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limr_.~sup 1. fo T g(x(t), u(t)) dt (average yield criterion) 
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are considered, where the initial value x(0) may be free or restricted. We 
study the existence of  optimal periodic solutions for the above problems: if 
approximately optimal solutions have a limit point in the interior of  some 
control set, then there exist approximately optimal periodic solutions. This 
result is applied to the growth of linear control semigroups and to a three- 
dimensional predator-prey harvesting model. 
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I. Introduction 

Consider a control system described by 

~c(t)=Xo(x(t))+ ~ ui(t)Xi(x(t))  , t>-O, (1.1) 
i = 1  

where u( t) := (ui( t) ) ~ U c R r and x( t) ~ g d. We are interested in optimal control 
problems where either an average criterion 

lim sup-~ g(x(t) ,  u(t)) dt (1.2) 
T ~ e o  

or a discounted criterion 

lim e-~'g(x(t), u(t)) dt (1.3) 

have to be maximized, the initial value x (0 )=  xo may be free or restricted. 
The results for the problem on the infinite time interval R°+ = [0, ec) are rather 

scarce (see [11] or [4]). Hence a common practice in applications has been to 
restrict attention to constant controls u yielding a steady state xu of (1.1)--then, 
in a second step, one tries to reach the optimal equilibrium. A more sophisticated 
approach allows for trajectories and controls of some common period r > 0. Up 
to a certain degree, this takes into account the dynamics of the system and often 
leads to substantial improvements, notably in chemical and aerospace engineer- 
ing. The relations between the steady state and the periodic optimization problems 
(for criterion (1.2)) have been studied to some extent (see [7] for a recent 
presentation). 

In this paper we address the problem from the following point of view: under 
which conditions does the general problem on R°+ have a periodic solution? As 
simple counterexamples show, this reduction is not always possible. Even for 
bounded trajectories, and under periodic forcing, the solutions of (1.1) may show 
a quite complicated behavior. Note that methods of Fourier expansion are not 
helpful, since (1.1) is nonlinear, the control values are restricted and an approxi- 
mation on the unbounded time interval [0, ee) is needed. Instead, finite time 
controllability properties and control sets (see [9]) are crucial. 

In Section 2 we recall the notion and some properties of control sets, and 
prove a finite time controllability property. In Section 3 we define limit sets for 
trajectories of  (1.1) corresponding to a control u(t). We show that every limit 
set has nonvoid intersection with some control set. Furthermore, a discussion of 
the one-dimensional case (with an arbitrary number of controls) is given. Section 
4 presents the main result of this paper: periodic solutions are approximately 
optimal for the infinite time problem, if approximately optimal solutions have a 
limit point in the interior of some control set. In Sections 5 and 6 this result is 
applied to the growth of linear control semigroups, motivated by a stability 
problem from linear, parameter-excited stochastic systems, and to a three- 
dimensional predator-prey harvesting model. 
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2. Control Sets and Finite Time Controllability 

The main result of  this section is concerned with finite time controllability of  
nonlinear control systems in certain subsets of  the state space, called control sets 
(compare [1]). We first have to introduce some notation: 

Consider the control system 

Y~= Xo(x)+ ~ u, Xi(x) (2.1) 
i = l  

on a paracompact ,  connected, finite-dimensional C °~ manifold M (of  dimension 
m) with a Riemannian structure p. The vector fields X o , . . . ,  Xr are assumed to 
be C ° and the set of  admissible controls G//is ~ = {u: R ° -> U :  R ~ measurable}. 
By q~(t, x, u) we denote the solution of  (2.1) at time t with initial value x ~  M 
under the control action u ~ ~ and, since we are dealing with infinite time 
problems, it is assumed that all solutions exist for all t -  0. (This is always true, 
if M is compact,  or in a compact  C-invariant set K c M, i.e., ¢(t,  x, u )~  K for 
all t -> 0 and all x ~ K, u a qJ.) 

Recall the following definitions from geometric control theory: ff+(x, t ) =  
{ y a  M, there exists u~  U such that y = q~(t, x, u)} is the positive orbit of  x ~  M 
at time t, O~T(X) = I,_.Jo<,<7* (~+(x, t), ff+(x) = f f ~ ( x ) ,  and similarly G-(x, t) = 
{y ~ M, there exists u c e// such that x = q~(t, y, u)}, etc. _ _  

A set D c  M is called a control set of  (2.1), if D c  0'+(x) for all x ~  D and 
D is maximal with respect to this property. (One-point sets {x} c M are considered 
as control sets only if they are rest points of  (2.1), i.e., if  X i ( x ) = 0  for all 
i = 0 , . . . ,  r.) A control set C is called invariant, if C = ~+(x) for all x c C, all 
other control sets are called variant. Note that because of maximality, control 
sets are either disjoint or identical (and always path connected). 

In this set-up M can be decomposed uniquely as 

M = A u B u C ,  (2.2) 
where A is the set of  points outside control sets, B contains the points in some 
variant control set, and C contains those points that are elements of  invariant 
control sets (see, e.g., [1]). 

Note, furthermore, that for these systems the closures of  the (positive or 
negative) orbits at time t coincide for measurable and for piecewise constant 
controls, and also for U c R ~ and the convex hull co U c W. Hence the (variant 
and invariant) control sets for the different classes of  admissible controls agree. 

We now introduce an assumption under which we prove our main results: 
For all control sets Do and all x ~ D ,  it holds: there exists a time 
T >  0 (depending on x) such that for all open neighborhoods U(x) 
we have int ~T(X)  ~ U(x) ~ 2: and int ~2_7-~ U(x) ~ ~. (2.3) 

Condition (2.3) is, e.g., satisfied in the following set-up, which is standard 
in geometric control theory: let ~ = ~ ¢ ( X o ,  •. •, Xr) be the Lie algebra generated 
by the vector fields X o , . . . ,  X~ and A z the distribution corresponding to ~ in 
the tangent bundle TM. I f  ~ has the maximal integral manifolds property (see 
[14]), then (2.1) lives on one of these maximal integral manifolds. Hence we can 
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restrict ourselves without loss of generality to the case h~e(x) = TxM for all x ~ M, 
where TxM is the tangent space to M at x. This implies local accessibility of  the 
control system (2.1) and hence (2.3) is satisfied for all x c M, all T >  0. 

Lemma 2.1. Assume (2.3), then the following assertions hold: 

(i) Every invariant control set C has nonvoid interior, and a control set D with 
int D ~ ;3 is invariant iff it is closed. 

(ii) For a control set D with int D ~ f~ we have ~+ (x) ~ int D for all x ~ D. 

Proof (i) Follows from Lemma 2.1 of [9]. 
(ii) For each x ~ D we have by definition that ~?÷(x) is dense in D. For 

y ~ int D it follows from (2.3) that int 6~T(y)  c~int D ¢ Q, hence int 6-_<T(y) 
6÷(x)  # Q .  Therefore there exists a control u such that, for some t ~ R  +, 
~ ( t , x , u ) = y .  [] 

However, variant control sets B c M need not have nonvoid interior: 

Example 2.2. In R 2 consider the control system 

-U_l O ] \ y ( t ) ]  with U = [ 0 ,  a ] c R .  f i( t)] 

The eigenvalues of the systems matrix are A1,2 = - u / 2  + x/¼u 2 -  1. Hence for u-= 0 
the system moves on circles centered at 0 and thus each of these circles is contained 
in a control set. For u > 0 we have Re A < 0, and so the circles are the control 
sets, each of them being variant, closed, and with void interior. The point {0} is 
the only invariant control set. Of  course the system satisfies the above Lie algebra 
condition on the manifold R2\{0}. 

The next proposition is concerned with the crucial step for the existence of 
periodic controls: finite time controllability. We define the following first hitting 
time map 

h : M x M ~ R ° u { o o } ,  h ( x , y ) = i n f { t > - O ,  cp( t ,x ,u)=y} .  (2.4) 
u ~ GII 

Note that in general h is not upper  semicontinuous. 

Proposition 2.3. Let D c M be a control set and assume (2.3). Let K1 ~ D, and 
K2 C int D be compact sets, then there exists a time T=  T( KI, K2) <co such that 
h(x, y) <- T for all x ~ Kx, y c K2, with h defined in (2.4). 

Proof (i) For x ~ KI,  y ~ K2 we show that there is an open neighborhood U(x)  
such that h(z, y) -< tx < ~ for all z ~ U(x).  By (2.3) there is T < ~ and Yl ~ int D r~ 
~_r(Y),  let U(y~) be an open neighborhood of y~ contained in int D n  tffS~T(y). 
For x c  K~ there exists a control u c a//and a time h <oo such that ~( t l ,  x, u) =y~ 
by Lemma 2.1. The solutions of (2.1) depend continuously on the initial value, 
hence there is an open neighborhood U(x)  with ~ ( h ,  z, u) c U(y~) for all z c 
U(x).  Putting this together yields U(x )=  O~,,÷T(y), hence h(z ,y )  < - h+  T for 
all z c U(x).  
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(ii) For x c K1, y ~ K2 we show that h(x, z ) ~  ty < oo for all z in some open 
neighborhood of y: let xl 6 int D and ul ~ q/, tl < ~ such that q~(q, x, u~) = xl by 
Lemma 2.1. By (2.3) there is T < ~  and y l ~ i n t D n 6 ~ T ( X O ,  let U(yO be an 
open neighborhood of  Yl contained in int D n ~+_<r(x~). Again from Lemma 2.1 
there is u2~ ~,  t2 < ~ with ¢ ( q ,  y, u2) = y. The solution of  (2.1) under the control 
action u2 defines a semigroup of homeomorphisms on M, thus at time t2 the open 
set U(yO is mapped onto an open neighborhood U(y) ,  i.e., U(y)  c O~,~+7-+,~(x). 
This means that h(x, z) < - t l+  T + t2 for all z c U(y) .  

(iii) A s tandard compactness argument now finishes the proof  of  this 
result. [] 

Finally we mention a result for existence and uniqueness of invariant control 
sets, which is useful for the example in Section 6. 

Proposition 2.4. Suppose that (2.3) is satisfied and that K c M is a C-invariant 
compact set o f  (2.1). Then: 

(i) There exists an invariant control set C c K (which is compact with 
int C ¢ 0 ) .  

(ii) Denote by S = { x ,  ~ M, X o ( x , ) + ~  uiXi(xu) =0  for some (ui)i=l ...... ~ U} 
the steady states o f  (2.1) for constant controls u, and assume that all 
x ~ S c~ K are asymptotically stable: 
(a) For each x c S c~ K there is a control set D c K with x ~ D. 
(b) I f  for each u ~ U there is exactly one corresponding xu E S c~ K, and 

all xu are asymptotically stable, globally in K, then the invariant control 
set C is unique in K and C = O+(x) for any x ~ S n C. 

Proof (i) See Lemma 2.2 of [9]. 
(ii)(a) Follows from the definition of  control sets. (b) Is an easy consequence 

of asymptotic stability, globally in K and of the construction in the proof  of 
Lemma 2.2 of [9]. [] 

Note however that even (ii)(b) does not exclude the existence of additional 
variant control sets in K. 

3. Limit Sets and Control Sets 

A second important aspect of  control sets is stressed by the fact that they describe 
the possible limit points of  the trajectories of a control system (2.1) in compact 
sets. These limit sets will be crucial for the periodicity principle in Section 4. 

Let K c M denote a compact, C-invariant set and let U be compact and 
convex. 

Definition 3.1. For a trajectory ~0( •, x, u) of (2.1) with x ~ K define o3(x, u) -- 
("~n~N cl{(q~(t, x, u), u ( t + .  )), t >  n } c  K x L2,1oc(R ° ,  R r) where "cl"  denotes the 
closure taken with respect to the given topology on M and the weak topology 
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on compact intervals in L2,1oc(R °,  Rr). The set to(x, u ) = { y  ~ M, there exists a 
sequence tk --> o~ with ~(tk, X, U) =y} is called the limit set of ~p( •, x, u). Observe 
that 

to(x, u ) =  {y ~ M, there exists v ~ °/t such that (y, v)~ o3(x, u)}. 

Definition 3.2. A nonempty set Lc to (x ,  u) is called positively invariant if 
~o(., y, v) c L for all y E L, all v ~ q/ with (y, v) ~ o3(x, u). 

Remark 3.3. An important feature of the definitions above is that they refer to 
a single control function u, and not to all admissible controls u ~ 0-//. In particular 
the definition of positive invariance requires invariance only with respect to 
control functions v that are obtained as (weak) limit points of the "tails" u (t + .  ). 
This is in contrast to the notion introduced by Roxin [12]. The definition above 
turns out to be appropriate for the study of the limiting behavior of special, here 
optimal,  solutions. (Roxin also introduces "holding sets," which resemble 
the idea of control sets, where exact instead of approximate controllability is 
required.) 

Lemma 3.4. The set to(x, u) is nonempty, compact, connected, and positively 
invariant. 

Proof (i) The sets cl{(q~(t, x, u), u ( t t .  )), t --- n} are nonempty and compact for 
each n~N.  Finitely many of these sets have a nonvoid intersection, hence 
o3(x, u) ~ Q and therefore to(x, u) is nonempty, compact, and connected (com- 
pare, e.g., Theorems 3.01 and 3.09 in Chapter V of [10]). 

(ii) For positive invariance it suffices to show that for x, --> Xo, u, - v we have 
~on(t ) := ~(t, x., u.) ~ ~Oo(t) =: ¢(t, x0, v) for all t-> O. This follows for globally 
Lipschitz vector fields in R"  from the following estimate (even uniformly on 
compact intervals): 

+ dt 

<-,x.-xo,+ I2 {xo(~.(t))-So(~o(t)) 
r ))]} at + E un,i(t)[Xi(~m(t))-Xi(~°o(t 

i = 1  

The first and the third summand converge by assumption; the second one is 
bounded from above by cl I'o I~.(t)-~o(t)l dr, where cl is a Lipschitz constant 
for the vector fields Xo . . . . .  X .  Now Gronwalrs inequality implies uniform 
convergence on compact time intervals. 
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To prove this result for system (2.1) in the compact C-invariant set K, select 
a finite covering (Ui, ~i) of coordinate charts for K. Then Xo ~ Ui for some i, and 
the above estimate holds in ~0i(U~) until the first exit time tl of  q~(~o(., x0, v)) 
from ~0~(U~). Therefore p(q~,(t), q~o(t)) ~ 0 as n ~ oo uniformly in the time intervals 
[0, t ~ - e ]  for any e > 0; here p denotes the Riemannian distance on M. Since 
K is compact, for any T > 0  the trajectory q~o(t) in [0, T]  lies in any U~ at 
most finitely many times, and hence patching in local coordinates finishes the 
proof. [] 

Lemma 3.5. 

(i) Each compact, positively invariant set L of  ~( .  , x, u) contains a minimal, 
positively invariant set [,. 

(ii) Each trajectory {q~(t, y, v), (y, v )c  o~(x, u), t - 0 }  in a minimal; positively 
invariant set L is dense in [,. 

Proof These results are proved exactly as in the classical case, see, e.g., Theorems 
7.02 and 7.06 in Chapter V of [10]. [] 

Proposition 3.6. Let ~( .  , x, u) be a trajectory of  (2.1) in K and to(x, u) its limit 
set. Then there exists a control set D of  (2.1) such that to(x, u) n D ~ Q. 

Proof By Lemmas 3.4 and 3.5 the limit set to(x, u) contains a point y in 
a minimal, positively invariant set L. L in turn contains a dense trajectory 
~ ( . ,  y, v) and thus y lies in some control set D. [] 

While Proposition 3.6 analyzes the relation between a limit set of a trajectory 
and control sets, the following result describes the behavior of  trajectories, which 
actually hit a control set. 

Proposition 3.7. 

(i) I f  q~(', x, u) has a limit point in the interior of  some control set D, then 
~(t, x, u) ~ D for all t > to, where to = inf{t -> 0, q~(t, x, u) 6 D}. 

(ii) For invariant control sets C we even have: if  there exists to ~ R ° with 
(a) q~(to, x, u) ~ C, then q~(t, x, u) ~ C for all t >- to, 
(b) q~(to, x, u) ~ int C, then q~(t, x, u) ~ int C for all t >- to. 

Proof (i) Let q > t o  such that ~ , ( t l , x , u ) E D ,  and t2>tl any time with 
q~(t2, x, u) ~int D. Denote y =  ~(t, x, u) for some t~ [q ,  t2]. Then y is reachable 
from ~(t~, x, u), hence approximately reachable from any z ~ D by continuous 
dependence of the solutions of (2.1) on initial values. On the other hand, 
~(t2, x, u) is reachable from y, hence any z 6 D is approximately reachable from 
y by Lemma 2.1(ii). This implies (i). 

(ii) Follows from the C-invariance of  C and int C for invariant control sets 
(compare, e.g., [2]). [] 
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The proof  of our main result, Theorem 4.2, relies on the assumption 

to (x ,u )c~ in tD~O for some control set D c K .  (3.1) 

By Proposition 3.6, in a compact,  C-invariant set there is always a control set D 
with to(x, u ) n D ~ f ~ .  There is however no general criterion to ensure that 
int D ~ ~ or that (3.1) holds. Sections 5 and 6 indicate how to verify (3.1) for 
specific systems. The next result clarifies the situation for one-dimensional mani- 
folds M. 

Proposition 3.8. Consider system (2.1) on a one-dimensional manifold M, and 
assume that for all v ~ U there are at most finitely many y ~ M with Xo(y) + 

viX~(y) = O. Then either 

(i) there exists a control set with to(x, u ) n  int D ~ 0 or 
(ii) to(x, u) consists of a single equilibrium corresponding to some v ~ a U. 

Proof Lemma 3.4 implies that either (i) to(x, u) is an interval [xl ,  x2] (or an 
arc Ix1, x2], if M -  S1), or (ii) to(x, u) consists of  a single equilibrium. In case 
(i), let y6int[x~,x2]. Then there are t2>ta>to>-O with y=~(to ,  X,U)= 
~(t2, x, u), and y # ~(t~, x, u ) t i n t [x1 ,  x2]. Hence y lies in some control set D 
with to(x, u) n i n t  D ~ Q. Now consider case (ii), i.e., to(x, u) = {y}, y is in some 
control set D, and 

Xo(y)+ ~ v°Xi(y)=O for some v°c U. (3.2) 
i = 1  

It follows from the characterization of control sets for M = R ~ (see, e.g., Theorem 
3.2 of [1]) that either {y} = D, some invariant control set, i.e., (3.2), holds for all 
v ~ U, or D is an interval between two points Yl < Y2. In the latter case assume 
that {y} n D = to(x, u) n D = {yl} (the other case with Y2 can be treated similarly). 
Then D is closed at y = Yl and the characterization referred to above shows that 

r 

Xo(y) + ~ v, Xi(y) >- 0 for all v ~ U, 
i = 1  

and 
= 0 for at least one value in U. 

Now assume that v°6 in t  U, v ° from (3.2). Then there is v ~  U with Xo(y)+ 
~=~ v~Xi(y)<O. (Note that X~(y)=0 for all i =  1 , . . . ,  r is impossible, because 
then (3.2) yields Xo(y) = 0, which is ruled out by Assumption (2.3) and the fact 
that y ~ D.) This contradiction shows that in this case v ° c a U. [] 

4. A Periodicity Principle 

In this section we prove that a class of  infinite time optimal control problems 
has periodic solutions with performance arbitrarily close to the optimal. We 
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consider the following situations: given the system (2.1) ~ = Xo(x )  + ~ 1  u~X~(x) 
on M with U c R ~ convex, compact and the performance criterion 

lim sup 1 f '  ,-,o~ t Jo g(x,  u) dt = K(Xo, U) (infinite time average yield criterion) 

(4.1) 
o r  

Io ~ e - ~ ' g ( x ,  u) = ~7(Xo, u) (infinite criterion), (4.2) dt time discounted 

where we assume that g is continuous in both variables. Denote 

K =sup  sup X(Xo, u) 
uE91 xo~M 

and assume that K is finite. (If  Xo is fixed, we write K(Xo) := s u p , ~  K(X0, U).) 
Then we say that (4.1) has e-optimal periodic solutions if for each e > 0 there 
exists a periodic solution (xp, up) (depending on e) such that K(xp, up)> K -  e, 
and similarly for Problem (4.2) and r/. Note that we do not assume that there 
exists an optimal trajectory with performance equal to K, or r/. 

We first analyze the infinite time average yield problem (4.1) where we have 
to assume that K is the supremum over all bounded trajectories ~ ( . ,  x, u) c M, 
see Example 4.4 at the end of this section for a counterexample in the unbounded 
case. For bounded trajectories we know from Proposition 3.6 that the limit points 
to(x, u) intersect some control set D of (2.1). If  to(x, u) is a one-point set, we 
have the following preliminary result: 

Proposition 4.1. Suppose that g is affine in u. I f  for  e > 0 there exists a trajectory 
( x, u) with K ( x, u ) > K - e and to(x, u ) = { y } c M,  then there exists a stationary 
solution (xs, us) with K(Xs, U~) > K -- e. 

Proof  If t o ( x , u ) = { y } ,  then there exists a constant control g such that 
q ~ ( t , y , ~ ) = y  for all t ~ R  + by Lemma 3.4. Since ¢ ( t , x , u ) ~ q ~ ( t , y , ~ )  and by 
continuity of g we see that K(y, tT)> K - e .  [] 

The main result of this paper is: 

Theorem 4.2. I f  for  e > 0 there exists a bounded trajectory ( x, u) with K ( x, u ) >  
K - e and to(x, u) n int D ~ Q for  some control set D, then there exists a periodic 
solution ( Xp, Up) with t¢ ( Xp, Up)> K --e. 

Proof  Let ( x , u )  be a bounded trajectory with K ( X , U ) > K - - e  and let y =  
~O(to, x, u)~  int D. The trajectory ~ ( . ,  y, u ( t o + ' ) )  has the same limit points as 
~0(., x, u), hence in particular an accumulation point yoC int D. By Proposition 
3.7, ~(t, y, u) c D for all t -> 0 and by assumption ~ ( - ,  y, u) c K for some compact 
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set K c D. Hence by Proposition 2.3 there exists a T >  0 such that h(z,y) <. T 
for all z ~ K. 

By assumption there exists tl (arbitrarily large) such that (1/tl)S'o' g(~(t, y, 
U(to+ t)), u) dt> K-2e  and 

1 f tl+T 
g(¢(t, y, U(to+ t)), U) dt 

t l + T j o  

= 1 1~' g(~(t,y, U(to+t)), u) dt 
fi+ T 

1 f rl+T 
+ g(~o(t, y, U(to+ t)), u) dt 

tl + T .I t~ 

>_ 1 fo'g(~o(t,y,U(to+t)),u)dt + 1 T" min g(z,u) 
tl + T q + T (~,~)~K×U 

- K - 3  e - e for t~ sufficiently large. 

Define a periodic control 

rU(to+t) for t~ [0 ,  fi], 
up=[uc(t)~ for tc( t l , t l+t2],  

where uc steers q~(tl,y,u) to y in time t2<-T, and continue Up periodic- 
ally for t>t l+t2.  Then ~0(. ,y, up) is periodic and in each period we have 
(1 / (q  + t2)) S'o ' %  g(q~(t, y, U(to+ t)), u) dt >- K --4e. [] 

For invariant control sets C we can strengthen this result to: 

Corollary 4.3. I f  for e > 0 there exists a solution ( x, u) with K(x, u) > ~c - e and 
a time 6>-0 such that ~(to, Xo, u)~ in t  C, then there exists a periodic solution 
(xp, up) with K(xp, up)> K-e .  

Proof Same as before with Proposition 3.7(ii). [] 

Note that under Condition (2.3) any invariant control set has nonvoid interior. 
Proposition 4.1 and Theorem 4.2 guarantee e-optimal periodic solutions for the 
infinite time average yield problem, except for the case where the set of  limit 
points has more than one element and does not intersect the interior of  some 
control set. 

I f  the e-optimal trajectories are unbounded,  we cannot expect e-optimal 
periodic solutions for (4.1), since the optimal value K does not depend on the 
behavior on finite time intervals. 

Example 4.4. Let M = (0, ~ )  and consider the problem 
:~ = 3 - 2 u ,  u~  U =  [1, 2], 
g(x, u) = 5 -4u. 

The unique control set C = M = (0, ~ )  is invariant and we may start at any 
(interior) point Xo~ C. The solutions are ¢(t, Xo, u)=(3-2u) t+Xo,  K(Xo, u ) =  
5 - 4 u  and K = 1 is obtained for u - 1 ,  where the corresponding solution is 
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~(t, Xo, 1)= t+Xo.  Any periodic solution has to use controls in (3,2], where 
g(x ,  u) < -1 ,  and hence any periodic solution has performance <-0. 

For the discounted problem (4.2) we cannot expect e-optimal periodic so- 
lutions, if we start outside some control set. Our result in this case is: 

Theorem 4.5. I f  for  e > 0 there exists a pair ( x, u) with ~ ( x, u) > ~7 - e and 

(i) i f  to(x, u ) n i n t  D # O  for  some control set D, or 
(ii) i f  there exists to > _ 0 such that ~(  to, x, u) ~ int C for  some invariant control 

set C, 

then there exists a solution (Xp, up) with ~7(x,, up)> ~7 - e  and (%,  Up) is periodic 
after the time o f  the first entrance into int D (or int C, respectively). 

Proof  Use the same ideas as in the proof  of Theorem 4.2 and Corollary 
4.3. [] 

Remark 4.6. (a) If Problems (4.1) or (4.2) have a solution that actually realizes 
K (or ~/), then in general there need not be a periodic control having performance 

(or r;). 
(b) Consider the discounted problem (4.2) for ~ --> 0: if we start outside some 

control set D, then the initial part of  the trajectory until the entrance into int D 
will carry less and less weight, as the period of  the solution constructed in Theorem 
4.5 grows. In this sense the solutions of Problem (4.2) converge toward those of  
(4.1) for 3-->0 (compare [8]). 

(c) Theorem 4.5 remains valid, if instead of  e -~' we use any discount function 
~0(t) which decreases monotonically to 0 as t--> oo and such that ~7 is still finite. 

(d) Let us mention once again that outside control sets, system (2.1) cannot 
have any solution which is periodic in the state variable x ~ M, since any periodic 
solution lies in some control set. 

5. Growth of Linear Control Semigroups 

Cons idera  linear, parameter-controlled system 

Yc = ux in R d (5.1) 

with u ~ N c gl(d, R) compact. According to the remarks after (2.2) we can restrict 
ourselves to piecewise constant controls and we define the systems group ~3 and 
the system semigroup 6e, describing the orbits of  (5.1) by 

~ = { e t r a r x  • " " X e t l A I ,  A i ~  N,  t i e R ,  1 <- i<_ r~N} ,  

5e={etrA~x • . • x e qAI ,A i~  N, t ic  R +, 1-< i -  r~N}.  

fg is a connected Lie subgroup of Gl(d, R) with Lie algebra g = ££~(N) ,  the Lie 
algebra generated by N in gl(d, R). Let ~, and 5 e, denote the subset of  the (semi-) 
group with ~ ~= l t~ -< t. 
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The problem is to describe the growth rate, i.e., the Lyapunov exponent of 
the system (5.1) (which is the growth rate of {Se,, t->0}). This can be done using 
the spectral radius or the operator norm. We define 

/3(t) =~ log  r(Se,), 

r(bet) = sup r(g), r(g) is the spectral radius o f g  ~ Gl(d, R) (5.2) 

/3 = lim/3(t) (=  sup/3(t)), 
t ~ o o  t > O  

and 

1 
6(t) = t l o g  IlSe, ll, 

II~e, l l --sup IIg[I, Ilgll is the operator norm of g c Gl(d, R), (5.3) 
g E ,Sot 

6 = l i m  6(t) (=  inf 8(t)). 
t ~ o a  t ~ O  

Of course fl-< 6, and we are looking for conditions that guarantee /3 = & The 
answer to this problem is important for the analysis of the stability of moments 
of associated stochastic systems and for the description of large deviations in 
these systems (see [3] for this idea and for the following set-up). 

For further investigation we project system (5.1) onto the unit sphere S d-I 
in R a, and we obtain for s( t )= x(t)/Ix(t)l the equation 

g(t) = h(u, s) = (u - s 'us .  Id)s, So = X o / I x o l ,  (5.4) 
where * denotes the transpose and Id the d × d identity matrix. Then 

[Io ] Ix(t, xo, u)[ = Ixol exp s(r, xo)*u(r)s(r, xo) dr 

:=lxolexp{f f  q(u,s) dr} .  (5.5) 

System (5.1) is linear in x, so we may consider (5.4) on the projective space pal-1 
instead of S d-l, which we will do from now on. The Lie algebra generated by 
the vector fields in (5.4) is L e = ~ ( h ( u , - ) ,  u c N ) ,  and our assumption, 
analogously to the condition mentioned after (2.3), is 

A~e(s) = T~P for all s ~ P. (5.6) 

The following theorem states that system (5.1) has one Lyapunov exponent: 

Theorem 5.1. Under Assumption (5.6) we have/3 = 6 for system (5.1). 

In order to prove this theorem we transform (5.2) and (5.3) into optimal 
control problems involving e-optimal trajectories. Define 

1[' 
K = sup sup lira sup - q(u, s) dr, ell is the measurable controls with 

-~',o~P , ~  t .lo values in co N, 
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Kp "~-  sup sup lim sup t q(u, s) dr, °lip is the periodic measurable 
,~ , ,  ~o~e t-~oo controls with values in co N. 

Note that by (5.5) we have 

lim s u p , ~  ( l / t )  ~'o q(u, s) dr = lim sup,~oo ( l / t )  log[x(t, Xo, u)], 

the Lyapunov exponent of the solution of (5.1) starting in Xo with control u. 
From Arnold et al. [3, Theorem 3.1], we cite the following result: 

L e m m a  5.2. Assume  (5.6), then system (5.1) has exactly one invariant control set 
C on P, C is compact, and int C ~ ~ .  

L e m m a  5.3.  Kp =/3 .  

Proof  (i) /3 --< Kp : For a given e > 0 we find a g = e t ' A ' x  • • • × e '~A' ~ bet with 
Y.~=I ti = T and (1 /T)  log r ( g ) > / 3  - e .  Define a piecewise constant control Uo on 
[0, T] by u o ( t ) = A i  for t C [ t l + . .  "+ t i - l ,  f i + ' "  "+ti) and continue T-periodi- 
cally. Then the periodic system ~ = UoX has g = qb(T) as the fundamental matrix 
at time T, its largest characteristic (or Floquet) exponent is therefore 
( 1 / T ) l o g  r(g).  Hence there exists so~P such that for all t->0 large enough 
Ix(t, so, Uo)l-exp t. (13 - e). Since e was arbitrary, we see that 13 -< Kp. 

(ii) Kp -</3: The argument above also proves that /3 <- ap = 
sup,~% l i m , ~  ( l / t ) l o g  r(Cb~(t)), where dp,(t) is the fundamental matrix of ~ = 
ux at time t. 13-> ap is clear from the definition, so it remains to show that 
Kp<-ap. To this end choose u c  a//p with period T, then x(t ,  Xo, u )=d)~( t )So= 
(P(t )e tA)so,  the Floquet decomposition, where P( t )  is T-periodic and A is a 
constant matrix with the Floquet exponents. Then 

1 
loglx(nT, So, u)[-< ~ T  (loglP(t)[ 4-1ogle'rA[ + 1oglsol). 

n T  

Thus for n --> 00 we have for all u ~ ~ ,  

l i m l l o g l x ( t ,  so, u ) l < - l i m l l o g r ( ~ . ( t ) ) ,  yielding Kp<_ap. [] 
~ t t - ~  t 

L e m m a  5.4. K = 6. 

Proof  From (5.5) we see that 6 = l i m , ~  supu~ou suPso~e (1/t)S'o q(u, s) dr. K <- 8 
is obvious from this formulation, hence it remains to show that 8---K. For a 
sequence tk --> OO there exist ( u k, s~ ) with (1/  tk ) ~'o q( u k, S( xk , uk) ) d r >  8 ( tk ) - 1/ k. 
Hence for any compact time interval [0, T ] ~  R ° there exists u°: R°-->co N, 
measurable such that u k ~  U ° weakly in L2([0, T]). Take a weak accumulation 
point u ° of u k on [0, T] and a diagonal sequence in T, then u ° ( t ) c  co N via the 
Cesaro limit. Let So ° be an accumulation point of s °, then sk:=s(sko,uk)--> 
S(S °, U0)=: S o uniformly on compact time intervals by the argument from the 
proof of Lemma 3.4(ii). 
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Fix e > 0, for k large enough we have 

tk 3o q(uk' S(S~, Uk)) dr> 3(tk)--e, 

1 (sk*uksk--sO*uOsO) dr < e  and 1 6 ( t k ) - a l < e .  

Thus 

i f t k 

___fo~Sk.ukskd.r_ ~kf j  ~ 1  " 1 dr I _ s°*u°s ° dr > (sk*uks k -  S°*U°S °) 
tk J O tk 

>>- 3(tk)--2e >-- 6--3e. 
Since e > 0 was arbitrary, we have K -> lim sup,_~o~ (1/t) S'o s°*u°s° dr >- 3. [] 

Proof of Theorem 5.1. The result follows from K = Kp by using Corollary 4.3, if 
we can show that initial values for e-optimal trajectories can be chosen in int C, 
where C is the unique compact invariant control set from Lemma 5.2. To 
this end let A c i n t  C be open such that / i t  int C. Then A contains a basis 
of R d and for any u~0J  the maximal Lyapunov exponent among the 
l imsup ,_~(1 / t )  loglx(t, .  , u)l can be obtained by starting in A (see Section 
3.12 of [5]). Hence for K (and Kp) it suffices to consider initial values in , 4c  
int C. [] 

6. Management of Interacting Populations 

We consider the following three-dimensional model of harvested populations: 

- - c~aXlX2X2- UXl =: gl (x~ ,  x2, x3, u),  

x2(t) = q2x2 (1--~-~2 ) +CezXlX2 =: g 2 ( x l , x 2 ) ,  (6.1) 

23(t) = q3x3(1 -  x--~3 ) +a3x,x3 =: g3(xl, x3), 

with 

u(t) ~ [0, Umax ] = R, 

where the constants qi, ai, Ki, Um,x are positive and Lima× < q~. These equations 
describe the dynamics of  a system, where the predators x2 and Xa feed on the 
prey x~, the prey is subject to harvesting, and the harvesting intensity is considered 
as the control variable. There is no direct interaction between the predators x2 
and Xa. 

Reasonable performance criteria are the average yield 

if) lim sup-~ Xl(t)u(t) dt (6.2) 
T ~ e o  
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or, taking into account economic considerations, 

fo ° e-a'(p( u, xO - c(xO )uxl dt, (6.3) 

where the discount factor 6 is positive and p, c are the price and the cost, 
respectively, of  the harvested prey (see [6]). 

A simple analysis shows the existence of a compact invariant set of the form 
K = {(x~, x2, x3), 0 -< x~-  c~, i = 1, 2, 3}. The function g~ vanishes for 

x~=O and x ' = K ~ (  1 °q ~ )  ----X2X 3- , Uu.[O, Umax]. ql 

For i = 2, 3 the functions g; vanish for 

x ; = 0  and x ; = K ;  l + ~ x ~  . 

Thus we obtain the following eight sets of  steady states: 

Sl = {(0, 0, 0)}, 

,S2 = {(0, K2, 0)}, 

S3 = {(0, 0, K3)}, 

S4 = {(0, K2, K3)}, 

1 u 

1 u ~ ( ~ + ~ ( 1 ~ ) )  ~6{(xo.,x=~l( ~l) X~ 03 u 

UC[0,  Umax] } , 

{ (ql~) ( ' ( 1 - 0 )  S7 = (XI,X2,0),xI=KI 1 - - -  x 2 = g  2 l+K2 U 
q2 \ 

L/ C [0, Umax]} , 

{ ( ° ' ~ )  ( ) $8 = (x1,x2,x3),Xl=K1 1 - - - x 2 x  3 -  , x 2 = / 2  l+°~2Xl , 
ql q2 

X3 = K3(I+a3X,),UE [0, Umax] } . 
q3 

The planes P~ given by & = 0 are invariant for the control system (6.1) and, having 
empty interior in R 3, they cannot be reached from R 3. We therefore concentrate 
on the three-dimensional situation and assume 

$ 8 ~  and S s c R 3 = : M  (the state space for (5.1)). (6.4) 
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It is easy to show that if $8 = 0 ,  then all solutions of the control system (6.1) 
tend toward one of the planes P~. Furthermore, $8 ~ Q can be expressed explicitly 
in terms of the parameters of (6.1). 

6.1. Existence of e-Optimal Periodic Solutions 

If  ~2 # a3 or q2 # q3, then condition (2.3) is satisfied in the manifold M (see 
Section 6.3). Furthermore, there exists an invariant control set C c M, C is closed 
with nonvoid interior. The steady states in $8 are globally asymptotically stable 
in M (see Section 6.2), thus C is unique and Ss c C by Proposition 2.4. For the 
criteria (6.2) and (6.3) with initial values in int C we thus infer the existence of 
e-optimal periodic controls. 

6.2. Global Asymptotic Stability of $8 in R 3 

Let xueS8, i.e., g~(x,,u)=O for i = 1 , 2 , 3 .  Using arguments from Sieveking 
[13, Theorem 4] we construct a Lyapunov function for this system. First note 
that, for u fixed, we have a predator-prey system, since for i # j  either 

Og--d(x,u)=O and Ogj(x,u)=O o n R  3 
0)9 Oxi 

o r  

°g--2~ (x, u) .  Og~ (x, u) < 0 on R 3. 
Oxj Oxi 

To (6.1) we associate an undirected graph with three knots and an edge i - j  if 
Ogi/Ox; # 0 and 3g;/Ox~ # O. This graph obviously is a tree. Hence (see Lemma 5 
of [13]) there are smooth positive functions kdx), x ~ R3+ with 

ki(x) Ogi=-k~(x) Ogj for l<-i,j<-3. 
OXj OX i 

Define 
3 

H(x, u) = Y k~(x)(xi-xu,~ log x~). 
i=1  

Then 

d 
dt H(x(t), u) < 0  

along solutions of (6.1) in R 3 and 

H(xu, u) = min H(x, u). 
x ~ R  3 

Thus xu is locally asymptotically stable. Furthermore, 
lim~ H(x, u)= +oo 

x~OR+ 

and thus xu is globally asymptotically stable in R 3. 



Infinite Time Optimal Control and Periodicity t29 

6.3. Condition (2.3) 

System (6.1) is of  the form 

:~=Xo(x)+uXl(x)  on M=R3+ 

qlXl(l+ )-O XlX X   
X 0 =  q 2 1 2 ( l - t - ~ )  -t-o~211x2 , 

o x,x  

with 

(01 ) X 1 ~ 

In a straightforward way we compute the Lie brackets 

/_q__L x2\  
X2:=[Xo, X1]= I K,  1},  

a2XIX2 ] 
\ a3XlX3 / 

ql 2 ql t 2 2 - - - -  Xl ~ - - -  XlX2X 3 + (O/ltX 2 + OL10~3)XlX2X 3 
K1 K1 

X3 ;= [ X ° '  X2] / 2 a2q2 2 = 012qlXlX2 -- OLIOI2XIX2X3 q-'--~2 XlX2 
! 

a3q,x,x3 -- OQOL3XlX2 X2 q- 0¢2q3 Xl x2 
K3 

The vector fields X0, X1, X2 are linearly dependent  for all points (xl,  x2, X3) with 

a2q2 a2q3 . 3q2- -kT  x2=  2qB---k-S x3. (6.5) 

The vector fields X~, X2, X3 are linearly dependent  for all points (x~, x2, x3) with 

KBq2x2 = K2q3x3. (6.6) 

For a2 = a3 and q2 = q3, these equations define the same line in the xz - x3 plane, 
i.e., the same plane P = {(e. x~, x2 = (K2/K3)x3, d. x3) , c, d, ER} in R 3. The vector 
fields Xo and XI are tangent to P in this case and hence all orbits of  (6.1) with 
initial values in P are contained in P, thus (2.3) cannot be met in this situation. 

I f  however a2-- a3 and q2 # q3, then (6.5) and (6.6) define parallel lines in 
the x2 - x3 plane, hence the vector fields Xi, i = 0 , . . . ,  3, span the whole tangent 
space at any point in R 3. 

I f  a 2 #  a 3 ,  denote fl =(ce3q2--a2q3)/(q3a3-q3ot2). I f  f l - 0 ,  then the lines 
defined by (6.5) and (6.6) do not intersect in the x2 -x3  plane for x2 > O, x3 > O, 
thus again Xi, i = 0 . . . .  ,3,  span the tangent space at any point in R3+. 

If /3 > 0, then (6.5) and (6.6) define a line 

x 3 ) , c e R ,  x 0 q3 
t q2 J 
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The vector field Xo is never tangent to this line in R3+ hence Condit ion (2.3) is 
satisfied in this case. 

Summing up, we see that, except for the case a2 = a3 and q2 = q3, Assumption 
(2.3) is always fulfilled. 

References 

1. Arnold, L., and W. Kliemann. Qualitative theory of stochastic systems. In: Bharucha-Reid, 
A. T. (ed.), Probabilistic Analysis and Related Topics, Vol. III. Academic Press, New York 
(1983), pp. 1-79. 

2. Arnold, L., and W. Kliemann. On unique ergodicity for degenerate diffusions. Stochastics, 21 
(1987), 41-61. 

3. Arnold, L., W. Kliemann, and E. Oeljeklaus. Lyapunov exponents of linear stochastic systems. 
In: Arnold, L., and V. Wihstutz (eds.), Lyapunov Exponents. Lecture Notes in Mathematics, 
No. 1186. Springer-Verlag, New York (1986), pp. 85-125. 

4. Aubin, J. P., and F. H. Clarke. Shadow prices and duality for a class of optimal control problems. 
SIAM J. Control Optim., 17 (1979), 567-585. 

5. Cesari, L. Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, 3rd 
edn. Springer-Verlag, Berlin (1971). 

6. Clark, C. W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources. 
Wiley, New York (1976). 

7. Colonius, F. Optimal Periodic Control. Lecture Notes in Mathematics, No. 1313. Springer-Verlag, 
Berlin (1988). 

8. Colonius, F. Asymptotic behavior of optimal control systems with high or low discount rates, 
Math. Oper. Res., to appear. 

9. Kliemann, W. Recurrence and invariant measures for degenerate diffusions. Ann. Probab., 15 
(1986), 690-707. 

10. Nemytskii, V. V., and V. V. Stepanov. Qualitative Theory of Differential Equations. Princeton 
University Press, Princeton (1960). 

11. Rockafellar, R. T. Saddle points of Hamiltonian systems in convex problems of Lagrange. In: 
Cass, D., and K. Shell (eds.), The Hamiltonian Approach to Dynamic Economics. Academic 
Press, New York (1976). 

12. Roxin, E. O. Limits sets in infinite horizon optimal control systems. In: Lakshmikantham, V. 
(ed.), Trends in the Theory and Practice of Non-Linear Analysis. Elsevier, Amsterdam (1985), 
pp. 401-407. 

13. Sieveking, M. Dinamica de poblaciones por medio de ecuaciones differenciales ordinarias. 
Escuela Politecnica Nacional, Quito, Ecuador and Fachbereich Mathematik, Universit~it 
Frankfurt (1985). 

14. Sussmann, H. J. Orbits of families of vector fields and integrability of distributions. Trans. Amer. 
Math. Soc., 180 (1973), 171-188. 

                        


