terms of the 4d ones and of the background fluxes [4].

Focusing on 2d theories with N = (0, 2) (or equivalently, N = (2, 0)) super-

symmetry, the corresponding central charge cL (cR) is proportional to the anomaly of

the abelian R-symmetry current inherited from the exact 4d R-current JµR, obtained by

a-maximization [5]. However, under dimensional reduction 4d abelian global currents can

mix with the exact 4d JµR, hence the exact 2d R-current has to be determined by ex-

tremizing the 2d central charge cL (cR) as a function of such a mixing. The program of

constructing N = (0, 2) 2d SCFTs from 4d became an intense field of research [6–17] after

such c-extremization principle was derived in [4].

An interesting phenomenon regarding the mixing of global currents with JµR has been

observed in [13] for the particular case of 4d N = 1 Y pq quiver theories compactified on

Riemann surfaces. There, it was observed that even though there is a global (baryonic)

symmetry, that does not mix with JµR at the 4d fixed point [18, 19], it has a non-trivial

mixing with JµR at the 2d fixed point. This phenomenon is generalizable to cases with a

richer structure of baryonic symmetries.

Motivated by the former discussion, in this paper we engineer the partial topolog-

ical twist in the natural setup of conformal supergravity and study systematically the

twisted compactification on constant curvature Riemann surfaces of 4d SCFTs with dif-

ferent amount of supersymmetry. In this unified framework we investigate the cases of

N = 1, 2, 3, 4 conformal supergravity corresponding to 4d geometries of the form R1,1 ×Σ

where Σ is a genus g Riemann surface. We study the conditions to preserve different

amounts of supersymmetry in 2d by solving the Killing spinor equations arising from set-

ting to zero the variations of the gravitino and of the auxiliary fermions in the Weyl mul-

tiplet (sections 2, 3, 4 and 5). When possible (i.e. in cases with N = 1, 2 supersymmetry)

we also turn on vector multiplets associated to global non-R symmetries. In this case an

additional constraining equation for Killing spinors arises from setting to zero the variation

of the corresponding gaugino.

All possible cases are listed in tables 3 (N = 1), 5 (N = 2), 8 (N = 3) and 11 (N = 4).

In N = 1, 2 cases the presence of global gauged non-R symmetries in general decreases

(or does not increase) the number of supersymmetries, but never below N = (0, 2) or

(2, 0). For N = 3, 4 theories, where flavor symmetries are absent, we also discuss the

possibility of twisting in two steps. This consists in a first twist along an abelian subgroup

of SU(3)R×U(1)R or SU(4)R, reducing the R-symmetry and leaving some vector multiplets

associated to non-R global symmetries. A further twist along such symmetries corresponds

to N = 1 or N = 2 gaugings and preserves half of the supercharges.

In section 6, when the resulting 2d theories have N = (0, 2) supersymmetry, we pro-

vide the (formal) expression for the anomaly coefficients and the central charge in terms

of the 4d anomalies and the fluxes, as obtained by c-extremization. Concurrently, the

explicit expression for the exact 2d R-current is given as a linear combination of the 4d

R-current and global non-R symmetries. In section 7 we conclude by commenting on some

possible future lines of research. In appendix A few necessary details on the anomaly poly-
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nomial are collected. In appendix B we provide further details on the vanishing of the

supersymmetry variation for the auxiliary fermions in the N = 3, 4 cases.

2 Twisted reduction of N = 1 SCFTs

We begin by considering a N = 1 superconformal theory on the four dimensional spin

manifold M = R1,1 × Σ, where Σ is a Riemann surface of genus g and constant scalar

curvature. Twisted compactification of this class of theories has been already discussed

in [12, 13, 20]. Here we review the procedure in a N = 1 superconformal gravity setup to

fix the general scheme that we will use in the N -extended cases.

R1,1 coordinates are labelled (x0, x1), while the ones on Σ are (x2, x3). The spin

connection ωµ on Σ satisfies the relation

1

2π

∫
Σ
R(ω) = 2− 2g (2.1)

where R(ω)
2π is precisely a representative 2-form for the first Chern class of the tangent bundle

of Σ expressed in terms of the Riemannian curvature R(ω) = dω. Such a characteristic

class is usually denoted as c1(TΣ) ∈ H2(Σ,Z). The curvature for a Riemann surface can

be written in terms of the volume form dVolΣ and the Gaussian curvature K as

R(ω) = K dVolΣ (2.2)

For later convenience we define the normalized scalar curvature κ ≡ sgn(K), the normalized

volume form Ωµν

Ω ≡


|K|dVolΣ for K 6= 0

2π dVolΣ
VolΣ

for K = 0

(2.3)

and the total normalized volume ν

ν ≡
∫

Σ

Ω

2π
(2.4)

so that R(ω)µν = κΩµν and κν = 2− 2g.

In general, compactification on Σ breaks supersymmetry completely, since on arbi-

trarily curved manifolds there are no covariantly constant Killing spinors. Along the lines

of [21], in order to put a 4d theory on a curved manifold and preserve some supersymmetry

we couple the theory to a conformal supergravity background that reproduces the desired

spacetime geometry. The whole superconformal group is gauged and the corresponding

gauge fields are organized into the Weyl multiplet as follows (we use notations and con-

ventions of [22]). The generators and the gauge fields of N = 1 conformal supergravity

are indicated in table 1. Here Pa,Ka are vector generators of translations and special con-

formal transformations, Mab and ∆ are generators of Lorentz rotations and dilatations, Q

and S are the spinorial supercharges. The U(1)R R-symmetry generator TR assigns charge

−1 to the positive chirality supercharges Qα and Sα and charge +1 to their conjugates

Q̄α̇ = (Qα)† and S̄α̇ = (Sα)†. When the R-symmetry generator acts on the supercharges

we will often write TR = −γ5 with γ5 = iγ0123.
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generator Pa Mab ∆ Ka TR Q S

field eaµ ωabµ bµ faµ Aµ ψµ φµ

Table 1. Generators and gauge fields of N = 1 conformal supergravity.

The supersymmetry transformation laws of the independent gauge fields read

δeaµ =
1

2
ε̄γaψµ (2.5)

δbµ =
1

2
ε̄φµ −

1

2
η̄ψµ (2.6)

δAµ =
1

2
iε̄γ5φµ +

1

2
iη̄γ5ψµ (2.7)

δψµ = Dµε− eaµγaη (2.8)

where ε, η are the Majorana spinors associated to Q and S transformations, respectively.

The covariant derivative is defined as Dµε ≡ (∂µ + 1
2bµ + 1

4ω
ab
µ γab − iAµTR)ε.

Since we are only interested in theories on curved manifolds with rigid supersymmetry,

we fix the Weyl multiplet to be a collection of background fields describing the geometry

of spacetime. In order to preserve Lorentz invariance on R1,1 we set all the spinor fields to

zero and assign possibly non-vanishing components to bosonic forms only in the (x2, x3)

directions. As follows from (2.8), in general this choice breaks superconformal invariance.

However, some Q-supersymmetry survives if the geometry admits non-trivial covariantly

constant spinor fields, solutions of the equation Dµε = 0 (setting η = 0).1 This equation

may have non-trivial solutions if we turn on a non-zero background also for the R-symmetry

gauge connection Aµ [1] such that the two contributions coming from Aµ and ωabµ in the

covariant derivative cancel each other.

More precisely, focusing on constant solutions, we first apply the exterior derivative to

δψµ, so that the Killing spinor equation Dµε = 0 is traded with

2∂[µδψν] =

[
1

2
Rµν(ω23)γ23 − iRµν(A)γ5

]
ε = 0 (2.9)

where Rµν(ω23) and Rµν(A) are the curvatures of the connections ω23
µ and Aµ, respectively.

Given the particular form of the curvature Rµν(ω) = κΩµν , we choose Aµ such that its

curvature is also proportional to the normalized volume form Ωµν

Rµν(A) = −aΩµν (2.10)

where the parameter a is constrained by the Dirac quantization condition

1

2π

∫
Σ
R(A) = −a

∫
Σ

Ω

2π
= −aν ∈ Z (2.11)

Substituting (2.10) in (2.9), we then obtain[κ
2

iγ23 − aγ5

]
ε = 0 (2.12)

We postpone the search and classification of non-vanishing solutions to section 2.2.2.

1To begin with one could solve the equation δψµ = 0 for non-vanishing η, by setting η = 1
4
/Dε [23]. The

solution η = 0, Dµε = 0 is compatible with this condition.
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2.1 Twisting with flavors

We now consider the case in which the original 4d theory also admits a global abelian non-

R symmetry that can be either flavor or baryonic symmetry. With an abuse of notation,

we call it U(1)flavor.

This symmetry can be weakly gauged by turning on a background connection.2 How-

ever, in order to preserve the original superconformal symmetry one has to turn on a whole

abelianN = 1 superconformal gauge multiplet (Bµ, λ, Y ) whose field content consists of the

gauge vector potential Bµ, the gaugino λ and the auxiliary scalar Y , all in the adjoint rep-

resentation of the flavor symmetry. The corresponding supersymmetry transformations are

δBµ = −1

2
ε̄γµλ

δλ =

[
1

4
γabRab(B) +

1

2
Y iγ5

]
ε (2.13)

δY =
1

2
iε̄γ5γ

µDµλ

where Rµν(B) is the curvature 2-form of the gauge connection Bµ and the covariant deriva-

tive on spinors is defined as in eq. (2.8).

Similarly to the case of the R-symmetry background in (2.10), we can choose a U(1)flavor

connection with constant curvature

Rµν(B) = bΩµν , bν ∈ Z (2.14)

together with vanishing background gaugino. In order to preserve some supersymmetry we

have to require

δλ =

[
b

2
|e|Ω23γ23 +

1

2
Y iγ5

]
ε = 0 (2.15)

where |e| = e22e33 − e23e32 is the vielbein determinant on Σ.

Writing γ5 = iγ23γ01 in the previous equation allows to factor out a gamma matrix

γ23. Therefore, setting Y = ±b|e|Ω23 we finally obtain the condition

(1∓ γ01) ε = 0 (2.16)

We then see that in principle, turning on a background for an abelian non-R global sym-

metry, introduces additional constraints on the supersymmetry generators.

More generally, we can consider 4d theories with rank–n flavor symmetry group, i.e.

with n generators Ti in the Cartan subalgebra. In this case we can gauge one vector

multiplet (Bi
µ, λ

i, Y i) for each Cartan generator. If the corresponding auxiliary scalars are

fixed by the same equation Yi = +bi|e|Ω23 (or Yi = −bi|e|Ω23) we are led to the same

constraints (2.16).

2Similar discussions appeared in [6, 8, 24].
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supersymmetry chirality representation γ01 iγ23 γ5 δψµ = 0

ε+ L 1+1,+1 +1 +1 +1 a− κ/2 = 0

ε− R 1−1,−1 −1 −1 +1 a+ κ/2 = 0

Table 2. Supersymmetry generators and their charges under Spin(1, 1), Spin(2)Σ and R-symmetry.

Since the U(1)R generator can be written as γ5 = (γ01)(iγ23), it follows that ε± are automatically

irreducible representations of the R-symmetry group corresponding to charge 1.

2.2 Classification of the solutions

We are now ready to discuss the most general solutions of the two supersymmetry pre-

serving conditions [κ
2

iγ23 − aγ5

]
ε = 0 , bi (1∓ γ01) ε = 0 (2.17)

where the constant a signals the presence of a non-trivial U(1)R background, eq. (2.10),

while bi are associated to Bi
µ connections for U(1)flavor symmetries, eq. (2.14). We note

that the second equation is nothing but a 2d (anti)chirality condition.

In order to find solutions to these equations, we write the Majorana spinor ε in terms of

its Weyl components, ε = (εα ε̄α̇), and with no loss of generality we restrict the discussion

to the positive chiral spinor εα transforming in the 2 of SL(2,C).

On the product manifold R1,1×Σ the original Lorentz group of 4d Minkowski is reduced

as Spin(3, 1) → Spin(1, 1) × Spin(2)Σ, and consequently the spinorial representation of εα
also splits as

2→ [11,1 ⊕ 1−1,−1] (2.18)

Here the representations on the right hand side are labelled by the eigenvalues of the

hermitian generators γ01 and iγ23 of Spin(1, 1) and Spin(2)Σ, respectively. The generator

γ01 corresponds also to the chirality operator on R1,1, hence we refer to 11,1 and 1−1,−1 as

the 2d positive (left) and negative (right) chirality representations respectively, and denote

the corresponding spinors as ε+ and ε−.

As summarized in table 2, for κ 6= 0 solutions to the first eq. in (2.17) correspond

to ε+ for a = κ
2 and ε− for a = −κ

2 . The second equation in (2.17) does not restrict the

Killing spinors any further, since we can always choose bi such that (2.16) projects on the

same chirality as that of the Killing spinor. Therefore, independently of the presence of

gauged flavor symmetries, the resulting 2d theory is N = (2, 0) for a = κ
2 and N = (0, 2)

for a = −κ
2 . These solutions are compatible with the quantization condition aν ∈ Z, being

κν an even number.

In the special case of compactification on a torus, κ = 0, when no flavor symmetry

is gauged (bi = 0) there is no need for twisting. In fact, setting Aµ to zero, the Killing

spinor equation reduces to ∂µε = 0 and is automatically satisfied for every constant section

ε. Therefore, supersymmetry is not broken and the resulting 2d theory is N = (2, 2) with

R-symmetry U(1)left×U(1)right generated by the two combinations T± = 1
2TR±M23, where

M23 is the Lorentz generator on Σ. Supersymmetry can be reduced by gauging some flavor

symmetry. In this case, in fact, the second equation in (2.17) constrains the supercharges

– 6 –
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κ 6= 0 a = κ
2 a = −κ

2

b = 0 N = (2, 0) N = (0, 2)

b 6= 0 N = (2, 0) N = (0, 2)

κ = 0 a = 0

b = 0 N = (2, 2)

b 6= 0 N = (2, 0) or (0, 2)

Table 3. Classification of topologically twisted 4d N = 1 SCFTs on Riemann surfaces of constant

curvature κ = ±1, 0 in terms of the surviving amount of supersymmetry in 2d. We include the

possibility of a twist along the flavor symmetries, with flux b.

to be of definite chirality and reduces supersymmetry to N = (2, 0) for Yi = +bi|e|Ω23 or

N = (0, 2) for Yi = −bi|e|Ω23.

The complete picture of topological twisted reduction of N = 1 SCFTs is summarized

in table 3, where the resulting 2d theories are classified in terms of the surviving amount

of supersymmetry.

3 Twisted reduction of N = 2 SCFTs

We now consider a N = 2 SCFT with R-symmetry group SU(2)R × U(1)R. The Lie

algebra of SU(2)R is spanned by anti-hermitian matrices iσA, where σA=1,2,3 are the three

Pauli matrices.

The four-dimensional chiral supercharges QαI are in the (2, 2̄)−1 representation of the

group Spin(3, 1) × SU(2)R × U(1)R, while their complex conjugates Q̄Iα̇ = (QαI)
† trans-

form in the (2̄,2)+1 representation. In particular, the U(1)R generator TR acts on the

supercharges as −γ5.

The N = 2 superconformal algebra contains a N = 1 subalgebra with R-symmetry

group U(1)N=1
R generated by the combination

TN=1
R =

2

3
σ3 +

1

3
TR (3.1)

Twisted compactifications ofN = 2 SCFTs have been already considered in [12, 25, 26].

Here we give a systematic derivation within the superconformal gravity setup.

Analogously to the N = 1 case, a N = 2 SCFT can be consistently defined on a curved

manifold M = R1,1×Σ, by first coupling it to the extended N = 2 superconformal gravity

and then gauge fixing the background Weyl multiplet as to reproduce the desired geometry

with possibly non-trivial fluxes turned on in order to preserve some supersymmetry.

We recall that the N = 2 Weyl multiplet contains the gauge fields of the conformal

group eaµ, f
a
µ , bµ, ω

ab
µ , the superconnections ψIµ, φµI associated to supersymmetries QI and

SI , the connections Aµ and V A
µ for the R-symmetry groups U(1)R and SU(2)R and the

auxiliary fields T−ab, D (bosonic) and χI (fermionic), needed to close the algebra off-shell.

Under supersymmetry transformations the fermionic fields of the gravity multiplet

transform as

δψIµ =

[
∂µ+

1

2
bµ+

1

4
ωabµ γab−Aµiγ5

]
εI−V A

µ (iσA)IJε
J− 1

16
γabT−abε

IJγµεJ (3.2)

δχI =
1

2
DεI − 1

6
γab
[

1

4
/DT−abε

IJεJ −Rab(A)iγ5ε
I −Rab(V A)(iσA)IJε

J

]
(3.3)
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In order to preserve Lorentz invariance on R1,1 the background fermions must be set to

zero. This choice automatically sets to zero the Q-supersymmetry variation of all bosonic

fields, which can then be chosen such that the Q-variation of the fermions vanish as well.

From (3.2) and (3.3) we deduce that we can safely set the background fields bµ and

T−ab to zero and simplify these expressions to

δψIµ =

[
∂µ+

1

4
ωabµ γab−Aµiγ5

]
εI−V A

µ (iσA)IJε
J ≡ 0 (3.4)

δχI =
1

2
DεI +

1

6
γab
[
Rab(A)iγ5ε

I +Rab(V
A)(iσA)IJε

J
]
≡ 0 (3.5)

The remaining background connections Aµ and V A
µ can then be used to perform partial

topological twist as we now describe.

Turning on a background flux for V A
µ breaks explicitly the SU(2)R invariance of the

theory down to a U(1) subgroup of it. Without loss of generality we choose this subgroup

to be the one generated by iσ3. Namely, we parametrize the R-symmetry gauging as follows

Rµν(A) = −a1Ωµν , Rµν(V A=1,2) = 0, Rµν(V 3) = −a2Ωµν (3.6)

where the parameters ai=1,2, are constrained by the quantization condition aiν ∈ Z, and

Ωµν is the normalized volume form of Σ. This choice is actually equivalent to gauging the

1-parameter subgroup of SU(2)R ×U(1)R generated by a1TR + a2σ3.

Looking for constant spinor solutions of (3.4) and (3.5) we can apply the exterior

covariant derivative to δψµ thus turning the Killing spinor equation into an equation for

the curvatures. Substituting the background (3.6) we find

2∂[µδψ
I
ν] =

[
1

2
Rµν(ω23)γ23 −Rµν(A)iγ5

]
εI −Rµν(V 3)(iσ3)IJε

J

= iΩµν

[
−κ

2
iγ23δ

I
J + a1γ5δ

I
J + a2(σ3)IJ

]
εJ = 0 (3.7)

δχI =
1

2

[
D − κ

6
|e|Ω23

]
εI = 0 (3.8)

where (3.8) is obtained by substituting (3.7) in (3.5) and therefore it is only valid on the

components of εI that are actual solutions of the Killing spinor equation.

The χI variation can be set to zero by fixing the auxiliary field as D = κ
6 |e|Ω23. We

are then left with a single defining equation for Killing spinors.

3.1 Twisting with flavors

Before solving the Killing spinor equation (3.7) we generalize the discussion to the case

of 4d SCFTs admitting some global abelian non-R symmetry U(1)flavor. Weakly gauging

this symmetry implies turning on a non-vanishing background N = 2 vector multiplet

(Bµ, X, λ
I , Y A). Such a multiplet contains one gauge field Bµ with curvature Rµν(B),

one complex scalar X, two gaugini λI forming a SU(2) doublet, and one auxiliary field

Y A transforming in the adjoint of the R-symmetry group. Setting the fermions λI = 0,

– 8 –
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the supersymmetry variations of the bosonic components of the multiplet are identically

vanishing, and they can be chosen to satisfy

δλI =

[
1

4
Rab(B)γabδIJ + Y A(iσA)IJ

]
εJ ≡ 0 (3.9)

Gauging the global symmetry along Σ with Rµν(B) = bΩµν , and setting for instance

Y 1,2 = 0, Y 3 = − b
2 for the positive chirality component of εJ we obtain

b

2

[
γ23δIJ − (iσ3)IJ

]
εJ = 0 ⇒

{
(γ01 + 1)ε1 = 0

(γ01 − 1)ε2 = 0
(3.10)

where we have used iγ23 = γ01γ5 and γ5ε
J = εJ .

The previous condition is equivalent to requiring that the two components of the εI

doublet have opposite chirality. Setting Y 3 = b
2 would simply interchange the conditions

on ε1 and ε2.

Another possibility to perform the flavor twist would be via a two-step procedure. We

first gauge a N = 1 vector multiplet that breaks explicitly N = 2 supersymmetry even

before coupling the theory to a curved background. We then identify the N = 1 subsector

of the N = 2 theory which is compatible with this gauging, and apply the twist as in

section 2. Observe that we could engineer such a reduction also in the absence of flavor

symmetries. In that case we should first perform a R-symmetry twist that preserves four

supercharges. This twist would break R-symmetry and leave an unbroken U(1) that could

be treated as flavor symmetry useful for further twisting.

3.2 Classification of the solutions

In order to find solutions to eq. (3.7) we observe that the selected background breaks

Spin(3, 1) × SU(2)R → Spin(1, 1) × Spin(2)Σ × U(1)σ3 , and correspondingly the positive

chirality components εIα in the (2,2) representation as

εIα → ε1+ ⊕ ε1− ⊕ ε2+ ⊕ ε2− (3.11)

where on the r.h.s. ± indices denote the 2d chirality of the reduced spinors

γ01ε
I
± = ±εI± , iγ23ε

I
± = ±εI± (3.12)

We can find solutions to (3.7) by appropriately choosing the values of the twisting parame-

ters ai as summarized in table 4. A further constraint comes from eq. (3.10) when a global

non-R symmetry is also gauged.

We discuss in detail the solutions for κ 6= 0 and κ = 0, separately.

κ 6= 0. For the case of non-zero curvature, we give a prototype of twist for each fixed

amount of supersymmetry preserved in 2d. All the other choices are related by a trivial

change of basis of the symmetries or a different choice of sign for the auxiliary fields.

• For a1 = −κ
2 and a2 = 0 the preserved Killing spinors are ε1− ⊕ ε2− which form a

SU(2)R doublet. The 4d R-symmetry is left unbroken and the 2d theory is a chiral
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supersymmetry δψIµ = 0

ε1+ a1 + a2 − κ/2 = 0

ε1− a1 + a2 + κ/2 = 0

ε2+ a1 − a2 − κ/2 = 0

ε2− a1 − a2 + κ/2 = 0

Table 4. Supersymmetry equations for N = 2 theories. The supersymmetries in the left column

are preserved when the twisting parameters ai satisfy the corresponding equations in the column

on the right.

N = (0, 4) theory. If we add a flux for an external vector Bµ, then equations (3.10)

imply that only one of the two components of the doublet can be preserved accord-

ing to the particular choice of the auxiliary field Y A in the vector multiplet, hence

supersymmetry is necessarily broken to N = (0, 2).

• For a1 = 0 and a2 = −κ
2 the preserved supersymmetries are ε1− ⊕ ε2+. R-symmetry is

broken to U(1)2 with generators T± ≡ 1
2TR ±M23 and the preserved supersymmetry

in two dimensions is N = (2, 2). The global symmetry generated by the background

along T ≡ M23 + 1
2σ3 becomes a flavor symmetry in two dimensions since, by defi-

nition, the preserved supercharges transform trivially under it. In this case, gauging

a global non-R symmetry with the corresponding connection Bµ together with the

choice of auxiliary Y 3 = − b
2 , does not constrain the Killing spinors any further (see

eq. (3.10)) and the 2d theory maintains N = (2, 2) supersymmetry.

• For a1 + a2 = −κ
2 the only preserved supersymmetry is ε1−, hence the theory is N =

(0, 2) with U(1) R-symmetry. In this case there are two new abelian flavor symmetries

that were not present in the original 4d theory, generated by the two combinations

T1 ≡
1

2
TR +M23 and T2 ≡

1

2
(TR − σ3) (3.13)

Turning on a flavor flux Bµ does not constrain this solution any further.

κ = 0. In the case of compactification on a torus we have two possible solutions.

• The trivial solution corresponds to a1 = a2 = 0, and D = 0 in (3.8). This is the

case where there is no twist, since the dimensional reduction on flat space preserves

all supersymmetry. The compactified theory flows to N = (4, 4) in 2d with global

symmetry SU(2)× U(1)2 where the two abelian groups are generated by the combi-

nations T± ≡ 1
2TR ±M23. Both sectors (4, 0) and (0, 4) provide a four dimensional

real representation of the SU(2) R-symmetry group.

• Another possible choice of supersymmetry preserving background on the torus corre-

sponds to a1 +a2 = 0 with both fluxes different from zero. Solutions of (3.7) are then

spinors ε1+ ⊕ ε1− that transform trivially with respect to the background symmetry

T ≡ 1

2
(TR − σ3) (3.14)

– 10 –



J
H
E
P
0
6
(
2
0
1
7
)
0
5
6

κ = 0 a1 = a2 = 0 a1 + a2 = 0

b = 0 N = (4, 4) N = (2, 2)

b 6= 0 N = (2, 2) N = (0, 2) or (2, 0)

κ 6= 0 a1 = −κ
2 , a2 = 0 a1 = 0, a2 = −κ

2 a1 + a2 = −κ
2

b = 0 N = (0, 4) N = (2, 2) N = (0, 2)

b 6= 0 N = (0, 2) N = (2, 2) N = (0, 2)

Table 5. Classification of topologically twisted 4d N = 2 SCFTs on Riemann surfaces of constant

curvature κ = ±1, 0 in terms of the surviving amount of supersymmetry in 2d. We include the

possibility of a twist along the flavor symmetries, with flux b.

The theory flows to N = (2, 2) in 2d with U(1)2 R-symmetry given by

T± ≡
1

2
TR ±M23 (3.15)

Turning on a background for an external global symmetry, Rµν(B) = bΩµν , together

with the auxiliary Y 3 = − b
2 further breaks supersymmetry to ε1−, as can be seen

from (3.10). In this case, the theory is N = (0, 2) with U(1) R-symmetry TR and two

flavor symmetries which correspond precisely to the T background (3.14) and the left

R-symmetry T+ (under which the right sector is invariant). Alternatively, choosing

Y 3 = + b
2 , the theory flows to N = (2, 0) with two flavor symmetries T and T−.

The results of this section are summarized in the table 5.

4 Twisted reduction of N = 3 SCFTs

It has been recently claimed [27–30] that 4d N = 3 SCFTs with no enhancement to N = 4

can exist at strong coupling. These theories have SU(3)R × U(1)R R-symmetry and their

matter content coincides with the one of 4d N = 4 SYM. As a consequence there are no

non-R global symmetries.

Considering a N = 3 SCFT compactified on M = R1,1×Σ, a partial topological twist

can be performed on Σ using an abelian subgroup of the R-symmetry group. In this section

we study all possible solutions of the Killing spinor equations for such a twist, classifying

all different configurations of preserved supercharges in two dimensions in terms of the

different choices of the fluxes for the R-symmetry group.

As discussed above, the most natural framework where twisting a N = 3 SCFT on

a curved manifold is N = 3 conformal supergravity [31–33], whose Weyl multiplet and

the corresponding non-linear supersymmetry transformations have been recently derived

in [34].

The N = 3 Weyl multiplet in four dimensions is given in table 6. In particular, Aµ and

V A
µ , A = 1, · · · , 8 are the gauge fields associated to the R-symmetry U(1)R and SU(3)R

transformations, respectively.
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field eaµ bµ Aµ V A
µ EI T Iab DI

J ψIµ Λ χIJ ζI

SU(3)R ×U(1)R 10 10 10 80 3̄2 3−2 80 31 13 61 31

# of real d.o.f. 5 0 3 24 6 18 8 24 4 24 12

Table 6. Field content of the Weyl multiplet in N = 3 conformal supergravity.

The R-symmetry group SU(3)R is generated by antihermitian matrices (iλA), with A =

1, . . . , 8. We choose a basis in which the SU(3) can be embedded into the top left 3×3 block

of SU(4), so that the first 8 generators of SU(4) reduce straightforwardly to the generators of

SU(3). The U(1)R group is obtained by mixing the U(1) from the decomposition of SU(4)R
into SU(3)R × U(1) and the chiral U(1) that enhances the superalgebra from PSU(2, 2|4)

to SU(2, 2|4) [31, 35]. We observe that these two U(1) groups act proportionally to each

other on the components of the N = 4 Weyl multiplet that survive in the projection to the

N = 3 Weyl multiplet.

As in the previous cases, we are interested in preserving supersymmetry while coupling

the SCFT to a curved background describing the geometry of the manifold M . We choose

a background Weyl multiplet where, together with the fermions, all the bosonic fields are

set to zero except for eaµ, Aµ, V A
µ and DI

J . Consequently, the conditions for the fermion

variations to vanish read [34]

δψIµ =

[
∂µ +

1

4
ωabµ γab −Aµiγ5

]
εI − V A

µ (iλA)IJε
J = 0 (4.1)

δχIJ = −1

2
εKL(ID

K
J)ε

L − 1

4
εKL(Iγ

abRab(V
A)(iλA)KJ)ε

L = 0 (4.2)

δζI =
1

4
DI
Kε

K − 1

24
γabRab(V

A)(iλA)IKε
K +

1

3
γabRab(A)iγ5ε

I = 0 (4.3)

δΛ = 0 (4.4)

These provide the set of constraints that select the surviving Killing spinors in two di-

mensions. In order to find non-trivial solutions, we choose the R-symmetry V A
µ and Aµ

background fields such that

Rµν(V 3) = −a1Ωµν , Rµν(V 8) = −
√

3a2Ωµν , Rµν(V A) = 0 for A 6= 3, 8 (4.5)

Rµν(A) = −a3Ωµν (4.6)

and subject to appropriate quantization conditions (see the remark at the end of section 5).

The non-trivial Killing spinor equations then reduce to

2∂[µδψ
I
ν] =

1

2
Rµν(ω23)γ23ε

I −Rµν(A)iγ5ε
I −

[
Rµν(V 3)(iλ3)IJ +Rµν(V 8)(iλ8)IJ

]
εJ

= iΩµν

[
−κ

2
iγ23δ

I
J + a1(λ3)IJ + a2

√
3(λ8)IJ + a3γ5δ

I
J

]
εJ = 0 (4.7)

together with the two auxiliary conditions (4.2), (4.3).
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supersymmetry δψIµ = 0

ε1± a1 + a2 + a3 ∓ κ/2 = 0

ε2± −a1 + a2 + a3 ∓ κ/2 = 0

ε3± −2a2 + a3 ∓ κ/2 = 0

Table 7. Supersymmetry equations for N = 3 theories.

4.1 Classification of the solutions

In order to find non-trivial solutions to equation (4.7) we restrict the discussion to the

positive chirality components of the εI spinors. We observe that under the breaking

Spin(3, 1) × SU(3)R × U(1)R → Spin(1, 1) × Spin(2)Σ × U(1)λ3 × U(1)λ8 × U(1)R realized

by the chosen geometry, the original 4d chiral parameters εIα, I = 1, 2, 3, split as

εIα → ε1+ ⊕ ε1− ⊕ ε2+ ⊕ ε2− ⊕ ε3+ ⊕ ε3− (4.8)

where ± still indicate the 2d chirality as defined in (3.12). The spinors are charged

under U(1)λ3 × U(1)λ8 × U(1)R according to ε1± → (1, 1√
3
, 1), ε2± → (−1, 1√

3
, 1) and

ε3± → (0,− 2√
3
, 1). Supersymmetry preserving equations are then given in table 7. Once the

equation δψIµ = 0 has been solved for a particular set of ai parameters, equations (4.2), (4.3)

need to be satisfied. In appendix B we prove that solutions to δχIJ = 0 and δζI = 0 always

exist if we appropriately choose the value of the components of the auxiliary field DI
J .

In table 8 we list all possible solutions to the conditions in table 7 together with the

corresponding preserved supersymmetries and the remaining 2d R-symmetry. We focus on

the cases with mostly right supersymmetry and for each possibility we pick up just a choice

of fluxes. All the other possibilities can be obtained through a change of basis for the SU(3)R
generators. In all the κ 6= 0 cases a U(1) flavor symmetry survives in two dimensions, being

it associated to the diagonal generator (κ2 iγ23−T ), where T = a1λ3 +a2

√
3λ8 +a3γ5, under

which, by definition, the surviving Killing spinors are neutral. However, in the N = (2, 4)

case, one extra U(1) symmetry emerges from the topological twist, which is generated by

T itself (or any linear combination of T with the flavor symmetry generator). Although

under T the supercharges are charged, this symmetry cannot be a R-symmetry of the low

energy SCFT. It might be that this symmetry is not a symmetry of the 2d theory, or

appears as an outer automorphism of the 2d supersymmetry algebra.3 However, in order

to get more insight on it one should know the actual SCFT algebra that emerges from the

twisted reduction and the relation of T with the rest of the superalgebra generators.

From table 8 we note that, while for κ 6= 0 we can reduce supersymmetry in two

dimensions to N = (0, 2), in the case of the torus the minimum amount of supersymmetry

that we obtain by partial topological twist is N = (2, 2). This is a consequence of the fact

that in the N = 3 case there are no flavor symmetries that can be weakly gauged in order

to further reduce supersymmetry.

3We are grateful to Nikolay Bobev for raising this interesting point.
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κ = 0 fluxes supersymmetries R-symmetry

N = (6, 6)

N = (4, 4)

N = (2, 2)

a1 = 0, a2 = 0, a3 = 0

a1 = 0, a2 + a3 = 0

a1 + a2 + a3 = 0

ε1± ⊕ ε2± ⊕ ε3±
ε1± ⊕ ε2±
ε1±

SU(3)×U(1)

SU(2)×U(1)

U(1)

κ 6= 0 fluxes supersymmetries R-symmetry

N = (2, 4)

N = (0, 6)

N = (2, 2)

N = (0, 4)

N = (0, 2)

a1 = 0, a2 = −κ
3 , a3 = −κ

6

a1 = 0, a2 = 0, a3 = −κ
2

a1 = −κ
2 , a2 + a3 = 0

a1 = 0, a2 + a3 = −κ
2

a1 + a2 + a3 = −κ
2

ε3+ ⊕ ε1− ⊕ ε2−
ε1− ⊕ ε2− ⊕ ε3−
ε2+ ⊕ ε1−
ε1− ⊕ ε2−
ε1−

SU(2)×U(1)

SU(3)×U(1)

U(1)×U(1)

SU(2)×U(1)

U(1)

Table 8. Classification of topologically twisted 4d N = 3 SCFTs on constant curvature Riemann

surfaces in terms of the surviving amount of supersymmetry in 2d. In the last column we indicate

the subgroup of 4d R-symmetry that is compatible with the twisted compactification.

However, also in the κ = 0 case we can reduce supersymmetry to N = (0, 2) by a

two-step procedure similar to the one already discussed in section 3 for N = 2 theories

without flavor symmetries. This works as follows. First we perform a R-symmetry twist

that preserves either four or eight supercharges. This twist breaks R-symmetry as well,

leaving some flavor symmetries with the associated vector multiplets. The second step of

this reduction is performed by introducing a (N = 1 or N = 2) background for the vector

multiplet that preserves only half of the supercharges. For example, if we use this procedure

in the case of a1 + a2 + a3 = 0 we preserve in the first step a 4d N = 1 subalgebra of the

original N = 3. The leftover R-symmetry is just U(1), while the residual SU(2)×U(1) from

the original SU(3)R×U(1)R survives as flavor symmetry. In the second step we can gauge

an abelian subgroup of this flavor symmetry. The corresponding gaugino background then

breaks supersymmetry to N = (2, 0) or N = (0, 2) as we can see from (2.15).

5 Twisted reduction of N = 4 SCFTs

This case has been extensively discussed in the literature [2–4, 6, 36]. For completeness,

here we briefly review the main results in the language of conformal supergravity.

The supercharges are in the antifundamental representation of the SU(4)R R-symmetry

group The generators are traceless hermitian matrices λA, A = 1, . . . , 15. We choose a basis

in which the Cartan subalgebra is spanned by

λ3 =


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 λ8 =
1√
3


1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

 λ15 =
1√
6


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

 (5.1)
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field eaµ bµ V A
µ C EIJ T IJab DIJ

KL ψIµ ΛI χIJK

SU(4)R 1 1 15 1 1̄0 6 20 4 4̄ 20

# of real d.o.f. 5 0 45 2 20 36 20 32 16 80

Table 9. Field content of the Weyl multiplet in N = 4 conformal supergravity.

The Weyl multiplet of the N = 4 conformal supergravity contains the gauge fields eaµ,

bµ V
A
µ and ψIµ, the bosonic auxiliary fields C, EIJ , T IJab DIJ

KL and the fermionic auxiliaries

ΛI , χ
IJ
K . In table 9 we list the corresponding SU(4)R representations. For a complete

description of N = 4 supergravity we refer to [31, 32]. As in the previous cases, we define

the theory on the curved manifold4 M = R1,1 × Σ, by freezing the Weyl multiplet to

contain as only non-vanishing components the vielbein, a R-symmetry background V A
µ

and an auxiliary field DIJ
KL. Supersymmetry is (partially) preserved if there exist spinor

parameters εIα satisfying

δψIµ = ∂µε
I +

1

4
ωabµ γabε

I − V A
µ (iλA)IJε

J = 0 (5.2)

δχIJK =
1

2
DIJ
KLε

L − 1

2
γabRab(V

A)(iλA)
[I
Kε

J ] − 1

6
γabδ

[I
KRab(V

A)(iλA)
J ]
L ε

L = 0 (5.3)

while δΛI is identically zero in the selected background. In order to find non-trivial solutions

we choose the R-symmetry gauge field such that

Rµν(V 3) = −a1Ωµν , Rµν(V 8) = −
√

3a2Ωµν , Rµν(V 15) = −
√

6a3Ωµν , (5.4)

Rµν(V A) = 0 for A 6= 3, 8, 15 (5.5)

subject to appropriate quantization conditions (see the remark at the end of this section).

Equations (5.2) and (5.3) then reduce to

2∂[µδψ
I
ν] =

1

2
Rµν(ω23)γ23ε

I −Rµν(V A)(iλA)IJε
J

= iΩµν

[
−κ

2
iγ23δ

I
J + a1(λ3)IJ + a2

√
3(λ8)IJ + a3

√
6(λ15)IJ

]
εJ = 0 (5.6)

5.1 Classification of the solutions

The selected background induces the breaking Spin(3, 1)×SU(4)R → Spin(1, 1)×Spin(2)Σ×
U(1)λ3 ×U(1)λ8 ×U(1)λ15 under which the chiral supersymmetry parameters split as

εIα → ε1+ ⊕ ε1− ⊕ ε2+ ⊕ ε2− ⊕ ε3+ ⊕ ε3− ⊕ ε4+ ⊕ ε4− (5.7)

where, once again, the ± indices indicate chirality as defined in (3.12). The spinors are

charged under U(1)λ3×U(1)λ8×U(1)λ15 according to ε1± → (1, 1√
3
, 1√

6
), ε2± → (−1, 1√

3
, 1√

6
),

ε3± → (0,− 2√
3
, 1√

6
) and ε4± → (0, 0,− 3√

6
).

Therefore, equation (5.6) translates into the set of supersymmetry preserving equations

listed in table 10. For any set of ai parameters satisfying one of the conditions in the

4Four dimensional N = 4 superconformal theories on curved backgrounds have been considered in [37].
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supersymmetry δψIµ = 0

ε1± a1 + a2 + a3 ∓ κ/2 = 0

ε2± −a1 + a2 + a3 ∓ κ/2 = 0

ε3± −2a2 + a3 ∓ κ/2 = 0

ε4± −3a3 ∓ κ/2 = 0

Table 10. Supersymmetry equations for N = 4 theories.

κ = 0 fluxes supersymmetries R-symmetry

N = (8, 8)

N = (4, 4)

N = (2, 2)

a1 = 0, a2 = 0, a3 = 0

a1 = 0, a2 + a3 = 0

a1 + a2 + a3 = 0

ε1± ⊕ ε2± ⊕ ε3± ⊕ ε4±
ε1± ⊕ ε2±
ε1±

SU(4)

SU(2)×U(1)

U(1)

κ 6= 0 fluxes supersymmetries R-symmetry

N = (4, 4)

N = (0, 6)

N = (2, 2)

N = (0, 4)

N = (0, 2)

a1 = 0, a2 = −κ
3 , a3 = −κ

6

a1 = 0, a2 = 0, a3 = −κ
2

a1 = −κ
2 , a2 + a3 = 0

a1 = 0, a2 + a3 = −κ
2

a1 + a2 + a3 = −κ
2

ε3+ ⊕ ε4+ ⊕ ε1− ⊕ ε2−
ε1− ⊕ ε2− ⊕ ε3−
ε2+ ⊕ ε1−
ε1− ⊕ ε2−
ε1−

SU(2)× SU(2)

SU(3)×U(1)

U(1)×U(1)

SU(2)×U(1)

U(1)

Table 11. Classification of topologically twisted 4d N = 4 SYM on Riemann surfaces of constant

curvature κ = ±1, 0 in terms of the surviving amount of supersymmetry in 2d. In the last column

we indicate the subgroup of 4d R-symmetry that is compatible with the twisted compactification.

previous table, equation (5.3) can be satisfied by a suitable choice of the background

auxiliary fields DIJ
KL without further constraining the εI parameters.

In table 11 we list explicit solutions for the ai parameters and the corresponding

2d surviving supersymmetry with its R-symmetry group. We focus on the cases with

mostly right-handed supersymmetry and for each possibility we pick up just one particular

configuration of fluxes. Similarly to what happens in the N = 3 case, for the N = (4, 4)

solution with κ 6= 0 one extra U(1) symmetry generated by T = a1λ3 + a2

√
3λ8 + a3

√
6λ15

emerges from the topological twist. Although T acts non-trivially on the supercharges, this

cannot be a R-symmetry of the low energy SCFT, but it could be identified as an outer

automorphism of the 2d superconformal algebra.

We conclude this analysis by observing that, as in the case of N = 3 theories, although

there are no flavor symmetries, we can further reduce supersymmetry by performing a

two step reduction. The first step consists of turning on an R-symmetry twist, breaking

supersymmetry to N = 2 or N = 1. The second step consists of introducing a background

N = 2 or N = 1 vector multiplet for the leftover non-R flavor symmetry, such that only

half of the supercharges are preserved.
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Remark. In the N = 3, 4 cases the background quantization conditions aiν ∈ Z used for

N = 1, 2 are too restrictive, but fortunately they can be partially relaxed. For example,

if we look at the N = (4, 4), κ 6= 0 case in table 11 the solutions a2 = −κ/3 and a3 =

−κ/6 would be incompatible with such a quantization condition and consequently the R-

symmetry bundle would be ill-defined. However, in this case the quantization condition

that one has to actually impose is that the combination T ≡ a2

√
3λ8 + a3

√
6λ15 (i.e., the

background symmetry that has been gauged by the twist) assigns integer charges to every

field/representation of the theory. Substituting the explicit values of a2 and a3 we can see

that the background symmetry T corresponds precisely to the U(1) R-symmetry of the

N = (4, 4) theory

T = −κ
2

[
2

3
(
√

3λ8) +
1

3
(
√

6λ15)

]
= −κ

2


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 (5.8)

The quantization condition then becomes κ
2ν ∈ Z, which is satisfied for any choice of genus

g. A similar analysis applies to the other cases, leading to the same conclusion.

6 c-extremization for 2d N = (0, 2) SCFTs

In this section we focus on the special case of two dimensional N = (0, 2) theories obtained

by twisted compactification of N -extended supersymmetric theories in four dimensions, as

described in the previous sections. In particular, we determine a general expression for the

central charge and the other 2d global anomalies.

Generalizing the prescription developed in [13] for N = 1 SCFT’s, we begin with the

4d anomaly polynomial I6 for the U(1) global symmetries, including the abelian symmetry

coupled to the twisting supergravity background, and integrate it along the Σ directions.

The resulting expression is a 4-form that can be identified with the anomaly polynomial

I4 of the 2d theory. From this expression we can then infer the 2d anomalies as functions

of the 4d anomalies and of the background fluxes.

In this procedure we have to take into account that, even if the R-symmetry we start

with is the exact R-symmetry in 4d, along the dimensional flow the U(1)R can mix with

other abelian flavor symmetries. The exact 2d central charge is then reconstructed by

extremizing a trial central charge as a function of the mixing coefficients [4]. Because of this

potential mixing, in the reduction procedure we can start with any trial U(1) R-symmetry

TR in four dimensions, as different choices will simply shift the mixing parameters of the

2d theory without affecting the final result of the extremization procedure.

We consider a generic SCFT in four dimensions with different amount of super-

symmetry that flows to a N = (0, 2) theory in two dimensions. As turns out to be clear

from our discussion in section 2, in the N = 1 case the 4d trial TR generator can be iden-

tified with the original U(1) R-symmetry generator of the N = 1 algebra. Calling tR the

corresponding abelian generator in the reduced N = (0, 2) theory, in general the two U(1)
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symmetries will have different matrix forms, but they can be identified up to a mixing with

the abelian flavor symmetries

TR → tR +
n∑
i=1

ξiti (6.1)

where ti are the generators of the abelian flavor symmetries U(1)i in the 2d representation,

while ξi are the mixing coefficients. The relation (6.1) represents the most general trial 2d

R-current, involving abelian currents that do not necessarily mix with the R-current in the

4d SCFT, as the baryonic symmetries in toric quiver gauge theories [18, 19].

Our discussion can be applied also to the case of extended supersymmetry. In that

case we can identify the generator tR with the four dimensional R-current of the N = 1

subalgebra. When reducing to 2d N = (0, 2) all the other abelian global currents have to

be treated as flavor symmetries that can potentially mix with the 2d R-symmetry. In the

rest of this section we restrict to the case of 4d N = 1 SCFT.

In order to compute the anomaly polynomial I6, which encodes all the global and

gravitational anomalies of the twisted theory,5 we first couple each global symmetry to a

background connection on R1,1, which being topologically trivial can be compactified into

a torus T ∼= S1 × S1. The topological twist introduces additional background components

for U(1)R and U(1)i also along the Σ directions.

Following the notations of appendix A, if we denote fR the first Chern class of the

R-symmetry bundle and fi the class associated to the gauging of the abelian U(1)i flavor

symmetries, then we can write

fR = fTR + fΣ
R and fi = fTi + fΣ

i (6.2)

where, the components in the direction of Σ are defined by (2.10) and (2.14) as

fΣ
R = −a

[
Ω

2π

]
and fΣ

i = bi

[
Ω

2π

]
(6.3)

so that the total Chern class of the global symmetry bundle E (see appendix A for the

definition) restricted to the Riemann surface Σ is

c1(E)
∣∣∣
Σ

= Tr[TR]fΣ
R +

∑
i

Tr[Ti]f
Σ
i = Tr[−aTR +

∑
ibiTi]

[
Ω

2π

]
(6.4)

where TR and Ti are the 4d generators and the trace means summing over positive (nega-

tive) chirality fermions with plus (minus) sign. Here the twisting parameter a is fixed by

the Killing spinor equation (2.12) to the value −κ
2 . We can then interpret the combination

T ≡ κ
2TR+

∑
i biTi to be the abelian symmetry which generates the topological twist on Σ.

5The gauge theory is assumed to be free of local gauge anomalies, i.e., anomalies for symmetries coupled

to dynamical gauge vectors.
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According to formula (A.14), the anomaly polynomial is given by the six-form

I6 = ch3(E)− 1

24
p1(M) ch1(E)

=
1

6
Tr[T 3

R]f3
R +

1

2

∑
i

Tr[T 2
RTj ]f

2
Rfi

+
1

2

∑
ij

Tr[TRTiTj ]fRfifj +
1

6

∑
ijk

Tr[TiTjTk]fifjfk

− 1

24
p1(M) Tr[TR]fR −

1

24
p1(M)

∑
i

Tr[Ti]fi (6.5)

where Tr[TA1 · · ·TAl ] ≡ kA1...Al are the l-degree ’t Hooft anomaly coefficients of the

4d theory.

Having compactified the theory on Σ it is natural to identify the anomaly polynomial

of the corresponding two-dimensional theory with the expression obtained by integrating

I6 on the Riemann surface. The result of the integration is∫
Σ
I6 = ν

Tr[T 2
RT ]

2
f2
R +

∑
i

Tr[TRTiT ]fRfi +
∑
ij

Tr[TiTjT ]

2
fifj −

k

24
p1(T)

 (6.6)

which can be compared to the general formula for the anomaly polynomial in 2d

I4 = ch2(E)− 1

24
p1(T) ch0(E)

=
kRR

2
f2
R +

∑
i

kRifRfi +
∑
ij

kij
2
fifj −

k

24
p1(T) (6.7)

leading to the following identities

kRR = ν Tr[T 2
RT ]

kRi = ν Tr[TRTiT ]

kij = ν Tr[TiTjT ]

k = ν Tr[T ] (6.8)

where ν is defined in (2.4). We note that (6.8) relates 4d ’t Hooft anomaly coefficients on

the right hand side with 2d anomaly coefficients, kAB ≡ Tr[tAtB], on the left hand side.

As already mentioned, when we flow to two dimensions the generator TR corresponding

to a trial four dimensional R-symmetry can mix with the other global U(1)’s to give rise

to the exact two dimensional R-symmetry. Therefore, reinterpreting equation (6.8) in a

two-dimensional language, requires substituting the generator TR with (6.1). Explicitly,

we find

ktrialRR = ν
[
ξiξj

(κ
2
kijR+bkkijk

)
+2ξi

(κ
2
kRiR+bjkRij

)
+
(κ

2
kRRR+bikRRi

)]
(6.9)

ktrialRi = ν
[(κ

2
kijR + bkkijk

)
ξj +

(κ
2
kRiR + bjkRij

)]
(6.10)

kij = ν
(κ

2
kijR + bkkijk

)
(6.11)

k = ν
(κ

2
kR + biki

)
(6.12)
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The mixing parameters ξi are now determined by extremizing the trial central charge

ctrialr = −3ktrialRR (a sign appears, due to our choice of 2d chirality matrix γ01, see table 2)

0 =
∂ctrialr

∂ξi
= −6ktrialRi (6.13)

which implies

kijξj + ν
(κ

2
kRRi + bjkRij

)
= 0 (6.14)

Equation (6.14) can be solved by inverting the matrix kij , provided that it has non-

vanishing determinant. The expression for the extremized central charge is finally given by

cr = 3ν2
(κ

2
kRRi + bkkRki

)
k−1
ij

(κ
2
kRRj + blkRlj

)
− 3ν

(κ
2
kRRR + bmkRRm

)
(6.15)

in terms of the anomaly coefficients of the original four dimensional SCFT.

We note that eq. (6.14) determines the coefficients ξi at the (possible) 2d supercon-

formal fixed point, giving raise to the exact 2d R-current once plugged in (6.1). These

coefficients may differ from the ones appearing in the 4d exact R-current. There are

abelian currents that do not mix in 4d but their mixing in 2d is in general non-vanishing.

This is for example the case of the baryonic symmetries in the Y pq models discussed in [13].

7 Further directions

We conclude our analysis by discussing some open questions and future lines of research. A

first generalization of the program of constructing 2d SCFTs from four dimensions consists

of decorating the Riemann surfaces discussed here with punctures. A possible way to study

such a problem consists of exploiting the doubling trick discussed in [38, 39]. In this case

one can gain information on the effective number of 2d chiral fermions by gluing a Riemann

surface with a copy of itself (with the opposite orientation), thus obtaining a closed surface.

One can apply our results to classes of 4d SCFTs with a gravitational dual. For example

one can consider theories associated to D3 branes probing the tip of three dimensional

Calabi-Yau cones. The analysis of such models was initiated in [13], for the infinite Y pq

family of [40]. Such theories are characterized by the presence of a SU(2) × U(1) mesonic

flavor symmetry and a U(1) baryonic symmetry. The baryonic symmetry does not mix with

the 4d R-current, but it has been observed that this mixing is non-trivial once the theory is

reduced to 2d. For more general quivers the gauge group is a product of U(N)i factors. In

the IR the U(1)i ⊂ U(N)i are free and decouple. The non anomalous combinations of these

U(1)s are the baryonic symmetries. While in the Y pq case there is just a single baryonic

symmetry, in other cases one can have a richer structure. The formalism developed in

section 6 is necessary for extending the analysis to such families.

One can also study the problem from the AdS dual setup along the lines of [13],

reconstructing the central charge from the gravitational perspective. The solution in this

case should correspond to D1 branes probing a type IIB warped AdS3 ×ωM7 geometry,

where M7 represents (locally) a U(1) bundle over a 6d Kahler manifold. It should be
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possible to formulate the central charge and its extremization in terms of the volumes of

M7, in the spirit of [41].

It should be also possible to study models arising from the compactification of 6d

theories, such as class S theories [42] or theories with lower supersymmetry, as the Sk
models [43] or the models of [44]. Also the analysis of N = 3 theories may be an interesting

problem, especially because the central charges a and c can be computed along the lines

of [29]. The analysis of the gravitational dual mechanism of the topological twist in this

case can be performed by studying the consistent truncation of [35] in gauged supergravity.

It would require to further truncate the N = 6 theory to an N = 2 subsector once the

fluxes are turned on. In such a case it might be possible to compare the field theory and

the supergravity results.

Acknowledgments

We thank N. Bobev, S. Schafer-Nameki, J. van Muiden, A. Van Proeyen and G. Tartaglino-

Mazzucchelli for useful discussions. The work of A.A. is supported by the Swiss National

Science Foundation (snf) under grant number pp00p2−157571/1. This work has been

supported in part by Italian Ministero dell’Istruzione, Università e Ricerca (MIUR), Istituto
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A The anomaly polynomial

In this section we briefly review the general formalism of the anomaly polynomial that has

been used in section 6. We refer the reader to the original paper [45] for further details

(see also [46] for a review).

We begin by recalling the Atiyah-Singer index theorem for the Dirac operator on a

compact manifold. Let M be a compact closed manifold of even dimension 2l and E a

smooth complex vector bundle over it, associated to some representation of a Lie group

G. If M is a spin manifold, we can define fermionic fields as sections of the spinor bundle

S(M) = S+ ⊕ S−, where S± are the two chiral irreducible spinor representations of the

spin group of M . A chiral fermion field charged under G is then described by a section of

the bundle S± ⊗ E.

The gamma matrices γa act on spinors S± exchanging their chirality, hence the Dirac

operator /D = γµDµ can be represented by the off-diagonal 2-by-2 matrix

/D =

[
0 /D−

/D+
0

]
(A.1)

where the operators /D± : S± ⊗ E → S∓ ⊗ E are the adjoints of each others. The Atiyah-

Singer index theorem then states that

index( /D+
) ≡ dim ker /D+ − dim ker /D− =

∫
M
Â(M) ch(E)

∣∣∣
2l

(A.2)
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where Â(M) is the so called A-roof genus of the tangent bundle of M

Â(M) = 1− 1

24
p1(M) +

1

5760
[7p1(M)2 − 4p2(M)] + . . . (A.3)

expressed in terms of the Pontryagin classes pi(M) ∈ H4i(M,Z), while ch(E) is the Chern

character of the bundle E.

In the particular case of G = U(1), all its irreducible representations are one-

dimensional and the bundle E can be decomposed as a Whitney sum of line bundles

E = L(1) ⊕ · · · ⊕ L(n), one for each representation (particle species). It follows that each

bundle L(r) is defined, up to isomorphisms, by its first Chern class

c1(L(r)) =
1

2π

[
R(A(r))

]
∈ H2(M,Z) (A.4)

where
[
R(A(r))

]
is the cohomology class of the curvature of the associated abelian connec-

tion A
(r)
µ . In this case the Chern character is defined additively as

ch(E) =

∞∑
k=0

chk(E) =

∞∑
k=0

1

k!

[
c1(L(1))k + · · ·+ c1(L(n))k

]
(A.5)

Since each line bundle L(r) is associated to a unitary one-dimensional representation of

integer charge q(r), we can equivalently describe the bundle E as follows. If we define fG to

be the first Chern class of the line bundle of unit charge,6 then for each L(r) we can write

c1(L(r)) = q(r)fG (A.6)

from which we obtain

c1(E) = Tr[TG]fG (A.7)

where we assembled all the charges q(r) into the diagonal matrix TG, which now repre-

sents the Lie algebra part of the connection on E. Using this redefinitions, the Chern

character (A.5) is

ch(E) =
∞∑
k=0

Tr[T kG]

k!
fkG (A.8)

More generally, for a family of n fermions charged under m abelian symmetries G =∏m
i=1 U(1)i, we have to consider the bundle

E =
n⊕
r=1

L(r) with L(r) = L(r)
1 ⊗ · · · ⊗ L

(r)
m (A.9)

where each L(r) is a tensor product representation for the group G, labelled by the set of

charges (q
(r)
1 , . . . , q

(r)
m ). If, as before, we define fi to be the first Chern class of the line

6Note that a principal U(1) bundle and the associated line bundle of charge 1 have the same first

Chern class.
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bundle of unit charge for the U(1)i symmetry, we can write

chk(E) =
1

k!

[
c1(L(1))k + · · ·+ c1(L(n))k

]
=

1

k!

n∑
r=1

(
m∑
i=1

q
(r)
i fi

)k

=
1

k!

m∑
i1···ik

(
n∑
r=1

q
(r)
i1
· · · q(r)

ik

)
fi1 · · · fik

=
1

k!

m∑
i1···ik

Tr [Ti1 · · ·Tik ] fi1 · · · fik (A.10)

where we used the property of the first Chern class, c1(L(r)
i ⊗L

(r)
j ) = c1(L(r)

i )+c1(L(r)
j ). The

diagonal matrices Ti can be taken to be the hermitian generators of the U(1)i symmetries,

written in the representation associated to E.

The physical interpretation of the index of /D+
is that of a chiral anomaly for the

effective action of a massless chiral fermion ψ ∈ γ(S+ ⊗ E):

eiW =

∫
dψdψ̄ e

∫
ψ̄ i /D+

ψ (A.11)

In fact, under a chiral rotation the fermionic path integral picks up a non-zero phase

δW = −2 index( /D+
) (A.12)

proportional to the index of the Dirac operator.

Since the anomaly for a negative chirality fermion is minus that of a positive chirality

fermion

index( /D−) ≡ dim ker /D− − dim ker /D+
= − index( /D+

) (A.13)

in a theory with many fermions of both chiralities, the total chiral anomaly is given by the

sum of the anomalies of the positive-chirality fermions minus the sum of the anomalies of

the negative-chirality ones.

Finally, in [45] it was shown that one can construct a Dirac operator in 2l+2 dimensions

in such a way that its index reproduces the gauge anomaly for a charged chiral fermion in

2l dimensions. The corresponding index density is a (2l + 2)-form

I2l+2 ≡ Â(M) ch(E)
∣∣∣
2l+2

(A.14)

which is called the anomaly polynomial.

B Supersymmetry variations of the auxiliary fields in N = 3, 4 SCFTs

In this section we show that it is always possible to satisfy the conditions δχIJ = 0, δζI = 0

in (4.2), (4.3) and δχIJK = 0 in (5.3) by assigning a non-vanishing value to the background

auxiliary field DI
J and DIJ

KL, respectively.
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Note to the reader: in this section we do not assume Einstein summation notation for

repeated R-symmetry indices.

We begin by considering the N = 4 case. Since we gauge the background R-symmetry

along a subgroup of the Cartan of SU(4), the curvature R(V )IJ ≡ R(V A)(iλA)IJ is diagonal

in the adjoint (I, J) indices. As a consequence, the Killing spinor equations (5.6) split into

a set of four decoupled equations for εI , I = 1, . . . , 4. Non-trivial εI solutions correspond

to the preserved supersymmetries, whereas the rest of the components are set to zero.

Having this in mind, we now discuss the condition δχIJK = 0, where the variation is

generated by the preserved supercharges. Three possible cases can arise.

If K 6= I, J from (5.3) we immediately find

δχIJK =
1

2

∑
L

DIJ
KLε

L = 0 (B.1)

that can be trivially solved by setting the corresponding DIJ
KL components to zero.

The second case corresponds to K = I 6= J with non-vanishing εI and εJ . Restricting

as usual to the positive chirality transformation, the χIJI variation reads

δχIJI =
1

2
DIJ
IJ ε

J − 1

4
γabRab(V )IIε

J − 1

12
γabRab(V )JJε

J = 0 (B.2)

where we chose DIJ
IL to be diagonal in the J, L indices.

After twisted compactification the εJ spinors decompose as iγ23 eigenvectors and we

write iγ23ε
J = sJε

J with eigenvalue sJ = ±1 according to the 2d chirality of the spinor.

Using equation (5.6)

1

2
Rµν(ω23)γ23ε

J = Rµν(V )JJε
J with R23(ω23) = κΩ23 (B.3)

we eventually find

δχIJI =

[
1

2
DIJ
IJ +

κ

4
|e|Ω23

(
sIsJ +

1

3

)]
εJ = 0 (B.4)

If κ = 0 this equation is easily satisfied by DIJ
IJ = 0. If κ 6= 0, from table 11 it turns out

that for each fixed εJ solution only one chirality is present and (B.4) can be always satisfied

by an appropriate choice of the DIJ
IJ components.

Finally, if εJ is a Killing spinor but εI is not, the χIJI variations do not vanish in

general. However it is possible to show with a case by case analysis that these components

always decouple from the representation of the supersymmetry algebra and they are not

relevant for the counting of the supersymmetries.

For the N = 3 case, solutions to (4.2), (4.3) can be derived from the general N = 4

solution by recalling that the fermionic auxiliary components of the N = 3 Weyl multiplet

can be obtained from the N = 4 ones according to the following decomposition [34]

χ(KL) +
∑
M

εKLMζ
M ≡

∑
IJ

1

2
εLIJ4 χ

IJ
K , DM

N ≡
∑
IJKL

1

4
εMKL4εNIJ4D

IJ
KL (B.5)

Therefore, exploiting the previous results, we conclude that also in the N = 3 case it is

always possible to choose a non-vanishing DM
N background that makes the supersymmetry

variations δχIJ , δζI vanishing.
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