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Abstract
Since its introduction in the 1970’s, magnetic resonance 
imaging (MRI) has become a standard imaging 
modality. With its broad and standardized application, 
it is firmly established in the clinical routine and an 
essential element in cardiovascular and abdominal 

imaging. In addition to sonography and computer 
tomography, MRI is a valuable tool for diagnosing 
cardiovascular and abdominal diseases, for determining 
disease severity, and for assessing therapeutic success. 
MRI techniques have improved over the last few 
decades, revealing not just morphologic information, 
but functional information about perfusion, diffusion 
and hemodynamics as well. Four-dimensional (4D) 
flow MRI, a time-resolved phase contrast-MRI with 
three-dimensional (3D) anatomic coverage and velocity 
encoding along all three flow directions has been used 
to comprehensively assess complex cardiovascular 
hemodynamics in multiple regions of the body. The 
technique enables visualization of 3D blood flow 
patterns and retrospective quantification of blood flow 
parameters in a region of interest. Over the last few 
years, 4D flow MRI has been increasingly performed in 
the abdominal region. By applying different acceleration 
techniques, taking 4D flow MRI measurements has 
dropped to a reasonable scanning time of 8 to 12 min. 
These new developments have encouraged a growing 
number of patient studies in the literature validating 
the technique’s potential for enhanced evaluation 
of blood flow parameters within the liver’s complex 
vascular system. The purpose of this review article 
is to broaden our understanding of 4D flow MRI for 
the assessment of liver hemodynamics by providing 
insights into acquisition, data analysis, visualization and 
quantification. Furthermore, in this article we highlight 
its development, focussing on the clinical application of 
the technique. 
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of morbidity and mortality in the United States, 
Europe and Asia. Advanced stages of liver cirrhosis 
are accompanied by hemodynamic changes of the 
hepatic vascular system. Four-dimensional (4D) flow 
magnetic resonance imaging (MRI) has been validated 
for the clinical assessment of the liver blood flow in 
patients with advanced liver cirrhosis. It represents 
a method that supplements Doppler ultrasound and 
provides important additional information on the 
vessel system in difficult patients. The purpose of this 
review is to provide insights into 4D flow MRI for blood 
flow visualization and quantification in patients with 
advanced liver cirrhosis. 
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INTRODUCTION
Liver cirrhosis is a leading cause of serious morbidity 
and the 9th most often cause of death in the United 
States and Europe with a mortality of more than 35000 
deaths per year[1,2]. The most common causes of liver 
cirrhosis in developed countries are alcoholic liver 
disease and hepatitis C, while in most parts of the sub-
African continent and in Asia, hepatitis B dominates as 
the predominant cause[3-5]. Liver cirrhosis reflects the 
histological development of regenerative nodules and 
fibrotic bands as a response to chronic liver injury. In 
the cascade of liver damage, it appears at advanced 
stages of liver fibrosis and is accompanied by distortion 
of the hepatic vascular system. The hemodynamic 
changes in the liver result in the shunting of the portal 
venous and arterial blood supply directly into the 
central hepatic veins, bypassing the exchange between 
hepatic sinusoids and the adjacent hepatocytes[6,7]. 
The major clinical effects of the liver damage and 
liver cirrhosis are impaired liver function, portal 
hypertension with increased intrahepatic resistance, 
and potential development of malignant hepatocellular 
carcinoma. The hemodynamic changes in liver cirrhosis 
are closely associated with portal hypertension and 
vascular alterations in the liver parenchyma[8,9]. 

Over the last 3 decades, phase contrast (PC) MRI 
has become established in the clinical routine for 
diagnosing hemodynamic alterations in the heart, aorta 
and large thoracic and abdominal vessel systems[10-12]. 
Further improvements in PC-MRI led to time-resolved 
(CINE) 3-dimensional (3D) PC-MRI technique with the 
feasibility of three-directional velocity encoding [four-
dimensional (4D) flow MRI]. 4D flow MRI enables 
3D volumetric coverage and the means of assessing 
hemodynamic changes in a specific region over 
time[13-17]. 

The purpose of this review article is to provide 

insights into the 4D flow MRI imaging technique 
for blood flow visualization and flow quantification 
in patients with advanced liver cirrhosis and in 
healthy volunteers. I also aim to describe the clinical 
advantages and disadvantages of the method, 
illustrating recent developments of the technique 
in the liver’s vascular system as well as presenting 
several very recent clinical applications of the method 
for evaluating hemodynamic anomalies.

DIAGNOSTIC MODALITIES FOR LIVER 
FIBROSIS AND LIVER CIRRHOSIS 
A perfect non-invasive test for patients with liver 
cirrhosis would be simple to perform, safe, inexpensive, 
accurate, reproducible, yield numeric results in real 
time, reflect therapy-induced changes, enable prognostic 
stratification, and predict potential long-term outcomes 
related to liver cirrhosis[18-20]. 

Liver biopsy is acknowledged as the gold standard 
when diagnosing liver cirrhosis and assessing the stage 
and grade of chronic hepatitis[21-24]. The histological 
sub-classification and quantitative evaluation of hepatic 
fibrosis reveals a correlation with the disease’s clinical 
stage and prognosis, and is valuable in validating 
other non-invasive markers[25,26]. The repeatability 
of liver biopsy and its clinical acceptance by the 
patients is limited by its potential for complications, 
sampling errors, inter- and intra-observer variability, 
and invasiveness[27,28]. In patients with liver cirrhosis, 
measurements of the hepatic venous pressure gra
dient (HVPG) provide an accurate estimate of portal 
pressure and offer a solid clinical and prognostic 
marker for chronic liver disease[29-32]. It enables us 
to assess the development of clinical complications, 
e.g. esophageal varices and bleeding and the risk of 
decompensation, and provides independent prognostic 
information on patients’ survival and future mortality 
risk[33-37]. Similar to liver biopsy, HVPG’s main limitation 
is its invasiveness and limited availability[32]. Much 
effort has been made to identify a non-invasive 
alternative offering comparable reliability to the 
invasive interventions described above. 

An important clinical role is played by laboratory 
tests such as biochemical and hematological serum 
markers with the benefits of simple, non-invasive and 
repetitive testing and results reflecting the entire liver. 
Serum markers are “indirect” and “direct”: the “indirect 
markers” reveal the degree and stage of fibrosis, 
while “direct markers” indicate the enzymes playing 
a key role in matrix regulation or the hepatic matrix 
components and their deposition or removal[38,39]. 
Studies evaluating serum markers have demonstrated 
their predictive efficiency for fibrosis and cirrhosis[40,41] 
although a meta-analysis describes their accuracy as 
limited in assessing the fibrosis stage[42]. To optimize 
reliability, a combination of serum markers is used 
instead of a single marker[43]. Nevertheless, non-
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invasive assessment of the dynamic changes in portal 
hypertension, liver fibrosis and cirrhosis by laboratory 
serum markers remains inadequate[42,43]. 

Diagnostic imaging modalities have a fundamental 
function in managing patients with chronic liver disease 
and in diagnosing the malignant transformation to 
hepatocellular carcinoma. The clinical gold standard 
and most comprehensive available and evaluated 
imaging test is ultrasound (US)[44-48] and accompanied 
techniques including transient elastography (TE)[49,50], 
acoustic radiation force impulse (ARFI)[51] and supersonic 
shear-wave elastography (SSWE)[52] imaging. Based on 
its broad availability, non-invasive character and easy 
applicability, Doppler US is well established in the clinical 
routine for the follow-up and assessment of patients 
with chronic liver disease and liver cirrhosis[44-48]. In 
advanced stages of liver fibrosis, morphological alte
rations are accompanied by changes in the liver’s blood 
flow[53]. Assessment by US include liver and spleen 
size measurements, liver parenchyma evaluation, 
but also measurements of portal vein (PV) velocities, 
PV blood flow, liver perfusion, and resistance indices 
in splanchnic arteries[53-57]. Ultrasound is reported 
to demonstrate very low sensitivity and specificity 
for liver fibrosis, and no correlation was detected 
between US results and liver biopsies when staging 
liver fibrosis[58,59]. Better assessment of hemodynamic 
changes in the liver has been made possible by 
contrast-enhanced ultrasound (CEUS)[60,61]. There is 
evidence that regional hepatic perfusion parameters 
correlate with the severity of liver failure and are 
increased in patients with liver cirrhosis[61]. The 
usual US limitations are involved in this technique, 
as the involvement of different contrast agents with 
different kinetics and drug design, varying operator 
skills and inconsistent availability of the method. 
Other limitations are the patient-related and operator-
dependent conditions. US is influenced by the stage of 
NPO (nothing per mouth), patient respiration, ascites, 
bowel gas, differences in equipment and inter-observer 
variability in the measurements[62-66].

Other ultrasound-based techniques focus on the 
mechanical properties of liver tissue and measure 
differences in viscoelasticity in patients with liver 
fibrosis[51]. The modalities in evaluating liver stiffness 
in hepatic fibrosis are useful to reduce invasive 
pressure measurements, predict lethal complications 
or improve patient’s prognoses and risk stratification. 
The two most frequent modalities are either real-
time based elastography or shear-wave elastography. 
TE is the most widely applied and tested modality, 
followed by ARFI[51] and SSWE[52]. Numerous studies 
have shown that TE results correlate significantly 
with the histological stage of liver fibrosis and are 
very diagnostically accurate[67-69]. Nevertheless, TE 
has a high measurement failure rate of up to 20% 
due to limitations like severe obesity, ascites and 
subcutaneous fat[49,60,70]. Further restrictions for its 
broad clinical use are its wide range of cut-off values 

and results variability across different studies[71-74]. 
Conventional CT and MRI are well-suited for 

evaluating morphological anomalies in patients with 
chronic liver disease, as they show the degree of liver 
injury from cirrhosis and accompanying complications. 
Alterations result from portal hypertension, hepatic 
insufficiency and portosystemic shunting, which result 
in ascites, gastrointestinal bleeding, coagulopathy, 
encephalopathy, and the formation of collateral 
vessels and portosystemic shunts[75-77]. Predisposing 
locations of the collateral vessels are distal esophageal, 
the gastric fundus, paraumbilical, splenorenal, 
retroperitoneal, abdominal wall and hemorrhoidal[78,79]. 
These morphologic changes in liver hemodynamics are 
usually visible in advanced stages of liver cirrhosis. As 
a result, CT and MRI are unsuitable for diagnosis of 
the early stages of liver cirrhosis, including functional 
evaluation of the liver blood flow. An MRI-based 
assessment of liver stiffness by MR elastography 
(MRE) offers better contrast between different body 
tissues than Ultrasound[80-82]. Further advantages of 
the technique is its potential to assess the whole liver, 
observer-independence, and no influence by the body 
habitus[83,84]. MRE has become standard for assessing 
liver fibrosis as it offers generally high sensitivity 
and specificity for different histological gradings[81-86]. 
Factors associated with this technique that limit its 
use in the daily clinical routine are its expense and 
restricted availability[83,84]. 

Much experience has been gained over the last 
two decades in using MRI to hemodynamically assess 
the liver blood flow[87-90]. Most published studies relied 
on 2D PC-MRI measurements, a robust and reliable 
technique for hemodynamic assessment of the liver. It 
has revealed low intra- and inter-observer variability 
and high reproducibility compared to Doppler US[87-90]. 
2D PC-MRI is, however, limited by the application 
and positioning of 2D planes. Flow measurements 
and flow quantification results obtained via 2D PC-
MRI can be unreliable because of difficulties in precise 
orthogonal positioning of the measurement plane 
within the complex liver vascular system[91]. Another 
large group of studies assessing liver hemodynamics 
relied on contrast-enhanced MRI. Since nephrogenic 
systemic fibrosis (NSF) has been observed with its 
potential connection to the injection of gadolinium-
based contrast medium, contrast medium is being 
more carefully applied[92-96].

Until now, no non-invasive diagnostic modality 
has been able to determine the changes in and exact 
stage of chronic liver disease and portal hypertension. 
Nevertheless, new modalities reveal promising results 
in hemodynamic assessments of the liver. Further 
clinical trials examining different disease stages are 
needed to validate the reproducibility and long-term 
prognostic values of these non-invasive diagnostic 
modalities. These tests have the potential to lead 
to unknown and new paradigms in the specific 
management of patients with chronic liver disease.
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resolution, fewer motion artifacts and self-gating. A 
recent study evaluated scan time savings using a k-t 
GRAPPA accelerated Cartesian 4D flow MRI to visualize 
and quantify liver hemodynamics[118]. Three different 
acceleration factors were used, with additional focus 
on temporal resolution. All k-t GRAPPA acceleration 
factors displayed significant scan time savings, R = 3 
and R = 5 over 40% to almost 8 min and R = 8 over 
70% with a 4D flow MRI scan time of almost 4 min. 
While acceleration factors R = 3 and R = 5 showed 
quantitative blood flow and velocity results comparable 
to standard GRAPPA R = 2, acceleration factor R = 8 
revealed increased noise and artifacts with significantly 
lower measurement results in the arterial system 
according to the calculated blood flow parameters[118]. 
Another current study is evaluating a combined-
spiral-sampling and dynamic-compressed-sensing 
approach for faster acquisition of 4D flow MRI[119]. In 
a study cohort with 10 subjects, investigators have 
demonstrated the feasibility of applying 4D flow 
MRI within an average scan time of 24 s (18-25 s 
range), comparable to 2D PC-MRI measurements. 
Moderate to substantial agreement was observed in 
the delineation of arterial and venous vessel borders 
between the spiral 4D flow MRI and the Cartesian 4D 
flow MRI approach. Quantitative results revealed good 
agreement and a 95% confidence interval between 
60% and 77% for the flow parameters acquired[119]. 
These recent studies addressing the acceleration of 4D 
flow MRI for abdominal imaging show the potential for 
this technique to be accelerated to last a few seconds 
while enabling comprehensive evaluation of liver 
hemodynamics. For thoracic or abdominal applications 
of the 4D flow MRI technique, breathing control and 
ECG-gating is needed to reduce consequent artifacts. 
In addition to breathing bellows or navigator gating, 
self-gating methods have been reported[120-123]. 
Upcoming studies will continue to validate the scan-
time savings results using various acceleration 
techniques and offering broad clinical application for 
patients with advanced liver cirrhosis as well as better 
understanding of complex blood flow changes in the 
liver. 

Technical aspects for data analysis
Many technical aspects must be considered when 
performing 4D flow MRI data acquisition and validating 
the data acquired. A detailed description and discussion 
of these technical aspects is beyond the scope of 
this clinically-focused review article, and I offer only 
an overview of the most important facts. For further 
detailed information, please consult comprehensive 
review articles for 4D flow MRI, e.g.[16,17]. 

Velocity encoding sensitivity (Venc) represents 
the peak flow velocity that can be acquired. If 
the peak velocity of the blood flow in the vessels 
exceeds the preset setting for the Venc, the accuracy 
of flow visualization and quantification of the liver 

4D FLOW MRI
During data acquisition with 4D flow MRI, velocity is 
encoded along all three spatial directions throughout 
the entire heart cycle. This results in a time-
resolved volumetric velocity field from the scanned 
body region, e.g. heart, aorta, lung, intracranial 
vessels or liver[10,97,98]. To take quantitative velocity 
measurements in one spatial direction, two data 
acquisitions and the following subtraction are needed 
for velocity encoding. Seeking velocity encoding in all 
three spatial directions, one needs a reference image 
and three velocity-encoded images acquired along 
the three orthogonal directions X, Y and Z[99-101]. The 
data is acquired over several cardiac cycles, while 
data acquisition at the same time is synchronized 
with the heart cycle using the k-space segmentation 
technique. The 4D flow MRI data is thus measured 
only partially during one heart cycle; the entire 
data is acquired ongoing over several heart cycles. 
After completing 4D flow MRI data acquisition, 4 
time-resolved 3D flow datasets are generated: one 
dataset with the magnitude information containing 
anatomic information and three flow datasets giving 
the velocities in each spatial direction X, Y and Z. The 
extended amount of data encoding for three spatial 
dimensions, three velocity directions, and the time 
information over the cardiac cycle is reflected in the 
scan time. Several recent examinations in 4D flow MRI 
sequencing addressed this limitation and tried to find 
a potential solution to shorten the scan time. While 
the manufacturers continuously improve the hardware 
aspect of the scanners, others are working on software 
improvements.

Fast imaging techniques like radial imaging 3D 
PC-VIPR (vastly undersampled isotropic projection 
reconstruction)[102,103], spiral techniques without 
acceleration[104], compressed sensing[59,105] or parallel 
imaging enable 4D flow MRI scans within 8 to 20 
min[15,106]. Conventional acceleration techniques like 
GRAPPA (generalized auto-calibrating partially parallel 
acquisitions)[57] or SENSE (sensitivity encoding)[55] can 
usually achieve a scan time reduction by factor 2 or 
3. Applying higher values could negatively influence 
the quantification of velocities with a reduced signal-
to-noise ratio[107]. Further advancements in spatial-
temporal parallel imaging techniques such as k-t 
PCA (k-t principal component analysis)[108], k-t 
GRAPPA[109-111], k-t SENSE[112,113] or k-t BLAST[113,114] 
facilitate higher acceleration factors and represent 
promising imaging techniques for scan time reduction 
using 4D flow MRI. Several studies have already used 
a radial data acquisition technique combined with 
under sampling of the data (PC-VIPR) for assessing 
the arterial and portal venous system within the 
liver and splanchnic vessels[115-117]. This imaging 
technique offered shorter scan times together with 
broad volumetric coverage and enhanced spatial 
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hemodynamics may be compromised and anti-aliasing 
corrections are necessary[124]. To obtain optimal image 
quality, the Venc should represent the hemodynamic 
conditions in the hepatic area and be as high as 
necessary to avoid anti-aliasing, but as low as possible 
to reduce velocity noise. A typical Venc setting for 
the portal venous system is 50 cm/s, for the arteries 
100 cm/s, and values even above 150 cm/s within a 
TIPS stent[16,17]. An interesting approach for the liver 
with different flow velocities is a dual-venc, already 
discussed in other regions of the body[125]. 

Many errors in 4D flow MRI can impair image 
quality and trigger inaccuracies in quantitative flow 
measurements. The most common errors are phase 
offset errors based on gradient field nonlinearity[106], 
eddy currents[126] and Maxwell terms[127]. Before further 
processing the 4D flow MRI data, it is important to 

take such errors into account and consider appropriate 
correction strategies.

To visualize the 4D flow MRI data acquired, many 
options are available on the market, usually using 2D 
analysis planes which must be positioned in the vessel 
of interest[11,128-133] (Figures 1 and 2). Time-resolved 
particle traces and 3D streamlines are emitted from 
these analysis planes. Time-resolved particle traces 
display the temporal evolution of blood flow over one 
or more cardiac cycles[132]. Velocity changes can be 
visualized or the flow pattern traced to its origin by 
color-coding the particle-traces. Streamlines represent 
3D traces that track the spatial distribution of 3D 
velocities within an individual cardia time frame. Color-
coding the streamlines enables visualization of the 
spatial distribution and orientation, especially of peak 
blood flow velocities. 

4D flow MRI has the potential to retrospectively 
quantify hemodynamic parameters of the liver at 
any location within the 3D data volume following 
data acquisition[134,135]. 2D analysis planes can be 
freely positioned in the interesting arterial or portal 
venous vessel to quantify standard flow parameters 
like peak and mean velocities, flow volume over 
the cardiac cycle, vessel area, shunt fraction or flow 
reversal (Figures 2 and 3). Several studies report 
excellent agreement between 2D PC-MRI and 4D 
flow MRI in flow quantifications[136,137]. Good scan-
rescan reproducibility and low inter- and intra-observer 
variability have been shown in conjunction with 4D 
flow MRI flow quantification in the intracranial, cervical, 
thoracic and abdominal vessel systems[136,138,139]. 
New strategies are also discussed in the literature for 
evaluating more advanced hemodynamic parameters, 
e.g. wall shear stress, pressure difference, turbulent 
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Figure 1  Particle traces visualization of portal venous flow in a healthy 
volunteer. Blue emitter planes were positioned in the splenic vein and superior 
mesenteric vein (sup.-mes. vein), portal vein, right (right PV) and left (left PV) 
intrahepatic portal vein branch. The gray-shaded iso-surface three-dimensional 
angiogram has been calculated from the 4D flow magnetic resonance imaging 
data. Color-coded peak velocities in the inflow of the portal vein from the splenic 
and superior mesenteric veins and the intrahepatic part of the portal vein. 

Figure 3  Four-dimensional flow magnetic resonance imaging in a 63-yr-
old female with liver cirrhosis after TIPS placement. Small lower left corner: 
three-dimensional (3D) segmentation of the liver and splanchnic hemodynamics 
(red: arterial system; orange: portal venous system; blue: venous system). 
Large figure: Color-coded 3D particle-traces visualization demonstrates 
increased velocities within the TIPS and the arteries. Blue analysis planes were 
positioned throughout the arterial and portal venous systems as well as TIPS to 
quantify liver hemodynamics. abd. aorta: Abdominal aorta; hep. artery: Hepatic 
artery; sma: Superior mesenteric artery; smv: Superior mesenteric vein; Right 
PV: Right portal vein branch; IVC: Inferior vena cava.
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Figure 2  The portal venous system visualized by particle traces in a 
68-year-old male patient with liver cirrhosis (Child-Pugh stage B). Blue 
emitter planes were positioned in the splenic vein and superior mesenteric vein 
(sup.-mes. vein), portal vein, right (right PV) and left (left PV) intrahepatic portal 
vein branch. Time-resolved particle traces illustrate physiological flow in the 
extrahepatic portal venous system with inflow in the portal vein from the splenic 
and superior mesenteric veins. Flow over the left branch of the intrahepatic 
portal vein into a re-opened umbilical vein is visible (arrowhead). 
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kinetic energy and pulse wave velocity[135,140-143].

Blood flow visualization
4D flow MRI represents a non-invasive and observer-
independent technique for comprehensive 3D 
volumetric evaluation of the liver and splanchnic 
region, as well as the means of assessing the liver’s 
arterial and portal venous system, collateral vessels, 
and potential shunts. In addition to initial studies 
evaluating flow in the portal vein[89,144-146] the focus of 
the first feasibility studies using 4D flow MRI in the 
liver was on the entire portal venous system[147,148]. 
These studies addressed the inflow from the splenic 
and superior mesenteric vein, the splenic-mesenteric 
confluence, the intrahepatic portal vein and right 
and left intrahepatic branches[147,148]. Initial studies 
comparing healthy volunteers and patients with liver 
cirrhosis applied a velocity encoding of 50 cm/s and 
attained complete visualization of the extrahepatic 
vessels in over 94% of their subjects (Figure 2). The 
small intrahepatic branches presented a limitation, 
however, as complete visualization was only possible 
in about 80% of the subjects[147,148]. Another group 
applied radial 4D flow MRI acquisition[102,103] and 
demonstrated good to excellent visualization in 
patients with liver cirrhosis, identifying all arterial 
vessels and 86% of the portal venous circulation[115,116]. 
Subsequent studies using Cartesian 4D flow MRI 
and a velocity encoding of 100 cm/s were also able 
to evaluate the liver’s arterial and portal venous 
system[118,149]. Complete visualization of the arterial 
system was accomplished in liver cirrhosis patients and 
volunteers in almost 100% of the cases. The limiting 
factor in the volunteer studies was the left intrahepatic 
branches (complete visualization in 50% to 60% of 
the cases)[118,149]. In the patient cohort studies the 
limitations in the portal venous system were more 
obvious as complete visualization of the extrahepatic 
vessels was only possible in in 60% to 90% of the 
cases, while the small intrahepatic branches of the 
portal vein were completely visible in only 20% to 
60% of the cases[150,151]. A possible reason for these 
limitations might be in the spatial resolution of the 
4D flow MRI sequence and the quite long scan time 
under free breathing during acquisition, resulting in 
partial volume effects and signal blurring due to organ 
motion and reduced effective spatial resolution in the 
Z-direction. In addition to visualization of the hepatic 
hemodynamic system, a major advantage of the 4D 
flow MRI sequence is its ability to evaluate the blood 
flow direction. Qualitative results in a feasibility study 
using radial 4D flow MRI depicted reverse hepatofugal 
flow in 5% of the portal venous vessels[115]. Using 
Cartesian 4D flow MRI, that study group showed a 
reopened umbilical vein in 6 out of 20 liver cirrhosis 
patients with portosystemic shunts[148]. In another 
patient-cohort study addressing more advanced 
stages of liver cirrhosis portosystemic collateral vessel 

systems were visualized prior to TIPS revision in 8 
out of 11 cases[151]. The shunt was not visible in the 
follow-up 4D flow MRI examination after insertion of a 
TIPS stent graft[151,152]. The successful occlusion of the 
shunt was proven during the intervention. The results 
of these studies also highlight one of the limitations 
of the 4D flow MRI sequence. Due to the 100 cm/s 
velocity encoding favoring high blood flow velocities 
and the applied spatial resolution, it can be difficult 
to distinguish the collateral vessels having a small 
diameter and low blood flow velocities in advanced 
stages of the liver disease. Precise differentiation of the 
regressive development of collateral vessels might be 
difficult when referring to 4D flow MRI using only the 
actual sequence parameter. Better spatial resolution 
would improve visualization of the portal venous vessel 
system and the collateral vessels with low blood flow 
velocities and small vessel size in advanced stages of 
liver disease. A further potential limiting factor is the 
signal-to-noise ratio. The above-mentioned studies 
involving radial acquisition applied contrast medium, 
while the Cartesian-based studies did not. The 
influence of the contrast medium, field strength and 
better respiratory triggering on the 4D flow MRI for 
the liver hemodynamics should be examined in future 
studies with larger patient cohorts.

Retrospective blood flow quantification
As well as visualizing 3D blood flow characteristics and 
clinically illustrating complex alterations in patients 
with advanced liver disease, 4D flow MRI enables the 
comprehensive quantification of blood flow parameters 
from the same dataset. Several working groups have 
conducted a quantitative evaluation of flow parameters 
in the portal venous system using Doppler US or MRI, 
while most of the MRI results are based on 2D PC-
MRI measurements[144,145,153-156]. Initial studies using 
4D flow MRI within the portal venous system displayed 
moderate, but significant correlations among 4D 
flow MRI, 2D PC-MRI and Doppler US values[147,148]. 
The peak-velocity results were between 23-27 cm/s, 
slightly lower than in other studies reporting 28 cm/s 
using 2D PC-MRI and Doppler US[89]. Mean velocity 
values between 10-12 cm/s resemble those in other 
studies based on 2D PC-MRI (11-14 cm/s)[144,145,154]. 
However, published values from studies applying 
Doppler US reveal higher mean velocities between 
15-17 cm/s[156,157]. The peak and mean velocities of 
blood flow in the liver tended to be underestimated 
in conjunction with 4D flow MRI (between 35% and 
38%)[147,148]. Another 4D flow MRI study evaluating 
blood flow in the carotid bifurcation offered a similar 
underestimation of flow velocities (between 31% and 
39%) via 4D flow MRI compared to Doppler US[158]. 
An explanation for MRI’s tendency to underestimate 
velocities is related to the data acquisition method. The 
velocity data is acquired over several cardiac cycles, 
resulting in an average velocity progression. Velocity 
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changes within the different heart cycles and short 
time fluctuations are not displayed. In comparison: 
Doppler ultrasound measurements represent real-time 
velocity data[144,156]. MRI’s underestimation of velocities 
therefore has to do with velocity averaging. Another 
reason might be partial volume effects due to lower 
spatial resolution in MRI than in Doppler US.

A 4D flow MRI study detected lower flow-volume 
values after measuring mean velocities and vessel 
area (mean 0.7 ± 0.4 L/min)[148] compared to 2D PC-
MRI studies (between 1.0 and 1.3 L/min)[89,145,155]. 
Doppler US studies, however, yielded a wide range 
of flow volumes (between 0.3 and 1.3 L/min)[159,160]. 
One reason for these different flow volumes could 
be hemodynamic changes after ingestion. A Doppler 
US-based study evaluating postprandial hyperemia 
in patients with liver cirrhosis revealed an average 
increase in portal venous flow velocities of 29% and 
a 38% increase in the portal venous blood flow[161]. 
Most recent studies evaluating reproducibility and 
the postprandial effect via 4D flow MRI report 
good to excellent short-term reproducibility in the 
fasting state[162,163]. Portal venous flow parameters 
were significantly higher in the postprandial state, 
confirming the large impact of caloric intake on portal 
venous flow[162]. Portal venous flow regulation might 
also be impaired after a meal challenge in patients 
with liver cirrhosis[163].

Recent 4D flow MRI studies measuring the vessel 
area report higher values compared to Doppler 
US in correlation to earlier studies with 2D PC-MRI 
and Doppler US[144,145,147,148,164]. One reason for the 
differences between these two modalities might be the 
location and angle of the ultrasound transducer during 
vessel diameter assessment, which would compromise 
reliable measurements not just in small vessels. The 
differences are inter-observer and intra-observer 
variability[157].

A recent reproducibility study examined the 
reliability of 4D flow MRI data acquired from the 
thoracic aorta with high flow velocities[138] showing 
good scan-rescan reliability and low inter- and intra-
observer variability in the acquired and clinically-
relevant blood-flow parameters and in wall shear 
stress (WSS)[138]. Via radial acquisition, another study 
group confirmed the results from quantifying hepatic 
and splanchnic hemodynamics using 4D flow MRI[116]. 
Investigating patients with portal hypertension, that 
study revealed good internal data consistency and low 
inter- and intra-observer variability in 4D flow MRI data 
from the liver’s vascular system[116]. They validated 
their results indirectly by being internally consistent at 
three different locations within the vascular system. 
Taking measurements at three different locations in 
the portal vein revealed an average absolute error 
of 4.2% ± 3.9%. Comparison of flow into the portal 
confluence coming from the splenic and superior 
mesenteric veins with the flow in the portal vein 
yielded an error of 5.9% ± 2.5%. Assessment of 

flow in the portal bifurcation and the right and left 
intrahepatic portal vein branches showed an error of 
5.8% ± 3.1%[116]. Another study applying Cartesian 
4D flow MRI revealed similarly good results with small 
errors in the internal consistency validation of the flow 
parameters[150]. Those authors performed additionally 
a real scan-rescan validation of 4D flow MRI with a 
rescan of all volunteers at least 5 mo later on the 
same scanner. They reported good reproducibility 
of 4D flow MRI quantification in the portal venous 
system with low blood flow velocities offering a mean 
average difference of 2% between the two scans for 
peak velocities and 5% for the mean velocities[150]. 
Quantitative evaluation of arterial blood flow velocities 
using 4D flow MRI yielded robust results with mean 
average differences of 3% for peak velocities and 7% 
for mean velocities[150]. Reproducibility of flow volume 
assessments showed low error for mean average 
differences of 6% in the portal vein, while the arterial 
flow volume evaluation was limited by an error of 14%. 
Inter-observer variability of between 16% and 26% 
is described in the literature in association with the 
evaluation of portal venous blood flow velocities using 
the clinical gold standard, Doppler US[165]. 4D flow MRI 
has yielded similar results: a scan-rescan-variability 
between 25% and 26% in the assessment of flow 
velocities[150]. A possible reason for these variations is 
the manual segmentation of vessel borders. A semi- 
or full-automatic segmentation method could improve 
the reproducibility of such calculated parameters and 
those derived from the vessel area[166].

Doppler US-based studies describe significantly 
low flow velocities and flow volumes in patients 
with advanced liver cirrhosis compared to healthy 
volunteers[159,167]. In a study taking the radial 4D flow 
MRI approach, the MELD score was calculated to 
estimate disease severity and correlated with image 
quality[115], yielding no correlation between image 
quality and the MELD score. Another study analyzed 
their patient cohort applying the Child-Pugh score 
to assess the degree of liver failure compared to the 
quantitative flow parameters derived from 4D flow MRI 
data and Doppler US measurements[148]. They detected 
no relevant correlation between disease severity and 
changes in liver hemodynamics; the expected changes 
were only visible in few hepatic vessels. Those 4D 
flow MRI findings might be associated with the study 
patients they recruited. In both 4D flow MRI studies, 
most of the cohorts’ liver cirrhosis patients presented 
an early stage of the disease and a low MELD score or 
Child-Pugh stage A with subsequently few anomalies 
in liver hemodynamics[115,148]. The Doppler US studies 
reveal upon closer inspection to have included patients 
with mainly advanced liver cirrhosis (Child-Pugh stage 
C) and more advanced impairments in the hepatic 
vessel system[159,167]. To further validate 4D flow 
MRI data, additional patient studies are needed with 
larger patient cohorts and involving different stages of 
disease severity.
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The most interesting novelty represented by 4D 
flow MRI is that it allows us to reliably assess both 
the portal venous system in patients with altered liver 
hemodynamics, as well as small arteries in the liver 
and splanchnic system[115,116,118,149,151] (Figure 3). It is 
a technique that offers quantitative equilibrium in the 
patient’s blood flow between the arterial inflow to the 
liver and splanchnic system and the portal venous 
outflow to the liver parenchyma. We can thus calculate 
the shunt fraction in patients with advanced liver 
cirrhosis and a portosystemic shunt[151,152]. An increase 
in liver perfusion of 424 mL/min can be verified after 
TIPS intervention by assessing the different flow rates 
in the hepatic arteries, portal vein and TIPS stent-
graft[151]. Doppler US studies reveal an increase in flow 
velocities after a TIPS intervention by a factor of 2 to 
4[168,169]. 4D flow MRI data has demonstrated results 
similar to Doppler US’s in peak velocities in the portal 
vein before TIPS insertion (4D flow MRI: 19 ± 5 cm/s 
vs Doppler US 10-20 cm/s), but revealed lower values 
in the portal vein during TIPS follow-up (4D flow 
MRI: 28 ± 7 cm/s vs Doppler US 40-60 cm/s)[151,169]. 
Normally-functioning stent-shunts yielded in-stent 
values via 4D flow MRI comparable to those in Doppler 
US with peak velocities measuring between 50 cm/s 
and 200 cm/s (range 58-194 cm/s)[151,169]. Stenoses 
within the stents were reliably depicted and confirmed 
by invasive catheter pressure gradient measurements 
during stent shunt revision[151]. These recent studies 
evaluating 4D flow MRI for abdominal imaging after 
TIPS placement show the potential for this technique 
to be an additional tool for interventional radiologists 
while enabling pre-procedure mapping and planning 
of the optimal stent graft configurations[151,152]. As a 
result, ideal outcome after TIPS placement can be 
obtained including pressure gradient reduction and 
long-term stent graft patency. 

DISCUSSION
There is ample evidence that 4D flow MRI has po
tential to image the hemodynamics in patients with 
advanced liver cirrhosis and to measure altered blood 
flow parameters. 

One of the main limitations of 4D flow MRI investi
gations addressing the liver and visceral blood flow is 
the small size of the patient and control cohorts in the 
clinical studies. This has a lot to do with the advanced 
clinical stages of patients suffering from worsening 
liver cirrhosis. It is difficult to obtain accurate data in 
patients with severe ascites, moreover, the compliance 
of patients with advanced stages of the disease is often 
poor. The imaging potential and therapeutic tools are 
sometime only palliative when treating patients with 
advanced liver cirrhosis, and we often have access 
to too few patients (e.g. Child-Pugh stage C). Their 
high mortality rate also makes a longitudinal study 
design with longer follow-up controls more difficult 
than, for example, examining patients with heart 

diseases. Nevertheless, our aim should be to carry out 
large multicenter cohort studies reflecting different 
manifestations of liver cirrhosis in order to further 
validate the 4D flow MRI technique in a clinical setting. 

Validation of the 4D flow MRI method is another 
limitation: studies have already compared 4D flow 
MRI to Doppler US, the clinical gold standard, in 
many body regions[158,170] including hepatic and 
visceral blood flow[116,149]. 4D flow MRI provides good 
scan-rescan variability and low inter- intra-observer 
variability[116,149,158,170], although most of those studies’ 
subjects were healthy volunteers, and few patients 
with liver cirrhosis were monitored during follow-
up. We will need further clinical cohort studies to 
assess the accuracy of the quantitative 4D flow MRI 
results in comparison with invasive measurements of 
hemodynamic parameters. 

A further limiting factor of the 4D flow MRI 
sequence is still the spatial and temporal resolution. 
The Cartesian 4D flow MRI approach has particular 
limitations in capturing the small intrahepatic vessels 
and hepatic arteries. With its superior resolution, the 
radial 4D flow MRI sequence visualizes the vessel 
system impressively. 4D flow MRI methods require 
further improvements to enhance the accuracy of 
quantitative results in the small vessels. Another 
limitation of 4D flow MRI compared to Doppler US 
is the acquisition of data over several cardiac cycles 
averaging over time. This issue is a concern in the 
arteries especially, less so in the portal venous system, 
whose peak velocities and flow volume values are 
slightly lower and do not reveal brief time variations 
in blood flow. The 4D flow MRI sequence is still being 
researched. The shortage of freely-available software 
packages, the time it takes to perform the pre- and 
post-processing, and the lack of a standardized 
approach for data evaluation are additional factors that 
limit the broader clinical application of this method. 
A collective endeavor is needed from clinicians, 
researchers and manufacturers to pave the way for 
greater availability of the 4D flow MRI sequence and 
consequent increased clinical applications. Further 
developments should focus on refining the clinical 
workflow, on presenting the acquired data to clinical 
colleagues, and on improving the accessibility of 
results from within existing patient archives. 

CONCLUSION
4D flow MRI has been validated for the clinical 
assessment of the liver blood flow in patients with 
advanced liver cirrhosis. It is an MRI technique that 
can examine the patient from a functional perspective 
as a part of “one-stop-shopping”. More importantly, 4D 
flow MRI is a method that supplements Doppler US. It 
provides important additional information on the vessel 
system in difficult patients. The potential of 4D flow 
MRI is growing; the more advanced it becomes, the 
better we will understand the pathophysiology of liver 
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cirrhosis and the dynamic alterations it causes. That, in 
turn, will ensure better patient management and more 
accurate risk stratification.
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