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ARTICLE; MEDICAL BIOTECHNOLOGY
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The aim of this study is to reveal the regulatory role of cystathionine gamma-lyase (CSE), the main source of hydrogen
sulphide (H2S) in perivascular adipose tissue (PVAT), of diabetic rats. Diabetes was induced in male rats by a single
intraperitoneal injection of streptozotocin. Animals with glucose levels above 20 mmol/L were determined as diabetic. The
rat gracilis arteries (a. gracilis) were dissected with or without PVAT. In all in vitro experiments endothelium-denuded
preparations were used for isometric contraction measurements. Increasing concentrations of 5-hydroxytryptamine (5-HT)
from 10¡10 to 10¡5 mol/L were applied to induce gradual increase in force of contractions of circular artery segments. The
relaxing effect of CSE was inhibited by DL-propargyl glycine (PGG). The presence of PVAT decreases the contractile
response to 5-HT of a. gracilis from control rats. This response is reversed in contraction studies in the same rat artery from
diabetic rats. DL-PPG (1 mmol/L) induced significant increase of the force of contraction in artery preparations with
PVAT from control rats in the whole range of 5-HT. In contrast, PGG had a relaxing effect in high concentrations of 5-HT
(10¡6 and 10¡5 mol/L) in diabetic rat arteries with PVAT. It is concluded that in skeletal muscle artery from diabetic rats,
a mediator related to H2S is released from PVAT. This paracrine mediator increases the maximal force of contraction of
endothelium-denuded preparations at higher concentrations of 5-HT.
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Introduction

Adipose tissue is the largest endocrine organ, producing

various adipokines and many other substances.[1] Peri-

vascular fat, or perivascular adipose tissue (PVAT) is a

thin sheet, generated during the embryonic development,

which consists of adipocytes and stromal cells, including

fibroblasts, leukocytes, stem cells and capillaries.[2]

Almost all blood vessels are surrounded by variable

amounts of PVAT associated with small arteries and arte-

rioles.[3] PVAT together with vascular endothelium and

axonal varicosities of sympathetic neurons in the adventi-

tia, play important role in controlling the contraction of

visceral [4] and skeletal muscle arteries.[5]

In this study, we focused on the effects of PVAT in

diabetic rat arteries. It is well known that regulators

derived from PVAT can stimulate both vasorelaxation

and vasoconstriction.[6�8] Therefore, factors secreted

from PVAT, like free fatty acids, adipokines, growth fac-

tors and others can directly affect the vascular function.

[9] However, the rate of excretion of various adipokines

may vary between PVAT at different sites in the vascular

tree and between PVAT and other adipose tissue depots.

[10] The role of PVAT in the regulation of blood vessels

depends on metabolic state, inflammation and clinical risk

factors. In health, the protective and vasorelaxant proper-

ties of the PVAT dominate, while in pathology the patho-

genic influences are more evident.[11] PVAT is expanded

in obesity and diabetes. This expansion does not only

involve enlargement of fat cells, but also acquires macro-

phages of a more inflammatory phenotype.[12] Cardio-

vascular dysfunction is one of the complications

associated with diabetes, as well as with obesity and the

metabolic syndrome.[13] In mesenteric arteries, PVAT

was shown to enhance constriction induced by nerve stim-

ulation, an effect mediated by angiotensin II,[14] whereas

leptin causes vasodilatation in aortic rings from Wistar-

Kyoto (WKY) rats.[15] Besides vasorelaxation by PVAT

of the aorta was the first vasoactive effect reported for

PVAT, leading to the proposed release of an ADRF

(adventitia derived relaxing factor) [7,8,16] identified as

hydrogen sulphide (=2S).[17] Thus, H2S is the third

important gas transmitter in mammals, particularly in the
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central nervous and the circulatory systems.[18,19] H2S,

derived from adipocytes, is synthesized in cytosol by cys-

tathionine g-lyase (CSE), using l-cysteine as substrate.

[20] H2S exerts artery relaxation mainly by activation of

voltage-gated potassium channels, KCNQ type, also

known as Kv7 [21,22] and KATP channels.[19] KCNQ

channels regulate excitability of smooth muscle cells.[23]

Abnormal metabolism and functions of the CSE/H2S

pathway have been linked to atherosclerosis and hyperten-

sion.[24] CSE knockout mice express hypertension con-

firming that H2S regulate blood pressure,[25] while

substitution of H2S protects against the development of

endothelial dysfunction.[26,27] Therefore, paracrine H2S

signalling into the artery wall may represent a potential

therapeutic target for obesity- and diabetes-associated car-

diovascular dysfunction.[28] The data produced in the

field can be divided into two main groups: (1) data

obtained using an exogenous sources of H2S and (2) data

obtained by stimulating endogenous H2S production by

using the substrate L-cysteine or through targeting CSE,

or by generating H2S from non-enzymatic reactions.[29]

For example, the isolation of H2S-releasing and vasoac-

tive substances from garlic may serve as a proposal of

novel drugs.[30�32] Furthermore, lipophilic statins (ator-

vastatin) augment the vasodilatory effect of PVAT by

stimulating the H2S production. This effect is mediated by

statin-induced ubiquinone (coenzyme Q) depletion, which

compromises mitochondrial H2S oxidation.[33] Also,

under conditions of reduced H2S release from PVAT, its

effects can be mimicked by synthetic KCNQ channel

openers.[5] All these findings require to clarify the mecha-

nisms of CSE-dependent regulation of PVAT in health

and especially under different pathological conditions.

Therefore, the aim of our study is to reveal the regula-

tory role of CSE in PVAT of diabetic rat model.

Materials and methods

Study design

In this study, we used two different types of preparations of

rat artery gracilis � with and without PVAT (§PVAT) �
under three different conditions to explore PVAT regula-

tory influence. The relaxing effect of CSE was inhibited by

1 mmol/L DL-propargyl glycine (PGG) (Figure 1).

Experimental animals and induction of diabetes mellitus

Diabetes was induced in male rats by a single intraperito-

neal injection of streptozotocin (STZ, 80 mg/kg body

weight). STZ solution (in citrate buffer, pH 4.5) was pre-

pared immediately prior use. Blood glucose levels for all

the animals were determined by a glucometer (Gluco

Chek
�
- Rapid Diagnostic PVT.Ltd., Delhi, India) at the

first week after the induction and again just prior the

experiments. Animals with glucose levels above

20 mmol/L were determined as diabetic.

Measurement of isometric tension in rat artery gracilis

Male rats (200�300 g) were sacrificed under ether at five

weeks after treatment for the induction of diabetes. The

gracilis arteries (a. gracilis) were dissected and immedi-

ately transferred to cold (4 �C) physiological salt solution
(PSS). The low temperature ensures the artery to be

relaxed during the mounting procedure. For our research,

approximately 2 mm vessel segments were selected.

PVAT and connective tissue of these preparations were

either removed or left intact. We used two groups of prep-

arations from healthy male rats. They were prepared

according to the same protocol as the diabetic. Then, half

of them were incubated in PSS with 20 mmol/L D-glucose

to evaluate the effect of hyperglycaemia. The others were

kept in PSS with 5.5 mmol/L D-glucose. Before experi-

ments with vessel rings, the normalization procedure was

performed. The aim was to stretch the segment according

to normal transmural pressure to ensure optimal response

of the preparations. For small arteries, the target transmu-

ral pressure is 13.3 kPa. The contractile force was regis-

tered by Myodag 2.02 software (Danish Myo Technology

A/S, Aarhus, Denmark).

In all in vitro experiments endothelium-denuded prep-

arations were used. The endothelium was removed by

gently rubbing the internal surface of the vessel segments

with a rat whisker. The absence of endothelium was con-

firmed by the lack of relaxation to acetylcholine of

60 mmol/L KCl-contracted arteries.

All drugs and salts were from Sigma-Aldrich (St.

Louis, MO, USA).

The isometric contractions were measured with Small

Vessel Myograph (DMT 410M, Aarhus, Denmark). The

organ bath was filled with PSS containing (in mmol/L):

119 NaCl, 4.7 KCl, 1.2 KH2PO4, 25 NaHCO3, 1.2

Mg2SO4, 1.6 CaCl2, 20 or 5.5 glucose. The bath solution

was continuously oxygenated with a gas mixture of 95%

O2 and 5% CO2, and kept at 37 �C; pH D 7.4. After 1 h of

equilibration, the contractile force was measured under

isometric conditions. The arterial contraction was

expressed as a percentage of 60 mmol/L KCl-induced

contraction. Increasing concentrations of serotonin from

10¡10 to 10¡5 mol/L were applied to induce gradualFigure 1. Experimental protocol.
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constriction of circular artery segments. All drugs were

added into the bath solution (PSS).

Statistical analysis

All data analysis were performed using statistical software

SPSS 16.0. All results are given as means § S.E.M of six

separate experiments. Statistical significance was deter-

mined using Student t-test to assess significance between

two groups or analysis of variance (ANOVA). A value of

p < 0.05 was considered statistically significant.

Results and discussion

Increasing concentrations of serotonin from 10¡10 to 10¡5

mol/L dose dependently enhance the force of contraction

of all a. gracilis preparations in the three studied states.

In the presence of a physiological glucose concentra-

tion, the 5-hydroxytryptamine (5-HT)-induced contrac-

tions of arteries with intact adipose tissue were

significantly smaller at 10¡8, 10¡7 mol/L 5-HT (p <

0.001) and at 10¡6 mol/L 5-HT (p < 0.01) if compared to

those without PVAT (data not shown). This result consists

with the data from other authors.[1,5] Similar sensitivity

to 5-HT of artery rings with and without PVAT was

observed when in vitro a. gracilis preparations were incu-

bated in hyperglycemic conditions (Figure 2(A)). It is sug-

gested that high glucose conditions has no influence on a.

gracilis contraction. Vessel rings with or without intact

PVAT of diabetic rats responded with equal contractions

to 5-HT when applied in concentrations from 10¡10 to

10¡7 mol/L (n/s). However, at the highest studied concen-

trations of 5-HT, the preparations with PVAT contracted

significantly stronger than those without PVAT (Figure 2

(B)).These data suggest different regulatory role of PVAT

in diabetic rats if compared to health controls, as well as

the release of another mediator that increases the force of

contraction of skeletal artery smooth muscle cells in

diabetes.

When analysed the responses of blood vessels with

PVAT in the three studied states, it was established that

preparations from healthy rats in 5.5 mmol/L glucose and

20 mmol/L glucose were not significantly different (n/s),

but diabetic rat arteries aroused significantly stronger

serotonin-induced contraction (p < 0.01). The same

results were observed when all the three groups of prepa-

rations without PVAT were compared. In control rats, the

contractile effect of serotonin remained statistically

unchanged in either normal or hyperglycaemic conditions

(n/s). However, 5-HT contracted arterial rings of diabetic

rats strongly in comparison to the controls.

This difference could be explained with decreased lev-

els of H2S as a result of induction of diabetes. Thus,

Whiteman et al. [34] and Jain et al. [35] reported that dia-

betes is associated with lower circulating levels of H2S. It

is also known that rats with STZ-induced diabetes exhibit

a decrease in their blood H2S concentrations without any

change in the tissue expression of CSE.[36]

In a further research, we applied PGG to block H2S

synthesis.[25] The addition of a selective inhibitor of

CSE � PGG � caused a vast increase of the force of con-

traction of diabetic a. gracilis in the whole range of 5-HT-

induced contractions in all preparations. In these from

healthy rats the relaxant effect of adipose tissue was

diminished. In the presence of 1 mmol/L PGG, there were

no significant differences between arterial responses to

5-HT in the three tested conditions (data not shown).

In the presence of PGG, added to block CSE, the

increasing concentrations of 5-HT in the range from 10¡9

to 10¡7 mol/L, a. gracilis, similarly to that from healthy

animals, expressed stronger contraction if compared to

those without PVAT (data not shown) (Figure 3(A)). In

contrast, in the presence PGG, at 10¡7 mol/L 5-HT, the

difference between PVAT-containing and PVAT-free

Figure 2. Arterial rings §PVAT: maximal force of contraction in 20 mmol/l glucose (A) and STZ-diabetic (B) (p�< 0.05, p�� < 0.01).
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preparations was negligible while above that value of 5-HT

diabetic a. gracilis with PVAT responded with lower force

of contractions (10¡6 and 10¡5 mol/l, Figure 3(B)). It is

suggested that a second mediator causing vasoconstriction

and related to H2S is released (probably produced only in

its presence) in a. gracilis preparations with PVAT, isolated

from diabetic rats. Its effect reverses the H2S dilatory influ-

ence and thus dominates as a common signal molecule at

higher 5-HT concentrations. An alternative explanation of

these surprising data is that the blockade of H2S production

induces the generation of another relaxing mediator from

PVAT under the same conditions.

Conclusions

The presence of PVAT equally reduces the contractile

response to 5-HT of a. gracilis of control animals in normal

and hyperglycemic conditions. This response is converted

in contraction when the same rat artery is isolated from

STZ diabetic rats. The data from this study suggest that

PVAT of skeletal muscle artery from diabetic rats releases

a contractile mediator related to H2S. The nature of this

signal molecule as well as the mechanism of its paracrine

regulation and tissue specificity needs further elucidation.

The reveal of this PVAT-smooth muscle crosstalk in the

artery wall may constitute a therapeutic approach against

the harmful effects of diabetes in different vascular beds.
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