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Abstract
The purpose is to study the strength of Ramsey’s Theorem for pairs restricted to

recursive assignments of k-many colors, with respect to Intuitionistic Heyting Arith-
metic. We prove that for every natural number k ≥ 2, Ramsey’s Theorem for pairs
and recursive assignments of k colors is equivalent to the Limited Lesser Principle of
Omniscience for Σ0

3 formulas over Heyting Arithmetic. Alternatively, the same the-
orem over intuitionistic arithmetic is equivalent to: for every recursively enumerable
infinite k-ary tree there is some i < k and some branch with infinitely many children
of index i.

1 Introduction
In [5], Bishop classified as principle of omniscience any principle of logic which implies
the existence of something that we cannot compute. In particular the Limited Principle
of Omniscience (LPO) states that for any binary infinite sequence, either every entry
is null or there exists an entry which is not null. A weakening of LPO is Lesser Limited
Principle of Omniscience (LLPO) which states that given any binary infinite sequence with
at most one non-null entry, either all even entries are null or all odd entries are null. The
omniscience lays in the capability to exclude that the null entry, if any exists, is even, or to
exclude that it is odd. In [1], LLPO is reformulated using predicates: if for all x, y either
P (x) or Q(y), then either P (x) for all x, or Q(y) for all y. This formulation is equivalent in
Heyting Arithmetic (HA) to the principle formulated by Bishop, if we represent functions
through their graph. We denote with (n+ 1)-LLPO the principle LLPO restricted to Σ0

n

predicates.
Let k be a natural number. Ramsey’s Theorem for pairs in k-many colors [13] (RT2

k)
states that given any coloring over the edges of the complete graph with countably many
nodes in k-many colors, there exists an infinite homogenoeus set, i.e. there exist an infinite
subset H of the set of nodes and a color i < k such that for any x, y ∈ H the edge {x, y}
has color i. Specker proved that there are recursive colorings in 2-colors with no recursive
homogeneous sets [14]; hence for every natural number k ≥ 2, RT2

k requires omniscience
in the sense of Bishop.

There are several applications of Ramsey’s Theorem for pairs through mathematics
and computer science. For instance Ramsey’s Theorem for pairs has many applications in
mathematical analysis [2] and it is used to prove the complementation of Büchi’s automata
[6] and both the Termination Theorem [12] and the Size-Change Termination Theorem
[11], which characterize the termination for some class of programs (see also [8]). By using
constructive consequences of Ramsey’s Theorem for pairs instead of Ramsey’s Theorem
itself, namely Almost-full Theorem [7] and H-closure Theorem [4], it is possible to extract
bounds for programs proved to be terminating by the Termination Theorem and the Size-
Change Termination Theorem [4, 16, 15]. As explained in [1], the amount of classical logic
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needed to prove a theorem reflects the hardness of studying its constructive consequences.
This is our motivation for establishing how much classical logic is needed to prove Ramsey’s
Theorem for pairs.

A priori, it is not evident whether a classical principle expressing RT2
k in intuitionis-

tic arithmetic exists, but RT2
k happens to be related to a fragment of LLPO, for every

natural number k ≥ 2. In [3] we proved that Ramsey’s Theorem for pairs with recursive
assignments of two colors is equivalent to the sub-classical principle 3-LLPO (i.e. LLPO
for Σ0

2-predicates) over HA. The goal of this paper is to extend this result to any k ≥ 2,
proving that 3-LLPO is equivalent to Ramsey’s Theorem for pairs with recursive assign-
ments of k colors. On the one hand, since RT2

k =⇒ RT2
2 trivially holds in HA for every

k ≥ 2, the result of [3] yields that RT2
k for recursive colorings implies 3-LLPO. On the

other hand proving 3-LLPO =⇒ RT2
k for recursive colorings is a non-trivial task, and

the proof for 2 colors does not generalize.
It is not too difficult to take the proof by Erdős and Rado of Ramsey’s Theorem for

pairs (e.g. [10, 9]) and to formalize it in HA extended by some classical principle. In
this way we could prove that, for every natural number k ≥ 2, 4-LLPO (i.e. LLPO for
Σ0

3-predicates) implies RT2
k for recursive colorings, but this is not yet the result we want

to establish. If we look carefully through Erdős-Rado’s proof, we notice that 4-LLPO is
used to prove a combinatorial statement about k-colored trees: any infinite recursive tree
with edges in k colors, and having all edges from the same node in different colors, has a
branch with infinitely many edges in the same color. We propose to call this statement
Ramsey’s Theorem for trees. Hence if we are able to prove Ramsey’s Theorem for trees
by using only HA plus 3-LLPO, then we may conclude that 3-LLPO, Ramsey’s Theorem
for trees and RT2

k are equivalent over HA.
Our solution involves defining a method (new, as far as we know) to explore any k-ary

tree. This method provides a subtree from which we can prove Ramsey’s Theorem for
trees by using only 3-LLPO. To this aim a key definition is the D-visit of any k-ary tree,
where D is a list reflecting the priority of colors in the tree. This part of the paper is self-
contained, and proves a combinatorial result on k-ary trees in Classical Arithmetic. For
any infinite k-ary tree U there exists an infinite subtree T , recursively enumerable in U ,
such that T has only one infinite branch and this branch reflects any infinite color; namely
if there are infinitely many edges in some color c in T , then there are infinitely many edges
in color c in the infinite branch. We may precise how much classical logic we use: if U is
Σ0

1, this result may be proved in HA +3-LLPO. The tree U used in Erdős-Rados’s proof
is Σ0

1, therefore using 3-LLPO we may prove there exists an infinite subtree T whose only
infinite branch reflects any infinite color of T . T is the subtree we use to prove Ramsey’s
Theorem from 3-LLPO in HA.

This is the plan of the paper. In Section 2 we explain how to state Ramsey’s Theorem
for pairs without using function and set variables. As in [3], we drop function and set
variables, and we consider Heyting Arithmetic, in which we have no Excluded Middle
Schema but we have the full induction schema. In Section 3 we introduce D-visits and we
present how to define the subtree we use, in Section 4, to prove 3-LLPO =⇒ RT2

k for
recursive colorings, for every natural number k.

2 Ramsey’s Theorem and Classical Principles for Arith-
metic

In this section we introduce some notations for Ramsey’s Theorem and for some other
classical principles, following the one used in [3]. Any natural number k is identified with
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the set {0, . . . , k − 1}. We use N to denote the least infinite ordinal, which is identified
with the set of natural numbers. For every set X and every natural number r,

[X]r = {Y ⊆ X | |Y | = r}

denotes the set of subsets of X of cardinality r. If r = 1 then [N]r is the set of singleton
subsets of N, and just another notation for N. If r = 2 then [N]2 is the complete graph on
N: we think of any subset {x, y} of N with x 6= y as an edge of the graph. For us each edge
{x, y} has direction from min{x, y} to max{x, y}. In the general case, the elements of [N]r
are called hyper-edges, but we are not concerned with hyper-edges in this paper. Let k, r
be positive integers, then a map f : [N]r → k is called a coloring of [N]r with k colors. If
r = 2 and f({x, y}) = h < k, then we say that the edge {x, y} has color h. If f : [N]r → k
is a map then for all X ⊆ N we denote with f ′′[X]r the set of colors of hyper-edges of X,
that is:

f ′′[X]r = {h ∈ k | ∃e ∈ [X]r such that f(e) = h}.

We say that X ⊆ [N]r is homogeneous for f , or f is homogeneous on X, if X is inhabited
and all hyper-edges of X have the same color, that is, there exists h < k such that
f ′′[X]r = {h}. We also say that X is homogeneous for f in color h. If r = 1 we can think
of the function f as a point coloring map on natural numbers. In this case a homogeneous
set X is any set of points of N which all have the same color. If r = 2 we can think of
the function f as an edge coloring of a graph that has as its vertices the natural numbers.
In this case a homogeneous set X is any inhabited set of elements of N whose connecting
edges all have the same color.

We denote Heyting Arithmetic, with one symbol and axioms for each primitive recur-
sive map, with HA. We work in the language for Heyting Arithmetic with all primitive
recursive maps, extended with the symbols {f0, . . . , fn}, where n is a natural number and
fi denotes a total recursive function for all i < n+ 1. These fi will indicate an arbitrary
coloring in the formulation of Ramsey’s Theorem below. If P = ∀x1∃x2 . . . p(x1, x2, . . . ),
with p arithmetic atomic formula, and Q = ∃x1∀x2 . . .¬p(x1, x2 . . . ), then we say that
P , Q are dual each other and we write P⊥ = Q and Q⊥ = P . Dual is defined only for
prenex formulas as P , Q. We consider the classical principles as statement schemas as in
[1]. A conjunctive schema is a set C of arithmetical formulas, expressing the second order
statement “for all P in C, P holds” in a first order language. We prove a conjunctive
schema C in HA if we prove any P in C in HA. A conjunctive schema C implies a formula
P in HA if s1 ∧ · · · ∧ sn ` P in HA for some s1, . . . , sn ∈ C. The conjunctive schema C
implies another conjunctive schema C′ in HA if C implies P in HA for any P in C′. In or-
der to express Ramsey’s Theorem we also have to consider the dual concept of disjunctive
schema D, expressing the second order statement “for some P in D, P holds” in a first
order language. We prove a disjunctive schema D in HA if we prove s1 ∨ · · · ∨ sn in HA
for some s1, . . . , sn ∈ D. A disjunctive schema D implies a formula P in HA if s ` P in
HA for all s ∈ D.

Ramsey’s Theorem is a very important result for finite and infinite combinatorics. In
this paper we study Ramsey’s Theorem in k colors, for singletons and for pairs. They are
informally stated as follows:

RT1
k(Σ0

n). For any coloring ca : N → k of vertices with a parameter a, there exists an
infinite subset of N homogeneous for the given coloring. (ca ∈ Σ0

n).

RT2
k(Σ0

n). For any coloring ca : [N]2 → k of edges with a parameter a, there exists an
infinite subset of N homogeneous for the given coloring. (ca ∈ Σ0

n).
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RT2
2(Σ0

0) (respectively RT1
k(Σ0

0)) says that given a family {ca | a ∈ N} of recursive edge
(node) colorings of a graph with N nodes, then for any coloring there exists a subgraph
with N nodes such that each edge (node) of the subgraph has the same color.

Here c = {ca | a ∈ N} denotes any recursive family of recursive assignment of k
colors. In this work we formalize Ramsey’s Theorem for k colors for pairs (respectively,
for singletons) and for recursive colorings by the following disjunctive schema which we
call Ramsey’s schema:

∀a(
∨
{Ci(., ca) is infinite and homogeneous | i < k}).

A sufficient condition to prove Ramsey schema is to find at least k-many arithmetical
predicates C0, . . . , Ck−1 and a proof of ∀a(C0(., ca) is infinite homogeneous in color 0
∨ · · · ∨ Ck−1(., ca) is infinite homogeneous in color k − 1) in HA. For short we say that
for each recursive family of recursive colorings there is a homogeneous set.

The conjunctive schemata for HA we consider, expressing classical principles and taken
from [1], are the followings.

Σ0
n-LLPO. Lesser Limited Principle of Omniscience. For every parameter a

∀x, x′ (P (x, a) ∨ Q(x′, a)) =⇒ ∀xP (x, a) ∨ ∀xQ(x, a). (P, Q ∈ Σ0
n−1)

3-LLPO is a kind of law for prenex formulas and if we assume the Axiom of Choice it
is equivalent to Weak König’s Lemma for Σ0

n−1 trees.

Pigeonhole Principle for Σ0
n. The Pigeonhole Principle states that given a partition

of infinitely many natural numbers in two classes, then at least one of these classes has
infinitely many elements. For every parameter a

∀x ∃z [z ≥ x ∧ (P (z, a) ∨Q(z, a))] =⇒

∀x ∃z [z ≥ x ∧ P (z, a)] ∨ ∀x ∃z [z ≥ x ∧ Q(z, a)]. (P,Q ∈ Σ0
n)

EMn. Excluded Middle for Σ0
n formulas. For every parameter a

∃x P (x, a) ∨ ¬∃x P (x, a). (P ∈ Π0
n−1)

Recall that P⊥ denotes the dual of P for any prenex P . As shown in [1, corollary
2.9] the law of Excluded Middle for Σ0

n formulas is equivalent in HA (that is, only using
intuitionistic arithmetical reasoning) to

∃x P (x, a) ∨ ∀x P (x, a)⊥. (P ∈ Π0
n−1)

In all our schemata we use parameters. The parameter a is necessary since we need to use
in HA statements with a free variable a, like ∀a (∀x P (x, a) ∨ ∃x ¬P (x, a)) in our proof.

3 Complete D-visits
In this section we define a visit of k-ary trees with respect to a list D of priority among
colors (an ordering of some subset of all colors), then we prove its properties.

Given an arithmetical predicate X, we write EM(X) to denote the Law of Excluded
Middle for predicates of the same complexity as X. And EM(X + 1) to denote the Law of
Excluded Middle for predicates with one quantifier more than the predicate X. A k-tree
on colors C = 〈c0, . . . , ck−1〉 is a subset of the set of finite lists with elements in C which
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includes the empty sequence and which is closed under prefix. Given two finite lists λ and
µ we write λ ≺ µ if λ is a proper prefix of µ. We use <lex to denote the lexicographical
order of finite sequences.

Let U be a k-ary tree on C = 〈c0, . . . , ck−1〉. We define a subtree T of U which satisfies
the following properties. Furthermore, the proof requires a limited amount of classical
logic: it may be done in HA + EM(U + 1).

(a) There exists some predicate in HA which is Σ0
1 with respect to an oracle for U , and

which represents x ∈ T .

(b) T has a unique infinite branch r defined by some predicate of HA.

(c) If there exist infinitely many edges with color h in T , then there are infinitely many
edges with color h in r.

The construction is done by induction over k. Assume that a lazy artist has a new
work to paint. Given a k-ary tree with order on colors C = 〈c0, . . . , ck−1〉, he has to draw
a subtree on the wall of a huge room. The only wishes of the customer are

• he can draw a node only if he has already drawn its father;

• if k > 0, hence the tree has to be infinite.

Of course, if k = 0 the artist can just draw the root x0 and then he is done. Assume
that the artist already knows how to paint a subtree for a k-ary tree and he had to paint
a subtree of a (k + 1)-tree. He decides to avoid using colors with lower index, like c0,
whenever it is possible. Since he is very lazy, he decides to avoid changing the color he
is currently using, whenever it is possible. So when the artist starts using the color c0,
which he initially avoided, he tries no changing it any more, and put c0 at the end of his
color list, with the highest index and therefore with top priority. As a result, he paints a
very peculiar subtree, which we call complete C-visit of U .

1. Given root x0 and an order on colors 〈c0, . . . , ck〉, first he paints a tree for colors
〈c1, . . . , ck〉 with root x0. If it is infinite he is done. Otherwise let L be an enumera-
tion of the nodes he obtained.

2. Given i < |L|, he chooses a c0-child y of the i-th node in L (if it exists) and he
performs step (1) with root y and colors 〈c1, . . . , ck, c0〉. If it is infinite he is done.
Otherwise he does the same for i+ 1.

Assume that k = 1 (the only color is 0). Then the tree is a straight line and the artist
paints all its edges in a row. Assume that k = 2 (the only colors are 0 and 1). By unfolding
the previous rules, the artist first paints the longest line avoiding all edges in color 1. If
this branch is finite, he paints the first line with all edges in the color 0 departing from
some node in it, and so forth. Whenever he starts painting some subtree, he moves out of
it only if he completely paints it, otherwise he continues forever inside the same subtree.
When k = 3 (the only colors 0, 1, 2), the artist starts with the colors 1, 2 and the color 0
shows up only if it is impossible to paint forever from the root using 1, 2 only. In this case
the order between the colors is permuted cyclically, now the painter uses 0, 2 in preference,
and 1 only when is forced to.

Although it is not self-evident, we claim that the tree painted by the artist satisfies
the Properties (a), (b), (c); namely it is Σ0

1 in U , it has a unique infinite branch r and if
there exist infinitely many edges with color h in the tree, then there are infinitely many
edges with color h in r.
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Theorem 3.1. Let (U,≺) be a k-ary tree. Then there exists fC : N → N recursive
enumerable in U and such that in HA + EM(U + 1) we can prove the following.

1. (f ′′CN,≺) is a subtree of U ;

2. if U is infinite, then f ′′CN is infinite;

3. f ′′CN satisfies Properties (a), (b), (c).

3.1 Proof of Theorem 3.1

Throughout this section assume given an arithmetical k-ary tree U with colors in C =
〈c0, . . . , ck−1〉. We write D ⊆ C when D is a list composed of distinct elements of C,
possibly in an order different from the order they have in C.

Definition 3.2. Given a finite list L of nodes in U and a color c, we define the predicate
Complete(L, c) (and we say that L is c-complete) if any child of color c in U of a node in
L is also in L:

∀λ ∈ L(λ ∗ 〈c〉 ∈ U =⇒ λ ∗ 〈c〉 ∈ L).

Given D ⊆ C, we say that L is D-complete if L is d-complete, for all d ∈ D.

Definition 3.3. Given a finite list L of nodes in U , µ ∈ L, natural number n and a
color c, we define the predicate µ ∗ 〈c〉 is the n-th c-expansion of L, which we write
Exp(µ∗〈c〉, L, n, c). The definition is by induction on n. Exp(µ∗〈c〉, L, n, c) holds if µ∗〈c〉
is the n-th node of U , in the lexicographic ordering, having the form ν ∗ 〈c〉 for some ν:

• n = 0 and µ ∗ 〈c〉 ∈ U and ∀η <lex µ¬(η ∗ 〈c〉 /∈ U).

• n > 0 and µ ∗ 〈c〉 ∈ U and ∃η0, . . . , ηn−1 <lex µ such that (∀i ∈ n(ηi ∗ 〈c〉 ∈ U) and
∀η < µ(η ∗ 〈c〉 ∈ U =⇒ ∃i ∈ n(η = ηi)).

In order to define a tree T as required by Theorem 3.1, instead of the lexicographic
ordering <lex on lists of C we can use any total ordering of U . We introduce now a notion
of visit of U we use to enumerate the nodes of T (it is the drawing rule selected by the
“artist”). In order to provide a recursive definition, for any subset D = 〈d0, . . . , dh−1〉 of
the set of colors C and for any λ ∈ U , we define visits of U with priority D of colors from
λ (just D-visits from λ for short). Informally a D-visit of U defines a finite subtree of U
in such a way that

• the color d0 has the lowest priority, we try to use only 〈d1, . . . , dn−1〉;

• when forced to use d0, we give to it the highest priority; i.e. we keep working with
priority 〈d1, . . . , dn−1, d0〉.

Definition 3.4. Given D = 〈d0, . . . , dh−1〉 ⊆ C we define the predicate Visit(L,D, λ) on
finite lists (and we say L is a D-visit from λ) by principal induction over h and secondary
induction over the size of L. Visit(L,D, λ) holds if either

• h = 0 and L = 〈λ〉.

• h > 0 and there exists n < |L| such that L = M ∗ L0 ∗ · · · ∗ Ln−1 and the following
hold:

– M is a 〈d1, . . . , dh−1〉-visit from λ, i.e. Visit(M, 〈d1, . . . , dh−1〉, λ).
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– If n > 1, M is 〈d1, . . . , dh−1〉-complete.
– For all j < n, Head(Lj) is the j-th expansion of M in color d0 and Lj is a
〈d1, . . . , dh−1, d0〉-visit from Head(Lj), namely

(Exp(Head(Lj),M, j, d0) ∧Visit(Lj , 〈d1, . . . , dh−1, d0〉,Head(Lj))).

– For all j < n− 1, Lj is D-complete.

It is straightforward to show directly that Visit(L,D, λ) is recursive in U , and that
any element of L but the first is the descendant number c of some previous node of L, for
some c ∈ D. We may prove that any D-visit L of U from a node λ is some one-to-one
enumeration of some subtree of U of root λ, with all edges with colors in D.

Lemma 3.5. Let D = 〈d0, . . . , dh−1〉 ⊆ C and let λ ∈ U and let L be a D-visit from λ.
Then L has no repetitions and ({µ | µ ∈ L} ,≺) is a subtree of U(λ).

Proof. By unfolding definition we have to show that for every L:

∀µ ∈ L∀η ≺ µ(λ � η =⇒ η ∈ L).

We prove it by induction on h. If h = 0, then L = 〈λ〉. The thesis follows.
If h > 0, we prove our goal by secondary induction on |L|. By definition L = M ∗

L0 ∗ · · · ∗ Ln−1. If µ ∈ M , by inductive hypothesis on h − 1, we have ∀η ≺ µ(λ ≺ η =⇒
η ∈ M ⊆ L). Assume that µ ∈ Lj for some j < n. Since λ is not in Lj , by secondary
inductive hypothesis Lj is a subtree of U(Head(Lj)). Hence we have ∀η ≺ µ(Head(Lj) ≺
η =⇒ η ∈ Lj ⊆ L). Since by construction for all j < n there exists ξ in M such that
Head(Lj) = ξ ∗ 〈d0〉 we are done.

We prove that L has no repetitions by induction on h. If h = 0, then L = 〈λ〉
and we are done. If h > 0, we proceed by secondary induction on |L|. By definition
L = M ∗ L0 ∗ · · · ∗ Ln−1, with M,L0, . . . Ln−1 pairwise disjoint. Hence any repetition in
L is a repetition either in M or in some Lj . The thesis follows since we cannot have
repetitions neither in M , by induction hypothesis on h − 1, nor in Lj , by secondary
induction hypothesis.

Given two finite lists η and µ we write η C µ to mean that η is a suffix of µ.

Definition 3.6. Let D = 〈d0, . . . , dh−1〉 ⊆ C and let λ ∈ U . We define the D-subtree of
U(λ) as the subtree of all branches of U with colors in D:

µ ∈ UD(λ) ⇐⇒ ∃η C µ(µ = λ ∗ η ∧ η ∈ List(〈d0, . . . , dh−1〉)

Notice that for every λ ∈ U , UD(λ) is recursive in U . Any D-complete D-visit of U
from some node λ happens to cover UD(λ).

Lemma 3.7. Let D = 〈d0, . . . , dh−1〉 ⊆ C and let λ ∈ U and let L be a D-visit from λ.
({µ | µ ∈ L} ,≺) is a subtree of UD(λ), and it is equal to UD(λ) if L is D-complete.

Proof. Let L be a D-visit from λ. By Lemma 3.5, (({µ | µ ∈ L} ,≺),≺) is a subtree of
U(λ). By definition of D-visit any edge in (({µ | µ ∈ L} ,≺),≺) has color in D, thus we
obtain that L is a subtree of UD(λ).

Moreover assume that L is D-complete. Then, by definition, every child in UD(λ) of a
node in L is in L. It is straightforward to show by induction on m that

∀m∀µ ∈ UD(λ)(|µ| = |λ|+m =⇒ µ ∈ L).
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Indeed if m = 0, then µ = λ and λ ∈ L. Otherwise if m > 0, then µ = ξ ∗ 〈di〉 ∈ UD(λ),
for some i ∈ h and ξ ∈ UD(λ). By induction hypothesis, |ξ| = m − 1, ξ ∈ L. By
di-completeness, ξ ∗ 〈di〉 ∈ L.

As a corollary any D-complete D-visit from some node λ is maximal over the D-visits
from λ with respect to the prefix order of lists.

Corollary 3.8. Let D = 〈d0, . . . , dh−1〉 ⊆ C, let λ ∈ U and let L, L′ be two D-visits from
λ. If L is a prefix of L′ and L is D-complete then L = L′

Proof. By Lemma 3.7, ({µ | µ ∈ L} ,≺) and ({µ | µ ∈ L′} ,≺) are subtrees of UD(λ). More-
over, since L is D-complete, by Lemma 3.7 every µ ∈ UD(λ) belongs to L. Assume by
contradiction that L = L ∗ 〈µ〉 ≤ L′ for some µ. Since µ ∈ UD(λ), we have µ ∈ L. Hence
in L′ there is a repetition, but this contradicts Lemma 3.5.

Applying Corollary 3.8, we may show that the prefix is a linear order over the D-visits
from λ.

Proposition 3.9. Let D = 〈d0, . . . , dh−1〉 ⊆ C, let λ ∈ U and let L, L′ be two D-visits
from λ. Then L and L′ are comparable by prefix.

Proof. By induction over h. If h = 0 then L = L′ = 〈λ〉, hence the thesis.
If h > 0, since L, L′ are D-visits from λ, we have L = M ∗ L0 ∗ · · · ∗ Lm−1 and

L′ = M ′ ∗ L′0 ∗ · · · ∗ L′n−1 as in the definition. We may assume without loss of generality
that m ≤ n.

If m = n = 0, then L = M and L′ = M ′. Hence, by induction hypothesis on h− 1, M
and M ′ are comparable by prefix.

If 0 = m < n, thenM ′ is 〈d1, . . . , dh−1〉-complete. By Corollary 3.8, L = M ≤M ′ ≤ L′.
If 0 < m ≤ n, we prove the thesis by secondary induction on max {|L|, |L′|}. By

Corollary 3.8, M = M ′ since they are 〈d1, . . . , dh−1〉-complete and comparable by pre-
fix. Since the d0-extensions of M are the same, Head(Li) = Head(L′i) for all i < m.
Since λ does not belong to Li and L′i, we have |Li| < |L| and L′i| < |L′|. Therefore
max {|Li|, |L′i|} < max {|L|, |L′|}, and by secondary induction hypothesis we have Li and
L′i are comparable by prefix for all i < m.

• If i < m− 1 then Li and L′i are D-complete, therefore by Corollary 3.8, Li = L′i.

• Assume now that i = m = n. Then L and L′ have the same prefixM∗L0∗· · ·∗Lm−2 =
M ′ ∗ L′0 ∗ · · · ∗ L′m−2 and Lm−1, L′m−1 are comparable by prefix. Thus L and L′ are
comparable by prefix.

• If i = m < n, L′m−1 is D-complete. Therefore Lm−1 ≤ L′m−1 by Corollary 3.8. It
follows:

L = M ∗ L0 ∗ · · · ∗ Lm−2 ∗ Lm−1 ≤M ′ ∗ L′0 ∗ · · · ∗ L′m−2 ∗ L′m−1 ≤ L′.

Given a D-visit L which is not D-complete, we can extend it to another D-visit.

Lemma 3.10. Let D = 〈d0, . . . , dh−1〉 ⊆ C, let λ ∈ U and let L be a D-visit from λ.
Either UD(λ) = {η | η ∈ L} and L is D-complete, or UD(λ) ⊃ {η | η ∈ L} and there exists
µ ∈ U such that L ∗ 〈µ〉 is a D-visit from λ.
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Proof. By induction over h. If L is D-complete, by Lemma 3.7 we deduce UD(λ) =
{η | η ∈ L}. If h = 0, then L = 〈λ〉 is D-complete and UD(λ) = {λ}.

Assume that L is not D-complete and h > 0. We argue by induction on |L|. By
definition we have L = M∗L0∗· · ·∗Ln−1. If n = 0, by Lemma 3.7, we have U〈d1,...,dh−1〉(λ) ⊇
{η | η ∈ L} = {η | η ∈M}. By EM(U) we may decide whether

∃i ∈ [1, d− 1]¬Complete(M,di) ∨ ∀i ∈ [1, d− 1] Complete(M,di)

In the first case we have U〈d1,...,dh−1〉(λ) ⊃ {η | η ∈ L} = {η | η ∈M}, hence can ap-
ply the induction hypothesis on h − 1 for M and we get the thesis. In the second
case, M is 〈d1, . . . , dh−1〉-complete. Since U〈d1,...,dh−1,d0〉(λ) ⊃ {η | η ∈ L} = {η | η ∈M}
there exists at least one d0-expansion of L0. Choose the first µ such that Exp(µ,M, d0).
Now assume that n > 0. By definition of D-visit, for every j < n − 1 we have Lj
is D-complete. By secondary induction hypothesis on Lj , for all j < n − 1 we have
U〈d0,...,dh−1〉(HeadLj) = {η | η ∈ Lj}. By L not D-complete we have Ln−1 not D-complete,
therefore U〈d1,...,dh−1,d0〉(Head(Ln−1)) ⊃ {η | η ∈ Ln−1}. By secondary induction hypothe-
sis on Ln−1 we get the thesis.

As a consequence of both Proposition 3.9 and Lemma 3.10, if UD(λ) is infinite we may
prove that any D-visit from λ can be uniquely extended to another D-visit from λ.

Theorem 3.11. Let D = 〈d0, . . . , dh−1〉 ⊆ C and λ ∈ U be such that UD(λ) is infinite.
For every D-visit L from λ, there exists a unique µ such that L ∗ 〈µ〉 is a D-visit from λ.

Proof. Existence. Lemma 3.10 and UD(λ) infinite yield the existence of µ for every given
L finite.

Uniqueness. If L ∗ 〈µ1〉 and L ∗ 〈µ2〉 are D-visits from λ, by Proposition 3.9 they are
comparable by prefix. Hence µ1 = µ2.

Theorem 3.11 guarantees that the following function, which we call complete D-visit
of U with abuse of notation, is well-defined:

Definition 3.12. Given D = 〈d0, . . . , dh−1〉 ⊆ C and λ ∈ U be such that UD(λ) is infinite,
define fλD : N→ List(C), the enumeration of the complete D-visit of U from λ, as follows:

fλD(m) = µ ⇐⇒ (m = 0 ∧ µ = λ) ∨ (m > 0 ∧

∃µ0, . . . , µm−1(
m−1∧
i=0

(fλD(i) = µi) ∧Visit(〈µ0, . . . , µm−1, µ〉, D, λ))).

Note that fλD is recursive in U . Indeed it may be defined by minimalization: if U is
infinite, by Theorem 3.11 there is always some unique new element to be added to the
sequence. Thus fλD defines a recursive enumerable subtree of UD(λ) by Lemma 3.7. We
suppose that there is an efficient algorithm enumerating the tree fλD(N), using stacks and
pointers, but to design it is out of the scope of this paper. Notice that f 〈〉C is the strategy
of the “artist”.

In order to prove that T = f
〈〉
C
′′N has a unique infinite branch which satisfies the

Property (c), we define the following predicate.

Definition 3.13. Assume that D = 〈d0, . . . , dh−1〉 ⊆ C and λ ∈ U be such that UD(λ) is
infinite. A node µ is stable for λ if all nodes after µ in fλD ′′N are descendants of µ.

Stable(µ) ⇐⇒ ∃m∀n > m∀η((fλD(m) = µ ∧ fλD(n) = η) =⇒ µ ≺ η).
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Our next goal is to show that the set of ancestors of stable nodes forms the unique
infinite branch of T , when T is infinite. The first step is to prove that stable nodes form
a straight line in any infinite D-visit.

Lemma 3.14. Assume that D = 〈d0, . . . , dh−1〉 ⊆ C and λ ∈ U be such that UD(λ) is
infinite.

1. If µ is stable, then UD(µ) is infinite.

2. If µ1 and µ2 are stable, then they are comparable by prefix.

Proof. 1. By definition of Stable(µ), there existsm such that fλD(m) = µ and for every n >
m, µ ≺ fλD(n). Therefore fλD ′′ {n | n > m} ⊆ UD(µ). Since all elements in fλD ′′ {n | n > m}
are pairwise distinct by definition and Lemma 3.5 we are done.

2. Let m1 and m2 be such that fλD(m1) = µ1 and fλD(m2) = µ2. Without loss of
generality we may assume that m1 ≤ m2. If m1 < m2, Stable(µ1) yields µ1 ≺ µ2.

We can prove that there are infinitely many stable nodes in any infinite D-visit from
λ. To this aim we first prove that if a visit contains some d0-child, it contains some stable
node which is a d0-child.

Lemma 3.15. Let D = 〈d0, . . . , dh−1〉 ⊆ C and let λ ∈ U such that UD(λ) is infinite.
Assume that the visit contains two nodes, one the d0-child of the other, then the visit
contains some node fλD(n), with n > 0, which is stable and d0-child of some other node of
the visit.

Proof. Define L = 〈fλD(0), . . . , fλD(p)〉. Assume that the visit L contains an edge in color
d0, then L = M ∗ L0 ∗ · · · ∗ Lm−1, for m > 0. Hence, by definition, M is 〈d1, . . . , dh−1〉-
complete. Assume that |M | = l. Let t be the maximum such that the expansion number
t of M exists, that is, such that Exp(µ, t,M) for some µ. We can prove such maximum
exists by the following statements of EM(U + 1) for i < l:

∃µ(Exp(µ, i,M)) ∨ ∀µ(¬Exp(µ, i,M)).

For all i ≤ t ≤ l, let µi be the expansion number t of M , that is, the unique witness of
Exp(µi, i,M). Thus, by at most l-many instances of the following statement of EM(U+1)

∃n(fλD(n) = µi) ∨ ∀n(fλD(n) 6= µi)

We find the greater n such that fλD(n) is a d0-expansion of M . Such node is stable by
unfolding definitions. Hence n and fλD(n) are the wished witnesses.

By Lemma 3.15, as long as we find d0-children we find stable nodes which are d0-
children. From this remark and induction over the number of colors we may prove:

Proposition 3.16. Let D = 〈d0, . . . , dh−1〉 ⊆ C and let λ ∈ U such that UD(λ) is infinite.
If fλD(m) is stable for λ, there exists n > m such that fλD(n) is stable for λ.

Proof. By induction on h. If h = 0 is trivial since the only node of UD(λ) is λ. Let h > 0.
By EM(U + 1) either there are two nodes of index greater or equal to m in fλD(N), one
the d0-child of the other, or not:

∀m0 ≥ m∀m1 > m0∀µ(fλD(m0) = µ ∧ fλD(m1) 6= µ ∗ 〈d0〉)∨
∃m0 ≥ m∃m1 > m0∃µ(fλD(m0) = µ ∧ fλD(m1) = µ ∗ 〈d0〉).
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The first case yields U〈d1,...,dh−1〉(f
λ
D(m)) is infinite. Hence by inductive hypothesis on

h − 1, we get there exists n > m such that fλD(n) is stable for fλD(m). Hence fλD(n) is
stable also for λ.

Otherwise, given the witnesses of

∃m0 ≥ m∃m1∃µ(fλD(m0) = µ ∧ fλD(m1) = µ ∗ 〈d0〉),

we obtain some edge in color d0 in L. Hence, by applying Lemma 3.15 to UD(fλD(m))
which is infinite since fλD(m) is stable (Lemma 3.14.1), we have that fλD(n) is the wished
witness, because n > m.

From Lemma 3.15 and Proposition 3.16 we will prove that any color occurring infinitely
many times in a D-visit occurs infinitely many times between some node and some stable
node. This is to say: given a color di, if there are infinitely many di-children in the D-visit
from λ, then there are infinitely many di-children which are stable. The proof is direct
only for the color d0, for a generic color di we use induction over the color position in the
list D.

Proposition 3.17. Let D = 〈d0, . . . , dh−1〉 ⊆ C and let λ ∈ U such that UD(λ) is infinite.
Let i < h. Assume that there are infinitely many nodes in the D-visit from λ which are
di-child of some other node of the visit. Then there are infinitely many stable nodes in the
D-visit from λ which are di-child of some other node of the visit.

Proof. We prove, by induction over i, that for every q there is some stable node fλD(m),
with m > q, in the D-visit from λ which is a di-child of some other node of the visit.

Let i = 0 and fix a natural number q in order to prove that there exists m > q such
that fλD(m) is both stable and a d0-child of some other node of the visit. By Proposition
3.16 there is p > q such that fλD(p) is stable. Hence UD(fλD(p)) is infinite by Lemma 3.14.1.
Since there are p < m0 < m1 such that fλD(m1) is a di-child of fλD(m0), by Lemma 3.15
there exists m > p > q such that fλD(m) is both stable and a d0-child for some other node
of the visit.

Assume that the thesis holds for i. By secondary induction over h. If h = 0, then
UD(λ) has a unique node λ, hence the thesis.

Assume that h > 0 and fix a natural number q. By Proposition 3.16 there is p > q
such that fλD(p) is stable. Hence UD(fλD(p)) is infinite by Lemma 3.14.1. Let p < m0 < m1
be such that fλD(m1) is a di-child of fλD(m0). If there are no n > p such that fλD(n) is
a d0-child of some other node, then for every n′ > p, fλD(n′) = fλ〈d1,...,dh−1〉(n

′). Then
U〈d1,...,dh−1〉(f

λ
D(p)) is infinite and by induction hypothesis on h− 1 we are done.

Otherwise, by Lemma 3.15, there exists some n > p such that fλD(n) = µ is both
stable and a d0-child of some other node of the visit. Hence by definition, for every j,
fλD(n + j) = fµ〈d1,...,dh−1,d0〉(j) and U〈d1,...,dh−1,d0〉(µ) is infinite. By hypothesis for every
n ≤ n+ q′ there exist some n+ q′ < n+ q′+m0 < n+ q′+m1 such that fµ〈d1,...,dh−1,d0〉(q

′+
m1) = fλD(n + q′ + m1) = fλD(n + q′ + m0) ∗ 〈di〉 = fµ〈d1,...,dh−1,d0〉(q

′ + m0) ∗ 〈di〉. The
position of di in the list 〈d1, . . . , dh−1, d0〉 is i − 1. Thus by inductive hypothesis on i we
get the thesis.

We can now show that f 〈〉D ′′N has a unique branch which reflects any infinite color. The
entire construction requires only the sub-classical principle EM(U + 1), Excluded Middle
over predicates with one quantifier more than in the definition on U . From this remark
we will show that we may prove Ramsey’s Theorem for recursive colorings using only
3-LLPO.
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Theorem 3.18 (HA + EM(U + 1)). Let D = 〈d0, . . . , dh−1〉 ⊆ C and let λ ∈ U such that
UD(λ) is infinite. fλD ′′N has a unique infinite branch r such that it satisfies Property (c).

Proof. Existence. Define r as the closure of the set of all stable nodes. Namely

µ ∈ r ⇐⇒ ∃η(µ � η ∧ Stable(η))

By Lemma 3.14.2, r is linearly ordered. By Proposition 3.16 we have that r is infinite.
Uniqueness. Assume that r1 and r2 are infinite branches and, for every k ∈ N, denote

by ri(k) the node of height k in ri. We claim that for every natural number k, r1(k) = r2(k).
Fix k ∈ N and i ∈ {1, 2}. By Proposition 3.16 there exists n greater than the indexes
of r1(k) and r2(k) such that fλD(n) is a stable. Since ri(k) has infinitely many proper
descendants (which are pairwise distinct by Lemma 3.5), there exists ni > n such that
ri(k) ≺ fλD(ni). Moreover by Stable(fλD(n)) we have fλD(n) ≺ fλD(ni). Hence ri(k) and
fλD(n) are comparable by prefix and distinct. By Lemma 3.5 there are no repetition in
fλD(N), therefore ri(k) ≺ fλD(n). Thus r1(k) and r2(k) are ancestors of fλD(n) of the same
height. Hence r1(k) = r2(k).

r satisfies Property (c). By Proposition 3.17, if there are infinitely many edges in color
di, then we can find infinitely many stable nodes which are di-children. Hence we have
infinitely many nodes in di which are di-children.

Note that the branch r defined in the proof above is ∆0
2(U). In fact r contains all the

nodes with infinitely many descendants.

µ ∈ r ⇐⇒ ∀m∃n > m∃η(fλD(n) = η ∧ µ ≺ η).

4 From omniscience to homogeneous sets
Let k ≥ 2 be a fixed natural number. We modify Erdős-Rado’s proof of RT2

k (see e.g.
[10]) to obtain a proof of 3-LLPO =⇒ RT2

k(Σ0
0) over HA. It is enough to prove that if

{ca | a ∈ N} is a recursive family of recursive colorings, a finite number of statements in
3-LLPO imply that there are predicates C0(., c), . . . , Ck−1(., c) such that,

∀a(
∨
{Ci(., ca) is infinite and homogeneous | i < k}).

We first sketch Erdős-Rado’s proof of RT2
k. It consists in defining a suitable infinite

k-ary tree V . We first remark that RT1
k (Ramsey’s Theorem for colors and points of N)

is nothing but the Pigeonhole Principle: indeed, if we have a partition of N into k-many
colors, then one of these classes is infinite. We informally prove now RT2

k from RT1
k. Fix

any coloring f : [N]2 → k of all edges of the complete graph having support N. If X is
any subset of N, we say that X defines a 1-coloring of X if for all x ∈ X, any two edges
from x to some y, z in X have the same color. If X is infinite and defines a 1-coloring,
then, by applying RT1

k to X we produce an infinite subset Y of X whose points all have
the same color h. According to the way we color points, all edges from all points of X all
have the color h. Thus, a sufficient condition for RT2

k is the existence of an infinite set
defining a 1-coloring. In fact we need even less. Assume that V is a graph whose ancestor
relation is included in the complete graph N. We say that V is an Erdős’ tree in k colors
(e.g. [4, Definition 6.3]) if for all x ∈ V , all i = 1, . . . , k all descendants y, z of the child
number i of x in V , the edges x to y, z have the same color number i. There is some
Erdős’ tree recursively enumerable in the coloring (e.g. [10, 3]). Assume there exists some
infinite k-ary Erdős’ tree V . Then V has some infinite branch r by König’s Lemma. r is
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a total order in V , therefore r is a complete sub-graph of N. Thus, r defines an infinite
1-coloring and proves RT2

k. Therefore a sufficient condition for RT2
k is the existence of an

infinite k-ary tree Erdős’ tree V .
In [9] Jockusch presented a modified version of Erdős-Rado proof. Erdős-Rado’s proof,

Jockusch’s proof and our proof differ in the definition of V , although until this point they
are the same. Erdős and Rado introduce an ordering relation ≺E on N which defines the
proper ancestor relation of a k-ary tree E on N. The k-coloring on edges of N, restricted
to the set of pairs x ≺E y, gives the same color to any two edges x ≺E y and x ≺E z
with the same origin x. This defines an Erdős’ tree over N. In both Erdős-Rado and
Jockusch’s proofs, an infinite homogeneous set is obtained from an infinite set of nodes of
the same color in an infinite branch of the tree. In Erdős-Rado and Jockusch’s proofs, the
Pigeonhole Principle is applied to a ∆0

3-branch obtained by König’s Lemma. To formalize
these proofs in HA we would have to use the classical principle 4-LLPO: the Pigeonhole
Principle for ∆0

3 predicates requires 4-LLPO. Our goal is to prove RT2
k(Σ0

0) using the
weaker principle 3-LLPO.

Proposition 4.1 (HA + EM2). For every k ≥ 2 and for every recursive coloring ca :
[N]2 → k, there exists an Erdős’ tree T for the coloring ca which satisfies the following
properties:

(a) there exists some ∆0
2 predicate in HA which represents x ∈ T ;

(b) T has a unique infinite branch r defined by some predicate of HA;

(c) if there exist infinitely many edges with color h in T , then there are infinitely many
edges with color h in r.

Proof. Let k ≥ 2. The standard Erdős’ tree (N,≺E) associated to a coloring ca : [N]2 → k
is defined as a graph, as the set of natural numbers equipped with the following relation.

x ≺E y ⇐⇒ ∀z < x(z ≺E x =⇒ ca({z, x}) = ca({z, y})).

(N,≺E) is recursively enumerable on the coloring, and recursive enumerable if the coloring
is recursive. We would like to apply Theorem 3.1 to produce an infinite branch r as
required, but Theorem 3.1 requires a tree given as set of branches. Thus, we have to prove
in HA that given a graph-tree (N,≺E) we can extract a tree (Ẽ,≺) where Ẽ ⊂ List(k)
which keeps all information we need. We define (a0, . . . , aj) ∈ Ẽ if and only if there are
nodes x0, . . . , xj+1 ∈ N such that for every i ∈ j+1 c(xi, xi+1) = aj and xi+1 is a ≺E-child
of xi. (N,≺E) contains the value of each node while the tree (Ẽ,≺) contains only the color
of each edge, but note that given both (N,≺E) and (Ẽ,≺), we can recursively translate
any subtree of (Ẽ,≺) in a subtree of (N,≺E).

By applying Theorem 3.1 to the k-ary tree (Ẽ,≺), the subtree T of (N,≺E) which
corresponds to f ′′CN is ∆0

2 and has exactly one infinite branch, the rightmost.

Let T be the witness of Proposition 4.1. We may prove that there are infinitely many
nodes of the same color in the infinite branch of T using only 3-LLPO. Any infinite subset
of the infinite branch of T with all nodes in the same color will be some monochromatic
set for the original graph. Moreover our proof recursively defines k-many monochromatic
∆0

3-sets, one of each color, that can not be all finite, even if we can not decide which of
these is the infinite one.

Theorem 4.2. Let k ≥ 2. Then 3-LLPO implies RT2
k(Σ0

0) in HA.
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Proof. Given T the witness of Proposition 4.1, we can prove Ramsey’s Theorem for pairs
and k-many colors in 3-LLPO. We have to prove that the infinite branch of T (which
exists and it is unique by Proposition 4.1.b) has infinitely many pairs x ≺T y of color h.
By Proposition 4.1.c, it is enough to prove that T has infinitely many pairs x ≺T y of
color c, for some h. By Proposition 4.1.a, x ∈ T is a ∆0

2 predicate. Thus, if we apply
the Pigeonhole Principle for Σ0

2 predicates (k − 1)-many times, we deduce that T has
infinitely many edges in color h for some h ∈ k. However, the Pigeonhole Principle for Σ0

2
predicates is a classical principle, therefore we have to derive the particular instance we
use from 3-LLPO.

Claim. 3-LLPO implies the Pigeonhole Principle for Σ0
2.

Proof Claim 4. The Infinite Pigeonhole Principle for Σ0
2 predicates can be stated as fol-

lows:
∀x ∃z [z ≥ x ∧ (P (z, a) ∨Q(z, a))]

=⇒ ∀x ∃z [z ≥ x ∧ P (z, a)] ∨ ∀x ∃z[z ≥ x ∧Q(z, a)],

with P and Q Σ0
2 predicates. We prove that the formula above is equivalent in HA to

some formula of 3-LLPO. Let

H(x, a) := ∃z [z ≥ x ∧ P (z, a)]
K(x, a) := ∃z [z ≥ x ∧Q(z, a)].

In fact both H and K are equivalent in HA to Σ0
2 formulas H ′, K ′. By intuitionistic

prenex properties (see [1])

∃z[z ≥ x ∧ (P (z, a) ∨Q(z, a))]

is equivalent to
∃z[z ≥ x ∧ P (z, a)] ∨ ∃z[z ≥ x ∧ Q(z, a)].

The formula above is equivalent to H ′ ∨ K ′. Thus, any formula of Pigeonhole Principle
with P , Q Σ0

2 is equivalent in HA to

∀x(H ′(x, a) ∨K ′(x, a)) =⇒ ∀xH ′(x, a) ∨ ∀xK ′(x, a),

which is the instance of 3-LLPO with H ′, K ′.

Thus, there exist infinitely many edges of r in color h, for some h ∈ k. Their smaller
nodes define a monochromatic set for the original graph, since given an infinite branch r
of an Erdős’ tree and x ∈ r, if there exists y ∈ r such that x ≺T y and {x, y} has color h,
then for every z ∈ r such that x ≺T z, the edge {x, z} has color h. Thus we can devise a
coloring on r, given color h to x if {x, y} has color h, with y child of x in r. After that,
every infinite set of points with the same color in r defines an infinite set with all edges
of the same color, and then it proves Ramsey’s Theorem for pairs in k-many colors in HA
starting from the assumption of 3-LLPO.

5 Conclusion
The complexity of the homogeneous sets. The infinite branch r of the tree T defined
in Section 4 is ∆0

3. As remarked in [3], for some recursively enumerable tree T , the branch
r cannot be ∆0

2. Here we argue classically for short. Suppose by contradiction that r is
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∆0
2. In this hypothesis we will prove that for each recursive coloring there exists an infinite

homogeneous set ∆0
2. Indeed, using the fact that all edges from the same point of r to

another point of r have the same color, we may describe the homogeneous set of color c
as the set of points whose edges to any other point of r all have color h:

HomSet(y) ⇐⇒ y ∈ r ∧ ∀z > y(InfiniteBranch(z) =⇒ c({y, z}) = h)

and also as the set of points having some edge to another point of r of color c:

HomSet(y) ⇐⇒ y ∈ r ∧ ∃z > y(InfiniteBranch(z) ∧ c({y, z}) = h).

Therefore, if r is ∆0
2 then the first formula is Π0

2 and the second one is Σ0
2. So for every h

the homogeneous set is ∆0
2. Since at least one of these sets is infinite and since Jockusch

proved that exists a coloring of [N]2 that has no infinite homogeneous set Σ0
2 [9], we obtain

a contradiction. So r 6∈ ∆0
2 in general.

In Jockusch’s proof he shows that one of the homogeneous sets (the red one in his
notation) is Π0

2, since at the beginning of each step he looks for red edges; while the
other one are ∆0

3. In our proof we can see that all homogeneous sets are ∆0
3, since our

construction is more symmetric with respect to the k-many colors. As a matter of fact,
since r is ∆0

3, the previous two formulas are respectively Π0
3 and Σ0

3. This is enough in
order to prove that all homogeneous sets are ∆0

3. There always is an infinite homogeneous
set Π0

2, but apparently the proof is purely classical and cannot compute the integer code
of such Π0

2 predicate. Again we refer to Jockusch [9] for details.

More about 3-LLPO. 3-LLPO is a principle of uncommon use, but it is equivalent to
König’s Lemma, given function variables and choice axiom [1]. As shown in [3] n-LLPO
is equivalent to the union of DeMorgan(Σ0

n) and EMn−1, where

DeMorgan(Σ0
n) := ¬(P ∧Q) =⇒ ¬P ∨ ¬Q. (P,Q ∈ Σ0

n)

This equivalence helps us to analyse the proof of Theorem 4.2. Indeed we can see that
the most of the proof (namely Section 3) uses only EM2 and that DeMorgan(Σ0

3) (and so
3-LLPO) is used only to yield the Pigeonhole Principle for Σ0

2 predicates at the end of the
proof of Theorem 4.2.

Further works. The first question that raises after this work is what is the minimal
classical principle that implies RT2

k(Σ0
n), Ramsey’s Theorem for pairs in two colors, but

with any Σ0
n family of colorings. We conjecture that, modifying conveniently the proofs

of RT2
2(Σ0

0) =⇒ 3-LLPO [3] and of 3-LLPO =⇒ RT2
k(Σ0

0) (Theorem 4.2), we should
obtain that for every k ≥ 2:

(n+ 3)-LLPO ⇐⇒ RT2
k(Σ0

n). (1)

A first development of this paper might be to check of the equivalence 1, for each n ∈ N.
By increasing the size of the edges, we conjecture also that for every natural number n ≥ 2:

(n+ 1)-LLPO ⇐⇒ RTn
k(Σ0

0). (2)

In this paper we consider Ramsey’s Theorem as schema in order to work with first
order statements. Another possibility is to study Ramsey’s Theorem working in HA +
functions + description axiom (that is a conservative extension of HA, see [1]), in order
to use only one statement to express Ramsey’s Theorem for pairs in two colors. It seems
to us that this unique statement is still equivalent to 3-LLPO.
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