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ABSTRACT

We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets
from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the
van’t Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate
coefficients), and procedures associated with the Gibbs free energy (minimization, rescaling) have a common
physical and mathematical origin. We address an ambiguity associated with the equilibrium constant, which is used
to relate the forward and reverse rate coefficients, and restate its two definitions. By necessity, one of the
equilibrium constants must be dimensionless and equate to an exponential function involving the Gibbs free
energy, while the other is a ratio of rate coefficients and must therefore possess physical units. We demonstrate that
the Arrhenius equation takes on a functional form that is more general than previously stated without recourse to
tagging on ad hoc functional forms. Finally, we derive analytical models of chemical systems, in equilibrium, with
carbon, hydrogen, and oxygen. We include acetylene and are able to reproduce several key trends, versus
temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios
exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not
the direct consequence of temperature or pressure variations.
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1. INTRODUCTION

1.1. Preamble

Understanding chemistry is indispensable to deciphering the
abundances of atomic and molecular species present in an
exoplanetary atmosphere. Despite its somewhat late start in the
study of exoplanets (e.g., Burrows & Sharp 1999; Zahnle
et al. 2009; Moses et al. 2011, 2013a, 2013b; Hu
et al. 2012, 2013; Madhusudhan 2012; Line & Yung 2013;
Blecic et al. 2015; Venot et al. 2015), atmospheric chemistry
has a long and rich history in the Earth and planetary sciences
and the study of brown dwarfs (e.g., Prinn & Barshay 1977;
Barshay & Lewis 1978; Allen & Yung 1981; Fegley &
Lodders 1996; Lodders & Fegley 2002; Ciesla & Charn-
ley 2006, pp. 209–230). Yet, a first-principles, self-consistent
formalism that unifies all of the quantities and terminology in a
form that is useful for astrophysicists is missing from the
literature. For example, there is more than one definition of the
“equilibrium constant.”

Within the same framework, we demonstrate that the van’t
Hoff equation (which describes the dimensionless form of
the equilibrium constant), the Arrhenius equation (which
describes the rate coefficients), and procedures associated
with the Gibbs free energy (minimization and scaling) all
originate from the first law of thermodynamics. The
foundations of atmospheric chemistry are built upon statistical
mechanics, since the first law derives from it. To demonstrate
the usefulness of our formalism, we use it to compute
analytical solutions of chemical systems with pure hydrogen
and with carbon, oxygen, and hydrogen (gas phase only); we
show that these solutions generalize the work of Burrows &
Sharp (1999) and correctly reproduce all of the expected
trends.

1.2. Survey of Monographs

The novelty of the present study is not in the individual
formulae stated, which are mostly previously known, with one
exception; we certainly do not claim to be the first to derive
these formulae. Rather, it is in the way these results are derived
and unified under a common, self-consistent, mathematical
formalism that is accessible and palatable to astrophysicists
(rather than to chemists). We will now demonstrate this claim
of novelty by surveying several textbooks in chemistry.
Specifically, Equations (5), (7), (10), (13), (17), and (22) are

commonly stated in textbooks. Our intention is to weave a
common mathematical thread between them. We have
surveyed the monographs of Slater (1939), Johnston (1966),
van Zeggeren & Storey (1970), Moore (1972), Eisenberg &
Crothers (1979), Smith & Missen (1982), Steinfeld et al.
(1989), Atkins & de Paula (2006), Klotz & Rosenberg (2008),
DeVoe (2015), and Glassman et al. (2015) and verified that,
while each lists some subset of these formulae, none of them
derive and unify all of these formulae in the manner of the
present study. None of these monographs derive the general-
ized form of the Arrhenius equation that we present in
Equation (22) or the generalization of the Burrows & Sharp
(1999) analytical solutions we present in Section 4.2.

2. GENERAL SETUP

In general terms, we consider a chemical reaction involving
a pair of reactants (X1 and X2), which produces a pair of
products (Z1 and Z2),

a a b bX X Z Z , 11 1 2 2 1 1 2 2 ( )+ +

where a1, a2, b1, and b2 are the stoichiometric coefficients. The
reactants and products may be atoms or molecules of arbitrary
stoichiometry. The forward and reverse reactions are described
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by the rate coefficients kf and kr, respectively. Whenever we
discuss something in general terms, it will always be with
reference to the preceding chemical reaction.

3. EQUILIBRIUM CHEMISTRY: GIBBS FREE ENERGY,
EQUILIBRIUM CONSTANT(S), VAN’T HOFF’S
EQUATION, AND ARRHENIUS’S EQUATION

3.1. The Gibbs Free Energy

If we denote the specific internal energy by U, the
temperature by T, and the specific entropy by S, then a
reasonable guess for the excess energy associated with a
chemical reaction is the Helmholtz free energy (Slater 1939;
Moore 1972; Eisenberg & Crothers 1979; Atkins & de
Paula 2006; Swendsen 2012; DeVoe 2015),

F U TS. 2( )= -

It turns out that this quantity is not general enough because it
does not consider the work done on the system. The general
quantity is known as the Gibbs free energy (Slater 1939; van
Zeggeren & Storey 1970; Moore 1972; Eisenberg &
Crothers 1979; Atkins & de Paula 2006; Swendsen 2012;
DeVoe 2015),

G F PV , 3( )= +

where P is the pressure, V 1 r= is the specific volume, and ρ

is the mass density.
The Gibbs free energy plays a role analogous to the

Lagrangian of classical mechanics, which is the difference
between the kinetic and potential energies of a system. Instead
of solving Newton’s equation directly, one may minimize the
Lagrangian, a technique known as the principle of least action.
Gibbs free energy minimization and chemical kinetics are the
chemical analogues to these two techniques.

In a chemically active system, the number of particles of
each species is generally not a conserved quantity. If we denote
the number of particles associated with the jth species of the
system by Nj, then the first law of thermodynamics needs to be
modified (van Zeggeren & Storey 1970; Jacobson 2005;
Swendsen 2012; Glassman et al. 2015),

TdS dU P dV C dN , 4
j

j j ( )å= + -

where Cj is the chemical potential associated with each species.
The sum is performed over all of the species in the system.

By using the definition of G and the product rule, one may
show that (Smith & Missen 1982; Klotz & Rosenberg 2008;
DeVoe 2015)

dG VdP SdT C dN . 5
j

j j ( )å= - +

We will now proceed to show that a variety of useful quantities
originate from this equation, which is essentially still the first
law of thermodynamics.

3.2. Gibbs Free Energy Minimization

Generally, the entropy of a system increases according to the
second law of thermodynamics; at constant temperature and
pressure, its Gibbs free energy generally decreases and seeks a
minimum. If one is interested in solving for the chemical
equilibrium of a network of reactions, then one needs to

minimize the Gibbs free energy of the system (van Zeggeren &
Storey 1970). Within the context of our formalism, we will
now elucidate the exact expressions involved in this minimiza-
tion. Generally, we have C C T P,j j ( )= and Equation (5)
cannot be straightforwardly integrated. However, at a constant
temperature and pressure—which is the typical circumstance
under which one performs Gibbs free energy minimization—
Equation (5) reduces to

dG C dN . 6
j

j j ( )å=

The integration can be performed trivially to yield (van
Zeggeren & Storey 1970; Eisenberg & Crothers 1979; Smith &
Missen 1982; Glassman et al. 2015)

G C N . 7
j

j j ( )å=

It is not uncommon to see G being defined as the product of the
chemical potential and the number of particles of a given
species. Strictly speaking, it is not a definition—rather, it is the
expression for G in the isothermal and isobaric limit.
Equation (7) is the quantity we need to minimize, but we

need additional equations to close the system. In the absence of
nuclear reactions, this arises naturally from the notion that the
elemental building blocks of molecules cannot be created or
destroyed. Thus, the number of carbon, hydrogen, oxygen, etc.,
atoms in a system is invariant between the reactants and the
products, whether they exist in their atomic form or are
sequestered in molecules. Mathematically, this set of book-
keeping equations takes the form (Smith & Missen 1982),

A N N . 8
j

ij j i ( )å = ¢

The matrix Aij states the number of atoms of species i present in
the molecular species j. The number of atoms of species i is
denoted by Ni¢.

3.3. The Equilibrium Constant: More Than One Definition

A persistent source of confusion exists in the literature
regarding the definition of the equilibrium constant. Several
references list it as being composed of a series of partial
pressures associated with the reactants and products and
equates it to an exponential term involving the Gibbs free
energy (e.g., Burrows & Sharp 1999; Jacobson 2005; Visscher
& Moses 2011; Kopparapu et al. 2012; Line & Yung 2013),

K
P P

P P
. 9

b b

a aeq,literature
Z Z

X X

1
1

2
2

1
1

2
2

( )=

Taken at face value, the partial pressure has physical units.
Since the stoichiometric coefficients of the reactants (a a1 2+ )
and the products (b b1 2+ ) are generally unequal, Keq,literature

must generally have physical units and cannot be equated to an
exponential term (which is by definition dimensionless), unless
the partial pressures have somehow been normalized. It is not
always explicitly explained that this normalization has been
performed. Several monographs have previously mentioned
this normalization procedure (Fermi 1936; Moore 1972; Smith
& Missen 1982; Atkins & de Paula 2006), but we will now
provide a derivation that is consistent with the rest of our
formalism.
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To derive the equilibrium constant, we return to Equation (5)
and consider it in the limit of dT=0 and dNj=0. If we
invoke the ideal gas law (P Tr= ), then we obtain (e.g.,
Eisenberg & Crothers 1979; DeVoe 2015)

G G T
P

P
ln , 100

0
( )

⎛
⎝⎜

⎞
⎠⎟= +

where P0 is a reference pressure, is the specific gas constant,
and G G P T,0 0( )º . The preceding equation is useful for
scaling the Gibbs free energy to other pressures given its value
at a reference pressure—it is exactly the equation one has to use
when extracting G for different values of P from thermo-
dynamic databases, which typically tabulate values of G0.

We may use the preceding expression to combine the Gibbs
free energy of the reactants and products, weighted by their
stoichiometric coefficients (Slater 1939; Eisenberg &
Crothers 1979; Smith & Missen 1982; Klotz & Rosen-
berg 2008; Glassman et al. 2015),

G G T Kln , 110 eq ( )D - D = -

where we have defined

G b G b G a G a G

G b G b G a G a G

,

. 12
1 Z 2 Z 1 X 2 X

0 1 Z ,0 2 Z ,0 1 X ,0 2 X ,0

1 2 1 2

1 2 1 2 ( )
D º + - -
D º + - -

What is interesting is that this first-principles approach
naturally yields the definition for the equilibrium constant
(e.g., Klotz & Rosenberg 2008),

K
P P P P

P P P P
. 13

b b

a aeq
Z 0 Z 0

X 0 X 0

1
1

2
2

1
1

2
2

( ) ( )
( ) ( )

( )º

Notice that this equilibrium constant is naturally dimensionless;
its derivation is similar to the ones given in Moore (1972),
Smith & Missen (1982), Atkins & de Paula (2006), and DeVoe
(2015), who obtained it in terms of chemical potentials and
activities. The factors of P0 appear without being inserted in an
ad hoc manner.

Physically, the system adjusts itself until it reaches chemical
equilibrium, which occurs when G 0D = . Let the reference

state, characterized by P0, not be in equilibrium, such that
G 00D ¹ . If one is referring to a molecule, then G0D is the

energy needed to construct it from its constituent atoms—it is
the Gibbs free energy of formation. If one is referring to
mixtures of molecules, then G0D is the difference in the Gibbs
free energies of formation between the reactants and products.
Equation (11) naturally yields the relationship between G0D
and Keq (Slater 1939; Johnston 1966; van Zeggeren &
Storey 1970; Moore 1972; Eisenberg & Crothers 1979; Smith
& Missen 1982; Steinfeld et al. 1989; Atkins & de Paula 2006;
Klotz & Rosenberg 2008; DeVoe 2015; Glassman et al. 2015),

K
G

T
exp . 14eq

0 ( )⎜ ⎟⎛
⎝

⎞
⎠

= -
D

For example, while Equations (40) and (45) of Burrows &
Sharp (1999), Equation (7) of Visscher & Moses (2011),
Equation (5) of Kopparapu et al. (2012), and Equation (2) of
Line & Yung (2013) do not explicitly mention the factors of P0

needed to render Keq dimensionless, it is common practice to
omit these reference-pressure terms in standard treatments of
chemical equilibria.
We now seek another possible definition of the equilibrium

constant. Let the number density be generally represented by n;
self-explanatory subscripts relate it to the appropriate reactant
or product. In chemical equilibrium, we expect the forward and
reverse rate coefficients to be related as follows (Moore 1972),

k n n k n n . 15a a b b
f X X r Z Z1

1
2
2

1
1

2
2 ( )=

A plausible, alternative definition for the equilibrium constant
is (Johnston 1966; Moore 1972; Steinfeld et al. 1989)

K
k

k
. 16eq

f

r
( )¢ º

Note that since kf and kr generally do not possess the same
physical units, Keq¢ is expected to be dimensional.
We may relate our two definitions of the equilibrium

constant (Atkins & de Paula 2006),

K K k T P , 17a a b b b b a a
eq eq B 0

1 2 1 2 1 2 1 2( ) ( )¢ = + - - + - -

with kB being the Boltzmann constant. As has been pointed out
by Visscher & Moses (2011), the “pressure correction term”

(which is really a temperature correction term) is sometimes
missed by other workers. It is less well-known that this
correction term has already been elucidated by Fermi (1936). It
vanishes when a a b b1 2 1 2+ = + and we have K Keq eq= ¢
(which is commonly, but not always, true).
In other words, Keq¢ is used to “reverse” the forward rate

coefficients, but it is Keq that relates it to the Gibbs free energy.
Equation (17) relates them properly. In the literature, what we
have defined as Keq and Keq¢ are often denoted, respectively, by
KP and Keq instead (e.g., Visscher & Moses 2011), although
such an approach is not universally adopted (e.g., Line &
Yung 2013).

3.4. The van’t Hoff Equation

If we differentiate Equation (11) with respect to the
temperature, we obtain the van’t Hoff equation (Smith &

Figure 1. Schematic depicting the relationship between the activation energies
and the change in enthalpy.
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Missen 1982; Jacobson 2005),

K

T

G

T

ln
. 18

eq 0
2

( )
( )


¶

¶
=

D

Note that we are allowed to go from Equation (11) to (18) only
because we have constructed G0D to be isothermal.

In most incarnations of the van’t Hoff equation, it is the
change in enthalpy, rather than the Gibbs free energy, that is
stated (Moore 1972; Smith & Missen 1982; Jacobson 2005;
DeVoe 2015). If the system is isothermic and adiabatic, then
these two statements are equivalent (Slater 1939).

3.5. The Arrhenius Equation: Rate Coefficients and
Activation Energies

We next derive the expressions for the rate coefficients. At
this point, we need to invoke the notion of the activation
energy, which is the energy barrier associated with a forward or
reverse reaction. One may think of the reactants and products
as being two different stable states residing at different energy
levels. To transition from one state to the other requires that
one surmounts an energy barrier, which is the activation energy
(Figure 1). The barrier of the activation energy originates from
the need to overcome bond strengths and the requirement that
the reactants have specific orientations during a collision. For a
single reaction, the difference between the activation energies
of the forward and reverse reactions is the change in the
enthalpy,

G E E T S , 190 f r 0 ( )D = - - D

where Ef and Er are the activation energies associated with the
forward and reverse reactions, respectively, and S0D is the
change in entropy at the reference pressure. The preceding
expression allows us to cast the adjectives “exothermic” and
“endothermic” in more precise, mathematical terms. If the
activation energy of the forward reaction exceeds that of the
reverse one, then one needs to inject energy into the system for
it to proceed, i.e., E E 0f r- > . One refers to this as an
endothermic reaction. Reactions with E E 0f r- < are
exothermic.

By combining the expressions for Keq and Keq¢ , we obtain

k k
E E

T

S

a a b b
k T

P

ln ln

ln . 20

f r
f r 0

1 2 1 2
B

0
( ) ( )

⎛
⎝⎜

⎞
⎠⎟

 
- =-

-
+

D

+ + - -

The symmetries inherent in the preceding equation suggest that
it may have been constructed from two independent governing
equations for the rate coefficients (Upadhyay 2006). Mathe-
matically, “splitting” this equation is a degenerate endeavor and
is not rigorous. To persist in this endeavor, we have to appeal to
physics. First, we expect that the governing equations for kf

and kr must enjoy a large degree of symmetry between them.
Second, we expect kf and kr to be associated with Ef and Er,
respectively. Thus, a plausible guess is that the preceding
equation originated from the difference between these two

equations,

k
E

T
c T

c S
c

k
E

T
c T

c S
c

ln ln ,

ln ln . 21

f
f

f
f 0

f

r
r

r
r 0

r ( )

 

 

= - + +
¢D

+ 

= - + +
¢D

+ 

The coefficients cf and cr cannot be stated uniquely. For
example, we can have c a af 1 2= + and c b b ;r 1 2= + we may
also have c b bf 1 2= - - and c a ar 1 2= - - . This mathema-
tical freedom implies that cf and cr may take on a range of
values and may be positive or negative.
Finally, we end up with the Arrhenius equations,

k A T
E

T

k A T
E

T

exp ,

exp , 22

c

c

f f
f

r r
r

f

r ( )

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠





= -

= -

where we necessarily have

c c a a b b

c c

c c a a b b
k

P

,

1,

ln . 23

f r 1 2 1 2

f r

f r 1 2 1 2
B

0
( ) ( )

⎛
⎝⎜

⎞
⎠⎟

- = + - -
¢ - ¢ =

 -  = + - -

The pre-exponential factor Af absorbs terms associated with cf¢,
cf, and S ;0D its counterpart, Ar, does the same for cr¢, cr, and

S0D . Absorbing the entropy into the pre-exponential factors
was previously noted by Yung & DeMore (1999), but our
derivation is more general as it involves cf¢ and cr¢. We note that
one may also use the van’t Hoff equation as a starting point for
the derivation.
Traditionally, derivations or statements of the Arrhenius

equation include only the exponential term involving the
activation energy (Johnston 1966; Moore 1972; Steinfeld
et al. 1989; Yung & DeMore 1999; Jacobson 2005; Atkins &
de Paula 2006). They omit the power-law terms and tag them
on, after the fact (e.g., Jacobson 2005), partially as a means of
using them as fitting functions for experimental data. Our
derivation demonstrates that there is a sound basis to including
these terms. Thus, the Arrhenius equations attain a status that is
elevated above that of mere ad hoc fitting functions. Typically,
c 0f = and c 0r = suffice for low temperatures; “non-
Arrhenius” behavior, where c 0f ¹ and c 0r ¹ , is important
at high temperatures (Glassman et al. 2015).
Kinetic theory states that the rate coefficient is given by

vcoll relsá ñ, where colls is the cross section for collisions between
the reactants and vrel is the relative velocity between them. If

colls is independent of the relative velocity, then
v Tcoll rel

1 2sá ñ µ (Glassman et al. 2015). If colls depends on
the relative velocity, then more general power-law dependences
on T are possible.
The Arrhenius equations do not account for three-body

reactions. When the number density of the third body is low,
the reaction rate is linearly proportional to it. As it increases, a
point is reached where the reaction rate saturates to a limiting
value. Fitting functions for implementing this saturation effect
have previously been given by, for example, Visscher &
Moses (2011).

4

The Astrophysical Journal, 816:96 (9pp), 2016 January 10 Heng, Lyons, & Tsai



4. ANALYTICAL MODELS OF ATMOSPHERIC
CHEMISTRY

The formalism and concepts we have established may be
highlighted via a set of analytical models.

4.1. Pure Hydrogen

For completeness and as the simplest example, we consider a
system consisting purely of hydrogen in its atomic and
molecular forms,

2H M H M, 242 ( )+ +

where M is a third body of arbitrary stoichiometry.
Using our formalism for the evolution equations (see

Appendix A), we may write down

n

t
n n k n n k

n

t
n n k n n k

1

2
,

. 25

H
H
2

M f H M r

H
H
2

M f H M r

2

2
2 ( )

¶
¶

=- +

¶
¶

= -

If we add these equations and perform the integration, we end
up with

n n n2 . 26H H total2 ( )+ =

This is already a demonstration that the correction factor (the
reciprocal of the stoichiometric coefficient) is essential
(Johnston 1966; Steinfeld et al. 1989), if one desires to get
the book-keeping between the hydrogen atoms and molecules
correct. Here, ntotal is the total number of particles in the
system.

In chemical equilibrium, the (dimensional) equilibrium
constant of the reaction is

K
n

n
. 27eq

H

H
2
2 ( )¢ =

If we plug this expression back into Equation (26) and define
K K neq total¢ º ¢ , we may solve for the (normalized) number
density of atomic hydrogen (Gail & Sedlmayr 2014),

n
n

n

K

K

1 1 8

4
. 28H

H

total

1 2

˜ ( ) ( )º =
- + + ¢

¢

The preceding expression is similar, but not identical, to that
presented in Barshay & Lewis (1978).

Since K K P Teq¢ µ ¢ , one may argue that increasing K¢
values correspond to decreasing temperatures. Figure 2 shows
the curves of nH˜ and n n nH H total2 2˜ º . As expected, molecular
hydrogen prevails at low temperatures. So far, our toy model
does not allow us to define what “low” is, as we have not
related K¢ to T and P. Appendix B lists the Gibbs free energies
used to make this conversion. In Figure 2, we include a
separate set of calculations where nH˜ and nH2˜ are shown as
functions of temperature and pressure. At T 3000 K,
hydrogen exists predominantly in its molecular form.

4.2. Carbon, Hydrogen, and Oxygen: Methane, Water,
Carbon Monoxide, and Acetylene

Inspired by the work of Burrows & Sharp (1999), we seek to
generalize our toy model of a system with pure hydrogen to one
that contains carbon (C), hydrogen (H), and oxygen (O), albeit
only in gaseous form, and any carbon-to-oxygen ratio (C/O).

We wish to compute the relative abundances of the resulting
molecules: methane (CH4), water (H2O), carbon monoxide
(CO), and acetylene (C2H2).
We consider the reaction of methane with water to form

carbon monoxide and molecular hydrogen (Burrows &
Sharp 1999; Lodders & Fegley 2002; Moses et al. 2011),

CH H O CO 3H . 294 2 2 ( )+ +

The formulae presented in the appendix of Burrows & Sharp
(1999) consider only this reaction and thus are unable to
represent carbon-rich atmospheres, where a variety of hydro-
carbons are present at high temperatures (Lodders & Fegley
2002; Madhusudhan 2012; Venot et al. 2015). If these
hydrocarbons are excluded, then one gets the spurious result
that methane is always the dominant carbon carrier at high
temperatures and in carbon-rich situations. Our desire for an
analytical model does not allow us to include all of the
hydrocarbons that are expected to form. Instead, we assume
that acetylene is the dominant hydrocarbon and include it via
the following reaction (Lodders & Fegley 2002; Moses et al.

Figure 2. Abundances of atomic and molecular hydrogen, normalized by the
total number density, as a function of the normalized equilibrium constant (top
panel) and temperature (bottom panel). In the top panel, K ¢ is a proxy for the
temperature; larger K ¢ values correspond to lower temperatures.
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2011),

2CH C H 3H . 304 2 2 2 ( ) +

If nitrogen is present, we expect hydrogen cyanide (HCN) to
form as well (Madhusudhan 2012), but in the interest of
algebraic tractability we will not include it. Furthermore, Venot
et al. (2015) have shown using calculations of chemical
kinetics that acetylene and hydrogen cyanide are the dominant
hydrocarbons in carbon-rich atmospheres.

In reality, both reactions are net reactions that consist of
large networks of individual reactions, some of which produce
transient species en route to the products. We assume that
hydrogen exists mostly in its molecular form, such that the
partial pressure of H2 is, to a good approximation, the total
pressure (P) of the system. Atomic hydrogen is expected
to introduce only a small correction to P n k TH B2= . This

simplification essentially removes the need for an additional
equilibrium constant to account for the atomic to molecular
transition (and vice versa) of hydrogen, as was described in
Section 4.1.
The dimensional equilibrium constant of the reaction

described in Equation (29) is

K
n n

n n

n n

n n
, 31eq

CO H
3

CH H O

CO H
2

CH H O

2

4 2

2

4 2

˜
˜ ˜

( )¢ = =

while that of the reaction in Equation (30) is

K
n n

n

n n

n
. 32eq,2

C H H
3

CH
2

C H H
2

CH
2

2 2 2

4

2 2 2

4

˜
˜

( )¢ = =

Analogous to the case study of pure hydrogen, we have defined

K
K

n
K

K

n
, , 33

eq

H
2 2

eq,2

H
2

2 2

( )¢ º
¢

¢ º
¢

but we note that since K K T Peq
2 2¢ µ ¢ , we expect K¢ to

increase with temperature, opposite from the trend associated
with the pure-hydrogen system. We will again use K¢ as a
proxy for the temperature. An important limitation of our
model is the difficulty with relating K¢ and K2¢, because this
requires us to explicitly state the functional forms of the change
in Gibbs free energies of the two reactions. We first make the
simplest assumption: that K K2¢ ¢ is a constant; we will discuss
the implications of this assumption later. While we could
certainly specify the temperature dependence of K¢ and K2¢—
which is what Burrows & Sharp (1999) did—we initially
choose not to so as to understand what such a simple model
would teach us. We will see shortly that the simplicity yields an
important insight, which is that we recover most of the
qualitative trends simply by using the equilibrium constants as
proxies for the temperature.
The conservation of particles, as described in Equation (8),

states that

n n n n
n n n

n n n n n

2 ,
,

4 2 2 2 . 34

CH CO C H C

H O CO O

CH H O C H H H

4 2 2

2

4 2 2 2 2 ( )

+ + =
+ =
+ + + =

These equations may be manipulated to obtain

n n n

n n n n

n n n n n n

2

4 2 2 2 ,

4 2 2 2 . 35

CH CO C H

C CH H O C H

H O CO O CH H O C H

4 2 2

4 2 2 2

2 4 2 2 2

˜ ˜ ˜
˜ ( ˜ ˜ ˜ )

˜ ˜ ˜ ( ˜ ˜ ˜ ) ( )

+ +
= + + +

+ = + + +

Note that the number densities of the molecules marked
by tildes have been normalized by nH2, while those of the
atoms have been normalized by nH. The former are the mixing
ratios, while the latter are the normalized elemental
abundances.
With two particle conservation equations and the expressions

for K¢ and K2¢, we have four equations and four unknowns.
They can be manipulated to yield a cubic equation for the
mixing ratio of methane,

n n n 0, 360 CH
3

1 CH
2

2 CH 34 4 4˜ ˜ ˜ ( )   + + + =

Figure 3. Mixing ratios of methane, water, carbon monoxide, and acetylene.
Again, K ¢ is a proxy for the temperature, but larger K ¢ values correspond to
higher temperatures. We have set n 5 10O

4˜ = ´ - because this is the
approximate value of the Sun’s photospheric oxygen abundance (Lodders
2003). Top panel: mixing ratios as a function of K ¢. The “Solar” and “carbon-
rich” cases correspond to n n 0.5C O˜ ˜ = and n n 2C O˜ ˜ = , respectively. Bottom
panel: mixing ratios as a function of the carbon-to-oxygen ratio (n nC O˜ ˜ ). The
“cold” and “hot” cases correspond to K 10¢ = and K 105¢ = , respectively. For
illustration, we have set K K 102

2¢ ¢ = - .
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which has the coefficients

K K n n

K n n
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While analytical solutions do exist for cubic equations, they
possess multiple branches—some of which are complex—
depending on tedious combinations of the values of 0 , 1 , 2 ,
and 3 (Press et al. 2007). Since it is difficult to determine a
priori which solution branch nCH4˜ is described by, we elect to
solve the cubic equation using standard, canned numerical
routines for solving polynomial equations. The other mixing

ratios can be obtained via

n
n K n n

K n n

n K n n

n K n

2 2 1

1 2
,

,

. 38
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For completeness, we note that when acetylene is absent
(K 02¢ = ), the solution can be easily written down,

n
4

2
. 39CH

2 2
2

1 3
1 2

1
4˜ ( ) ( )   


=

- + -

Notice how the coefficient 0 , and thus K2¢, controls the extent
to which the mixing ratio of methane is described by a
quadratic versus cubic equation. Physically, we expect that at
low temperatures (K 1¢ ), the mixing ratio of acetylene is
negligible. In this limit (K K, 12¢ ¢ ), we have n n2CH C4˜ ˜» and
n n2H O O2˜ ˜» . These asymptotic solutions explain the relatively
simple behavior of the mixing ratios at low temperatures, as
seen in Figure 3. It also offers an easy explanation for methane
and water switching roles as the dominant molecule when the
carbon-to-oxygen ratio is exactly unity, as noted by Kopparapu
et al. (2012), since n n n nCH H O C O4 2˜ ˜ ˜ ˜» .
Figure 3 shows the mixing ratios of methane, water, carbon

monoxide, and acetylene as functions of K¢. Our analytical
model produces the following, salient trends.

1. When the atmosphere has a solar abundance of elements,
water is always more abundant than methane (Burrows &
Sharp 1999; Moses et al. 2013a). At low temperatures,
methane dominates carbon monoxide as the carrier of
carbon (Prinn & Barshay 1977; Barshay & Lewis 1978);
this trend reverses at high temperatures (Burrows &
Sharp 1999; Lodders & Fegley 2002).

2. When the atmosphere is carbon-rich, methane is the
dominant molecule but has to compete with acetylene in
some circumstances (Madhusudhan 2012; Moses et al.
2013a; Venot et al. 2015). Water is the dominant oxygen
carrier only at low temperatures, superceded by carbon
monoxide at high temperatures (Madhusudhan 2012;
Moses et al. 2013a, 2013b).

3. Cold atmospheres are always methane-rich at the expense
of carbon monoxide, regardless of the C/O (Madhusud-
han 2012). The abundance of water is essentially constant
across C/O (Madhusudhan 2012).

4. Hot atmospheres exhibit more complex behavior, in that
they are methane-poor and water-rich when C O 1</
(Madhusudhan 2012; Moses et al. 2013a). For C O 1>/ ,
they become methane-rich and water-poor (Madhusud-
han 2012; Moses et al. 2013a) with methane dominating
carbon monoxide as the carrier of carbon when C/O
becomes sufficiently larger than unity (Madhusud-
han 2012). When C/O is large enough, acetylene
overtakes methane as the dominant carrier of carbon
(Madhusudhan 2012).

These trends are in agreement with the numerical calcula-
tions of equilibrium chemistry presented in Madhusudhan
(2012) and Moses et al. (2013a), but with one exception. We
have assumed K K 10 ;2

2¢ ¢ = - higher values would produce the
unphysical result that acetylene dominates carbon monoxide,

Figure 4. Same as Figure 3, but with the equilibrium constants being related to
temperature and pressure via the Gibbs free energies taken from the JANAF
database. For illustration, we set P=1 bar. Here, the “cold” and “hot” cases
correspond to T=950 K and T=1500 K, respectively. For the bottom panel,
note that acetylene has a mixing ratio below 10−10 (the lower limit of the
vertical axis) for the cold case.
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even at low temperatures (not shown). The cold model in the
lower panel of Figure 3 shows an overabundance of acetylene,
which is in disagreement with Figure 2 of Madhusudhan
(2012). This discrepancy arises from the fact that K K2¢ ¢ is not
a constant and must possess a (steep) temperature dependence.

To investigate this discrepancy further, we stop treating K¢
and K2¢ as free parameters and instead relate them to
temperature and pressure via the Gibbs free energy tabulated
in the JANAF database (http://kinetics.nist.gov/janaf/). Our
implementation of this procedure is described in Heng & Lyons
(2015). In Figure 4, we recalculate the models in Figure 3. We
see that the basic trends previously discussed are preserved,
although the curves display quantitative differences as
expected. The mixing ratios versus C/O match surprisingly
well even at a quantitative level. The previous result
regarding acetylene is verified to be an artifact of assuming
K K2¢ ¢ to be constant. We further verified that acetylene
becomes dominant over methane only for carbon-rich atmo-
spheres with T 2000 K (not shown), in agreement with
Madhusudhan (2012).

Overall, it is surprising how well our model is able to
reproduce the main trends of mixing ratios versus the carbon-
to-oxygen ratio. It is surprising because this rich variety of
behavior originates from the chemical analogue of geometry—
it is merely stoichiometric book-keeping (Lodders & Fegley
2002). The dependence of the normalized equilibrium
constants on temperature is a distraction if all one seeks is to
understand these trends in a qualitative sense.

5. SUMMARY

We have presented a unified, novel, self-consistent formal-
ism for understanding the atmospheric chemistry of exoplanets
from the viewpoint of an astrophysicist. In doing so, we
addressed ambiguities associated with the equilibrium constant
and obtained a novel derivation of the Arrhenius equation. We
also generalized previous work on analytical models of systems
in chemical equilibrium with carbon, hydrogen, and oxygen
and showed that they reproduce several key trends published in
the literature and computed using more sophisticated numerical
calculations. We anticipate that such models are useful for
inclusion in retrieval models of exoplanetary atmospheres to
maintain their chemical plausibility as a first approach
(Benneke 2015).

APPENDIX A
CHEMICAL KINETICS

For completeness, we restate the formalism concerning
chemical kinetics.

A.1. Evolution Equations

Unlike Gibbs free energy minimization, chemical kinetics is
the treatment of a network of reactions as a system of mass
conservation equations. The evolution of the reaction X1 is
described by the partial differential equation,

a

n

t
K

n

x
n

1
. 40zz

a

1

X
2

X

2 X X
1 1

1
1

1 ( )
⎛
⎝⎜

⎞
⎠⎟   

¶
¶

-
¶
¶

= - -

The importance of the a1 1 factor cannot be over-stated: it
allows for the reaction rates of reactants and products with
different stoichiometric coefficients to be placed on the same

footing (Johnston 1966; Steinfeld et al. 1989). The production
and loss rates are

n n k

n k

,

. 41

b b

a
Z Z r

X f

1
1

2
2

2
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=

=

The reaction rate associated with photochemistry is given by
X1 , which generally depends on nX1.
The diffusion coefficient (Kzz) is used to mimic advection,

convection, and turbulence and subsume their collective
influence into a single free parameter. Generally, advection,
convection, and turbulence hardly resemble diffusion in any
rigorous way—one often argues that these processes operate on
scales that are so small, compared to the characteristic
atmospheric length scale of interest, that it “looks” like
diffusion. The use of Kzz is rigorous and exact only for
molecular diffusion. Notwithstanding, the inclusion of a
diffusion coefficient allows us to treat situations with
disequilibrium chemistry induced by atmospheric motion or
mixing without resorting to a full-blown, three-dimensional
calculation.
For the product Z1, the evolution equation is

b
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t
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1
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where the production and loss rates are

n n k

n k

,
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A.2. Why Photochemistry Is a Disequilibrium Effect

In the absence of atmospheric mixing (K 0zz = ), we may add
the evolution equations for X1 and Z1 to obtain

a
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If we integrate this expression, we obtain

n

a
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dt . 45X

1

Z

1
X Z

1 1
1 1( ) ( )  ò+ = - + +

If we do the same for all combinations of reactants and
products, then we obtain

n

a

n

a

n

b

n

b

dt , 46

X

1

X

2

Z

1

Z

2

X X Z Z

1 2 1 2

1 2 1 2( ) ( )    ò

+ + +

= - + + + + ¢

where  and ¢ are constants of integration.
This result informs us that photochemistry is an intrinsically

disequilibrium effect because it allows the total number of
particles in the system to vary with time. In its absence, the
total number of particles is an invariant quantity.

A.3. Producing Chemical Equilibrium in the Steady-state Limit

If we neglect atmospheric mixing and photochemistry, the
steady-state limit of the evolution equations yields

n n k n n k . 47a a b b
X X f Z Z r1

1
2
2

1
1

2
2 ( )=
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Since this is identical to the setup in which we used to define
our dimensional equilibrium constant (Keq¢ ), we conclude that
our evolution equations correctly produce chemical equilibrium
in the steady-state limit.

APPENDIX B
GIBBS FREE ENERGY FOR THE HYDROGEN ATOM

We use the Gibbs free energy associated with the hydrogen
atom from the JANAF database. Here, we list it in units
ofkJ mol−1 K−1, from 0 to 6000 K (in increments of 100 K)
and at P 1 bar0 = : 216.035, 212.450, 208.004, 203.186,
198.150, 192.957, 187.640, 182.220, 176.713, 171.132,
165.485, 159.782, 154.028, 148.230, 142.394, 136.522,
130.620, 124.689, 118.734, 112.757, 106.760, 100.744,
94.712, 88.664, 82.603, 76.530, 70.444, 64.349, 58.243,
52.129, 46.007, 39.877, 33.741, 27.598, 21.449, 15.295,
9.136, 2.973, −3.195, −9.366, −15.541, −21.718, −27.899,
−34.082, −40.267, −46.454, −52.643, −58.834, −65.025,
−71.218, −77.412, −83.606, −89.801, −95.997, −102.192,
−108.389, −114.584, −120.780, −126.976, −133.172,
−139.368. If we denote each of these numbers by GH˜ , then
we have G G20 H˜ ˜D = - for the net reaction in Equation (24). It
follows that

K
P

P

G

T
exp , 48

0

0

univ

˜
( )

⎛
⎝⎜

⎞
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¢ = -
D

where 8.3144621univ = J K−1 mol−1 is the universal gas
constant. See Heng & Lyons (2015) for more explanation on
the unit conversion between G0D and G0˜D .
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