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Motivated by the many potential applications of low-rank multi-way tensor
approximations, we set out to count the rank-one tensors that are critical points of
the distance function to a general tensor v. As this count depends on v, we average
over v drawn from a Gaussian distribution, and find a formula that relates this
average to problems in random matrix theory.
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AMS Subject Classifications: 15A69; 60B20; 65H10; 58K05; 14P99

1. Introduction

Low-rank approximation of matrices via singular value decomposition is among the most
important algebraic tools for solving approximation problems in data compression, signal
processing, computer vision, etc. Low-rank approximation for tensors has the same applica-
tion potential, but raises substantial mathematical and computational challenges. To begin
with, tensor rank and many related problems are NP-hard,[1,2] although in low degrees
(symmetric) tensor decomposition has been approached computationally in [3,4] by greatly
generalizing classical techniques due to Sylvester and contemporaries. Furthermore, tensors
of bounded rank do not form a closed subset, so that a best low-rank approximation of a
tensor on the boundary does not exist.[5] This latter problem does not occur for tensors of
rank at most one, which do form a closed set, and where the best rank-one approximation
does exist under a suitable genericity assumption.[6]

In spite of these mathematical difficulties, much application-oriented research revolves
around algorithms for computing low-rank approximations.[7–14] Typically, these algo-
rithms are of a local nature and would get into problems near non-minimal critical points
of the distance function to be minimized. This motivates our study into the question of
how many critical points one should expect in the easiest nontrivial setting, namely that
of approximation by rank-one tensors. This number should be thought of as a measure of
the complexity of finding the closest rank-one approximation. The corresponding complex
count, which is the topic of [6] and with which we will compare our results, measures the
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degree of an algebraic field extension needed to write down the critical points as algebraic
functions of the tensor to be minimized. We will treat both ordinary tensors and symmetric
tensors.

1.1. Ordinary tensors

To formulate our problem and results, let n1, . . . , n p be natural numbers and let
X ⊂ V := R

n1 ⊗ · · · ⊗ R
n p be the variety of rank-one p-way tensors, i.e. those that

can be expressed as x1 ⊗ x2 ⊗· · ·⊗ x p for vectors xi ∈ R
ni , i = 1, . . . , p. Given a general

tensor v ∈ V := R
n1 ⊗ · · · ⊗ R

n p , one would like to compute x ∈ X that minimizes the
squared Euclidean distance

dv(x) =
∑

i1,...,i p

(vi1,...,i p − xi1,...,i p )
2

from v. For the matrix case, where p = 2, this minimizer is σ x1xT
2 where σ is the largest

singular value of v and x1, x2 are the corresponding left and right singular vectors. Indeed,
all critical points of dv are of this form, with σ running through all singular values of v.
For p > 2, several algorithms have been proposed for rank-one approximation (see, e.g.
[15,16]). These algorithms have a local nature and experience difficulties near critical points
of dv . This is one of our motivations for counting these critical points – the main goal of
this paper.

In [6], a general formula is found for the number of complex critical points of dv on XC.
In this case, the xi can have complex coefficients and the expression dv is copied verbatim,
i.e. without inserting complex conjugates. This means that dv(x) does not really measure a
(squared) distance – e.g. it can be zero even for x �= v – but on the positive side, the number
of critical points of dv on XC is constant for v away from some hypersurface (which in
particular has measure zero) and this constant is the top Chern class of some very explicit
vector bundle.[6] For more information on this hypersurface, see [17, Section 7] and [18].
Explicit equations for these hypersurfaces are not known, even in our setting.

Over the real numbers, which we consider, the number of critical points of dv can jump
as v passes through (the real locus of) the same hypersurface. Typically, it jumps by 2, as
two real critical points come together and continue as a complex-conjugate pair of critical
points. To arrive at a single number, we therefore impose a probability distribution on our
data space V with density functionω (soon specialized to a standard multivariate Gaussian),
and we ask: what is the expected number of critical points of dv when v is drawn from the
given probability distribution? In other words, we want to compute∫

Rn1⊗···⊗R
n p

#{real critical points of dv on X}ω(v)dv.

This formula is complicated for two different reasons. First, given a point v ∈ V , the value
of the integrand at v is not easy to compute. Second, the integral is over a space of dimension
N := ∏

i ni , which is rather large even for small values of the ni . The main result of this
paper is the following formula for the above integral, in the Gaussian case, in terms of an
integral over a space of much smaller dimension quadratic in the number n := ∑

i ni .
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Theorem 1.1 Suppose that v ∈ V is drawn from the (standard) multivariate Gaussian
distribution with (mean zero and) density function

ω(v) := 1

(2π)N/2
e−(∑α v

2
α)/2,

where the multi-index α runs over {1, . . . , n1} × · · · × {1, . . . , n p}. Then, the expected
number of critical points of dv on X equals

(2π)p/2

2n/2

1∏p
i=1 �

( ni
2

) ∫
W1

|det C(w1)| dμW1 .

Here, W1 is a space of dimension 1 +∑
i< j (ni − 1)(n j − 1) with coordinates w0 ∈ R and

Ci j ∈ R
(ni −1)×(n j −1) with i < j , C(w1) is the symmetric (n − p)× (n − p)-matrix of block

shape ⎡
⎢⎢⎢⎣
w0 In1−1 C1,2 · · · C1,p

CT
1,2 w0 In2−1 · · · C2,p
...

...
...

CT
1,p CT

2,p · · · w0 In p−1

⎤
⎥⎥⎥⎦ ,

andμW1 makesw0 and the
∑

i< j (ni −1)·(n j −1)matrix entries of the Ci, j into independent,
standard normally distributed variables. Moreover, � is Euler’s gamma function.

Not only the dimension of the integral has dropped considerably, but also the integrand
can be evaluated easily. The following example illustrates the case where all ni are equal
to 2.

Example 1.2 Suppose that all ni are equal to 2. Then, the matrix C(w1) becomes

C(w1) =

⎡
⎢⎢⎢⎣
w0 w12 · · · w1p

w12 w0 · · · w2p
...

...
...

w1p w2p · · · w0

⎤
⎥⎥⎥⎦

where the distinct entries are independent scalar variables ∼ N (0, 1). The expected number
of critical points of dv on X equals

(2π)p/2

22p/2

1

�( 1
1 )

p
E(| det(C(w1))|) =

(π
2

)p/2
E(| det(C(w1))|),

where the latter factor is the expected absolute value of the determinant of C(w1). For p = 2
that expected value of |w2

0 − w2
12| can be computed symbolically and equals 4/π . Thus,

the expression above then reduces to 2, which is just the number of singular values of a
2×2-matrix. For higher p, we do not know a closed-form expression for E(| det(C(w1))|),
but we will present some numerical approximations in Section 5.

In Section 3, we prove Theorem 1.1, and in Section 5, we list some numerically computed
values. These values lead to the following intriguing stabilization conjecture.
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Conjecture 1.3 Suppose that n p − 1 >
∑p−1

i=1 ni − 1. Then, in the Gaussian setting
of Theorem 1.1, the expected number of critical points of dv on X does not decrease if we
replace n p by n p − 1.

For p = 2, this follows from the statement that the number of singular values of a
sufficiently general n1 × n2-matrix with n1 < n2 equals n1, which in fact remains the same
when replacing n2 by n2 − 1. For arbitrary p, the statement is true over C as shown in [6],
again with equality, but the proof is not bijective. Instead, it uses vector bundles and Chern
classes, techniques that do not carry over to our setting. It would be very interesting to find
a direct geometric argument that does explain our experimental findings over the reals, as
well.

Example 1.4 Alternatively, one could try and prove the conjecture directly from the in-
tegral formula in Theorem 1.1. The smallest open case is when p = 3 and (n1, n2, n3) =
(2, 2, 4), and here the conjecture says that

The determinant in the first integral is approximately w0 times a determinant like in the
second integral, but we do not know how to turn this observation into a proof of this integral
inequality.

1.2. Symmetric tensors

In the second part of this paper, we discuss symmetric tensors. There, we consider the space
V = S p

R
n of homogeneous polynomials of degree p in the standard basis e1, . . . , en of

R
n , and X is the subvariety of V consisting of all polynomials that are of the form ±u p

with u ∈ R
n . We equip V with the Bombieri norm, in which the monomials in the ei form

an orthogonal basis with squared norms

||eα1
1 · · · eαn

n ||2 = α1! · · ·αn !
p! .

Our result on the average number of critical points of dv on X is as follows.

Theorem 1.5 When v ∈ S p
R

n is drawn from the standard Gaussian distribution relative
to the Bombieri norm, then the expected number of critical points of dv on the variety of
(plus or minus) pure p-th powers equals
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1

2(n2+3n−2)/4
∏n

i=1 �(i/2)

∫
λ2≤...≤λn

∞∫
−∞

(
n∏

i=2

|√pw0 −√
p − 1λi |

)

·
⎛
⎝∏

i< j

(λ j − λi )

⎞
⎠ e−w2

0/2−∑n
i=2 λ

2
i /4dw0dλ2 · · · dλn .

Here, the dimension reduction is even more dramatic: from an integral over a space
of dimension

(p+n−1
p

)
to an integral over a polyhedral cone of dimension n. In this case,

the corresponding complex count is already known from [19]: it is the geometric series
1 + (p − 1)+ · · · + (p − 1)n−1.

Example 1.6 For p = 2, the integral above evaluates to n (see Subsection 4.8 for a direct
computation). Indeed, for p = 2, the symmetric tensor v is a symmetric matrix, and the
critical points of dv on the manifold of rank-one symmetric matrices are those of the form
λuuT , with u a norm-1 eigenvector of v with eigenvalue λ.

For n = 2, it turns out that the above integral can also be evaluated in closed form, with
value

√
3p − 2; a different proof of this fact appeared in [17]. For n = 3, we provide a

closed formula in Section 5. In all of these cases, the average count is an algebraic number.
We do not know if this persists for larger values of n.

1.3. Outline

The remainder of this paper is organized as follows. First, in Section 2, we explain a double
counting strategy for computing the quantity of interest. This strategy is then applied to
ordinary tensors in Section 3 and to symmetric tensors in Section 4. We conclude with some
(symbolically or numerically) computed values in Section 5.

2. Double counting

Suppose that we have equipped V = R
N with an inner product (.|.) and that we have

a smooth manifold X ⊆ V . Assume that we have a probability density ω on V = R
N

and that we want to count the average number of critical points x ∈ X of the function
dv(x) := (v − x |v − x) when v is drawn according to that density. Let Crit denote the set

Crit := {(v, x) | v − x ⊥ Tx X} ⊆ V × X

of pairs (v, x) ∈ X × V for which x is a critical point of dv . For fixed x ∈ X the v ∈ V with
(v, x) ∈ Crit form an affine space, namely x + (Tx X)⊥. In particular, Crit is a manifold of
dimension N . On the other hand, for fixed v ∈ V , the x ∈ X for which (v, x) ∈ Crit are
what we want to count. Let πV : Crit → V be the first projection. Then, (the absolute value
of) the pull-back |π∗

Vωdv| is a pseudovolume form on Crit, and we have∫
V

#(π−1
V (v))ω(v)dv =

∫
Crit

1|π∗
Vωdv|.
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Now, suppose that we have a smooth 1 : 1 parameterization ϕ : R
N → Crit (perhaps

defined outside some set of measure zero). Then, the latter integral is just∫
RN

| det Jw(πV ◦ ϕ)|ω(πV (ϕ(w)))dw,

where Jw(πV ◦ϕ) is the Jacobian ofπV ◦ϕ at the pointw. We will see that if X is the manifold
of rank-one tensors or rank-one symmetric tensors, then Crit (or in fact, a slight variant of
it) has a particularly friendly parameterization, and we will use the latter expression to
compute the expected number of critical points of dv . In a more general setting, this double
counting approach is discussed in [17].

3. Ordinary tensors

3.1. Set-up

Let V1, . . . , Vp be real vector spaces of dimensions n1 ≤ . . . ≤ n p equipped with positive
definite inner products (.|.). Equip V := ⊗p

i=1 Vi , a vector space of dimension N :=
n1 · · · n p, with the induced inner product and associated norm, also denoted (.|.). Given a
tensor v ∈ V , we want to count the number of critical points of the function

dv : x �→ ||v − x ||2 = (v|v)− 2(v|x)+ (x |x)
on the manifold X ⊆ V of non-zero rank-one tensors x = x1 ⊗ · · · ⊗ x p. The following
well-known lemma (see for instance [6]) characterizes which x are critical for a given
v ∈ V . In its statement, we extend the notation (v|u) to the setting where u is a tensor in⊗

i∈I Vi for some subset I ⊆ {1, . . . , p}, to stand for the tensor in
⊗

i �∈I Vi obtained by
contracting v with u using the inner products.

Lemma 3.1 The non-zero rank-one tensor x = x1 ⊗ · · · ⊗ x p is a critical point of dv if
and only if for all i = 1, . . . , p we have

(v|x1 ⊗ · · · ⊗ x̂i ⊗ · · · ⊗ x p) =
⎛
⎝∏

j �=i

(x j |x j )

⎞
⎠ xi .

In words: pairing v with the tensor product of the x j with j �= i gives a well-defined
scalar multiple of xi , and this should hold for all i .

Proof The tangent space at x to the manifold of rank-one tensors is
∑p

i=1 x1 ⊗· · ·⊗ Vi ⊗
· · · ⊗ x p. Fixing i and y ∈ Vi , the derivative of dv in the direction x1 ⊗ · · · ⊗ y ⊗ · · · ⊗ x p

is
−2(v − x1 ⊗ · · · ⊗ x p|x1 ⊗ · · · ⊗ y ⊗ · · · ⊗ x p).

Equating this to zero for all y yields that

(v|x1 ⊗· · ·⊗ x̂i ⊗· · ·⊗ x p) = (x1 ⊗· · ·⊗ x p|x1 ⊗· · ·⊗ x̂i ⊗· · ·⊗ x p) =
⎛
⎝∏

j �=i

(x j |x j )

⎞
⎠ xi ,

as claimed. �
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The lemma can also be read as follows: a rank-one tensor x1 ⊗ · · · ⊗ x p is critical for
dv if and only if first, for each i the contraction (v|x1 ⊗ · · · ⊗ x̂i ⊗ · · · ⊗ x p) is some scalar
multiple of xi , and second, (v|x1 ⊗ · · · ⊗ x p) equals

∏
j (x j |x j ). From this Description, it

is clear that if x1 ⊗ · · · ⊗ x p merely satisfies the first condition, then some scalar multiple
of it is critical for dv . Also, if a rank-one tensor u is critical for dv , then tu is critical for dtv

for all t ∈ R. These considerations give rise to the following definition and proposition.

Definition 3.2 Define Crit to be the subset of V × (PV1 × · · · × PVp) consisting of
points (v, ([u1], . . . , [u p])) for which all 2 × 2-determinants of the dim Vi × 2-matrix
[(v|u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ u p) | ui ] vanish, for each i = 1, . . . , p.

Proposition 3.3 The projection Crit → ∏
i PVi is a smooth subbundle of the trivial

bundle V ×∏
i PVi over

∏
i PVi of rank N − (n1 + · · · + n p) + p, while the fibre of the

projection πV : Crit → V over a tensor v counts the number of critical points of dv in the
manifold of non-zero rank-one tensors.

Proof The second statement is clear from the above. For the first, observe that the fibre
above u = ([u1], . . . , [u p]) equals Wu × {([u1], . . . , [u p])} where

Wu =
( p⊕

i=1

u1 ⊗ · · · ⊗ (ui )
⊥ ⊗ · · · ⊗ u p

)⊥
⊆ V .

This space varies smoothly with u and has codimension
∑

i (ni −1), whence the dimension
formula. �

We want to compute the average fibre size of the projection Crit → V . Here av-
erage depends on the choice of a measure on V , and we take the Gaussian measure

1
(2π)N/2 e−||v||2/2dv, where dv stands for ordinary Lebesgue measure obtained from identi-

fying V with R
N by a linear map that relates (.|.) to the standard inner product on R

N .

3.2. Parameterizing Crit

To apply the double counting strategy from Section 2, we introduce a convenient parame-
terization of Crit. Fix norm-1 vectors ei ∈ Vi , i = 1, . . . , p, write e = (e1, . . . , ep) and
[e] := ([e1], . . . , [ep]), and define

W := W[e] =
( p⊕

i=1

e1 ⊗ · · · ⊗ (ei )
⊥ ⊗ · · · ⊗ ep

)⊥
.

We parameterize (an open subset of) PVi by the map e⊥
i → PVi , ui �→ [ei + ui ]. Write

U := ∏p
i=1(e

⊥
i ). For u = (u1, . . . , u p) ∈ U let Ru denote a linear isomorphism W →

W[e+u], to be chosen later, but at least smoothly varying with u and perhaps defined outside
some subvariety of positive codimension.

Next define

ϕ : W × U → V, (w,u) �→ Ruw.
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Then, we have the following fundamental identity

1

(2π)N/2

∫
V
(#π−1

V (v)) · e− ‖v‖2

2 dv = 1

(2π)N/2

∫
W×U

| det J(w,u)ϕ|e− ‖Ruw‖2

2 du dw,

where J(w,u)ϕ is the Jacobian of ϕ at (w,u), whose determinant is measured relative to the
volume form on V coming from the inner product and the volume form on W × U coming
from the inner products of the factors, which are interpreted perpendicular to each other.
The left-hand side is our desired quantity, and our goal is to show that the right-hand side
reduces to the formula in Theorem 1.1.

We choose Ru to be the tensor product Ru1 ⊗ · · · ⊗ Ru p , where Rui is the element of
SO(Vi ) determined by the conditions that it maps ei to a positive scalar multiple of ei + ui

and that it restricts to the identity on 〈ei , ui 〉⊥; this map is unique for non-zero ui ∈ e⊥
i .

Indeed, we have

Rui =
(

I − ei e
T
i − ui

||ui ||
uT

i

||ui ||

)
+
(

ei + ui√
1 + ||ui ||2

eT
i + ui − ||ui ||2ei

||ui ||
√

1 + ||ui ||2
uT

i

||ui ||

)

=
(

I − ei e
T
i − ui uT

i

||ui ||2
)

+
(

ei + ui√
1 + ||ui ||2

eT
i + ui − ||ui ||2ei√

1 + ||ui ||2
uT

i

||ui ||2
)

where the first term is the orthogonal projection to 〈ei , ui 〉⊥ and the second term is projec-
tion onto the plane 〈ei , ui 〉 followed by a suitable rotation there. Two important remarks
concerning symmetries are in order. First, by construction of Rui we have

R−1
ui

= R−ui . (1)

Second, for any element g ∈ SO(e⊥
i ) ⊆ SO(Vi ) we have

Rgui = g ◦ Rui ◦ g−1. (2)

We now compute the derivative at ui of the map e⊥
i → SO(Vi ), u �→ Ru in the direction

vi ∈ e⊥
i . First, when vi is perpendicular to both ei and ui , this derivative equals

∂Rui

∂vi
= 1√

1 + ||ui ||2
(vi e

T
i − eiv

T
i )−

√
1 + ||ui ||2 − 1

||ui ||2
√

1 + ||ui ||2
(uiv

T
i + vi u

T
i ). (3)

Second, when vi equals ui , the derivative equals

∂Rui

∂ui
= 1

(1 + ||ui ||2)3/2 (−ui u
T
i + ui e

T
i − ei u

T
i − ||ui ||2ei e

T
i ). (4)

For now, fix (w,u) ∈ W × U . On the subspace TwW = W of T(w,u)W × U the Jacobian
of ϕ is just the map W → V, w �→ Ruw. Hence relative to the orthogonal decompositions
V = W ⊥ ⊕ W and U × W , we have a block decomposition

R−1
u J(w,u)ϕ =

[
A(w,u) 0

∗ IW

]

for a suitable matrix A(w,u). Note that this matrix has size (n − p)× (n − p), which is the
size of the determinant in Theorem 1.1. As Ru is orthogonal with determinant 1, we have
det J(w,u)ϕ = det A(w,u) and ||Ruw|| = ||w||. This yields the following proposition.
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Proposition 3.4 The expected number of critical rank-one approximations to a standard
Gaussian tensor in V is

I := 1

(2π)N/2

∫
W

∫
U

| det A(w,u)|e− ||w||2
2 du dw.

For later use, consider the function F : U → R defined as

F(u) = 1

(2π)N/2

∫
W

| det A(w,u)|e− ||w||2
2 dw.

From (2) and the fact that the Gaussian density on W is orthogonally invariant, it follows
that F is invariant under the group

∏p
i=1 SO(e⊥

i ). In particular, its value depends only on
the tuple (||u1||, . . . , ||u p||) =: (t1, . . . , tp). This will be used in the following subsection.

3.3. The shape of A(w,u)

Recall that U = ∏p
i=1(e

⊥
i ). Correspondingly, the columns of the matrix A(w,u) come in

p blocks, one for each e⊥
i . The i-th block records the W ⊥-components of the vectors(

R−1
u

∂Ru
∂vi

)
w, where vi = (0, . . . , vi , . . . , 0) and vi runs through an orthonormal basis

e(1)i , . . . , e(ni −1)
i of e⊥

i . We have

R−1
u
∂Ru

∂vi
= Id ⊗ · · · ⊗ R−1

ui

∂Rui

∂vi
⊗ · · · ⊗ Id. (5)

Furthermore, if vi is also perpendicular to ui , then by 3 and 1

R−1
ui

∂Rui

∂vi
= 1√

1 + ||ui ||2
(vi e

T
i − eiv

T
i )+ 1 −√

1 + ||ui ||2
||ui ||2

√
1 + ||ui ||2

(vi u
T
i − uiv

T
i ). (6)

On the other hand, when vi is parallel to ui , then

R−1
ui

∂Rui

∂vi
= 1

1 + ||ui ||2 (vi e
T
i − eiv

T
i ). (7)

This is derived from (1) and (4), keeping in mind the fact that here vi need not be equal
to ui , but merely parallel to it. Note that both matrices are skew-symmetric. This is no
coincidence: the directional derivative ∂Rui /∂vi lies in the tangent space to SO(Vi ) at ui ,
and left multiplying by R−1

ui
maps these elements into the Lie algebra of SO(Vi ), which

consists of skew symmetric matrices.
We decompose the space W as

W =
( p⊕

i=1

e1 ⊗ · · · ⊗ (ei )
⊥ ⊗ · · · ⊗ ep

)⊥
= R · e1 ⊗ e2 ⊗ · · · ⊗ ep

⊕
⎛
⎝ ⊕

1≤i< j≤p

e1 ⊗ · · · ⊗ e⊥
i ⊗ · · · ⊗ e⊥

j ⊗ · · · ⊗ ep

⎞
⎠⊕ W ′ =: W0 ⊕ W ′,
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where W ′ contains the summands that contain at least three e⊥
i -s as factors. From (5), it

follows that R−1
u

∂Ru
∂vi

W ′ ⊆ W . So, for a general w we use the parameters

w = w0 ·e1⊗· · ·⊗ep+
∑

1≤i< j≤p

∑
1≤a≤ni −1

∑
1≤b≤n j −1

w
a,b
i, j e1⊗· · ·⊗e(a)i ⊗· · ·⊗e(b)j ⊗· · ·⊗ep+w′,

where w0 and wa,b
i, j are real numbers, and where w′ ∈ W ′ will not contribute to A(w,u). We

also write w1 = (w0, (w
a,b
i, j )) for the components of w that do contribute.

As a further simplification, we take each ui equal to a scalar ti ≥ 0 times the first basis
vector e(1)i of e⊥

i . This is justified by the observation that the function F is invariant under
the group

∏
i SO(e⊥

i ). Thus, we want to determine A(
w,(t1e(1)1 ,t2e(1)2 ,...,tpe(1)p )

). This matrix

has a natural block structure (Bi, j )1≤i, j≤p, where Bi, j is the part of the Jacobian containing

the e1 ⊗ · · · ⊗ e⊥
i ⊗ · · · ⊗ ep-coordinates of

(
R−1

u
∂Ru
∂v j

)
w with v j = (0, . . . , v j , . . . , 0).

Fixing i < j , the matrix Bi, j is of type (ni − 1)× (n j − 1), where the (a, b)-th element
is the e1 ⊗ · · · ⊗ e(a)i ⊗ · · · ⊗ ep-coordinate of(

R−1
u j

∂Ru j

∂e(b)j

)
w.

First, if b �= 1, then we have a directional derivative in a direction perpendicular to u j =
t j e

(1)
j . Applying formula 6 for the directions e(b)j yields

Bi, j (a, b) = −wa,b
i, j√

1 + t2
j

.

Second, if b = 1, then we consider directional derivatives parallel to u j , so applying
formula 7 for direction e(1)j , we get

Bi, j (a, 1) = −wa,1
i, j

1 + t2
j

.

Putting all together, the matrix Bi, j is as follows

Bi, j =
⎛
⎝ 1

1 + t2
j

C1
i, j ,

1√
1 + t2

j

C2
i, j , . . . ,

1√
1 + t2

j

C
n j −1
i, j

⎞
⎠ ,

where Cb
i, j =

(
−wa,b

i, j

)
1≤a≤ni −1

are column vectors for all 1 ≤ b ≤ n j − 1. Denote the

matrix consisting of these column vectors by Ci, j . Doing the same calculations but now for
the matrix B j,i , and writing C j,i = CT

i, j , we find that

B j,i =
⎛
⎝ 1

1 + t2
i

C1
j,i ,

1√
1 + t2

i

C2
j,i , . . . ,

1√
1 + t2

i

Cni −1
j,i

⎞
⎠ .
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The only remaining case is when i = j , and then similar calculations yield that B j, j =
1

(1+t2
j )

n j
2

w0 In j −1. We summarize the content of this subsection as follows.

Proposition 3.5 For (w,u) ∈ W × U with u = (t1e(1)1 , . . . , tpe(1)p ) we have

det A(w,u) =
p∏

k=1

1

(1 + t2
k )

nk
2

det

⎛
⎜⎜⎜⎝

C1 C1,2 · · · C1,p

CT
1,2 C2 · · · C2,p
...

...
...

CT
1,p CT

2,p · · · C p

⎞
⎟⎟⎟⎠ ,

where Ci, j =
(
−wa,b

i, j

)
a,b

and C j = w0 In j −1 for all 1 ≤ i < j ≤ p.

For further reference, we denote the above matrix (Ci, j )1≤i, j≤p by C(w1).

3.4. The value of I

We are now in a position to prove our formula for the expected number of critical rank-one
approximations to a Gaussian tensor v.

Proof of Theorem 1.1 Combine Propositions 3.4 and 3.5 into the expression

I = 1

(2π)
N
2

p∏
k=1

Vol(Snk−2)

∫
W

∞∫
0

· · ·
∞∫

0

p∏
i=1

tni −2
i

(1 + t2
i )

ni
2

|det C(w1)| e− ||w||2
2 dt1 · · · dtpdw.

Here, the factors tni −2
i and the volumes of the sphere account for the fact that F is

orthogonally invariant and dui = tni −2
i dt dS , where dS is the surface element of the (ni −2)-

dimensional unit sphere in e⊥
i . Now, recall that

∞∫
0

tni −2

(1 + t2)
ni
2

dt =
√
π

2

�(
ni −1

2 )

�(
ni
2 )

,

and that the volume of the (n − 2)-sphere is

Vol(Sni −2) = 2π
ni −1

2

�(
ni −1

2 )
.

Plugging in the above two formulas, we obtain

I =
√
π

n

√
2π

N

1∏p
i=1 �

( ni
2

) ∫
W

|det C(w)| e− ||w||2
2 dw.
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Now, the integral splits as an integral over W1 and one over W ′:∫
W

|det C(w)| e− ||w||2
2 d =

∫
W ′

e− ||w′||2
2 dw′

∫
W1

|det C(w1)| e− ||w1||2
2 dw1

= √
2π

dimW

⎛
⎜⎝ 1

√
2π

dimW1

∫
W1

|det C(w1)| e− ||w1||2
2 dw1

⎞
⎟⎠

= √
2π

N−(n−p)
E(| det C(w1)|)

where w1 is drawn from a standard Gaussian distribution on W1. Inserting this in the
expression for I yields the expression for I in Theorem 1.1. �

3.5. The matrix case

In this section, we perform a sanity check, namely we show that our formula in
Theorem 1.1 gives the correct answer for the case p = 2 and n1 = n2 = n—which is
n, the number of singular values of any sufficiently general matrix. In this special case, we
compute

J : =
∫
W

|det C(w)| dμW =
∞∫

−∞

∫
Mn−1

∣∣∣∣det

(
w0 In−1 B

BT w0 In−1

)∣∣∣∣ e
||w2

0 ||
2 dμBdw0 =

=
∞∫

−∞

∫
Mn−1

∣∣∣det(w2
0 In−1 − B BT )

∣∣∣ e
||w0||2

2 dμBdw0,

where B ∈ Mn−1(R) is a real (n−1)×(n−1)matrix. The matrix A := B BT is a symmetric
positive definite matrix and since the entries of B are independent and normally distributed,
A is drawn from the Wishart distribution with density W (A) on the cone of real symmetric
positive definite matrices [20, Section 2.1]. Denote this space by Symn−1. So, the integral
we want to calculate is

J =
∞∫

−∞

∫
Symn−1

∣∣∣det(w2
0 In−1 − A)

∣∣∣ e
||w0||2

2 dW (A)dw0.

Now by [20, Part 2.2.1] the joint probability density of the eigenvalues λ j of A on the
orthant λ j > 0 is

1

Z(n − 1)

n−1∏
j=1

e
−λ j

2√
λ j

∏
1≤ j<k<n−1

|λk − λ j |, (8)

where the normalizing constant is

Z(n − 1) = √
2
(n−1)2

(
2√
π

)n−1 n−1∏
j=1

�

(
1 + j

2

)
�

(
n − j

2

)
.



2510 J. Draisma and E. Horobeţ

Using this fact we obtain

J = 1

Z(n − 1)

∫
R

∫
λ>0

n−1∏
j=1

e
−λ j

2√
λ j

∏
1≤ j<k<n−1

|λk − λ j |
n−1∏
j=1

|w2
0 − λ j |e

||w0||2
2 dλdw0.

Now making the change of variables w2
0 = λn , so that

J = 2
Z(n)

Z(n − 1)
.

Plugging in the remaining normalizing constants, we find that the expected number of
critical rank-one approximations to an n × n-matrix is

I =
√
π

2n

√
2π

n2 �
(n

2

)−2
2

Z(n)

Z(n − 1)
= n.

4. Symmetric tensors

4.1. Set-up

Now, we turn our attention from arbitrary tensors to symmetric tensors, or, equivalently,
homogeneous polynomials. For this, consider R

n with the standard orthonormal basis
e1, e2, . . . , en and let V = S p

R
n be the space of homogeneous polynomials of degree

p in n variables e1, e2, . . . , en . Recall that, up to a positive scalar, V has a unique inner
product that is preserved by the orthogonal group On in its natural action on polynomials
in e1, . . . , en . This inner product, sometimes called the Bombieri inner product, makes the
monomials eσ := ∏

i eαi
i (with σ ∈ Z

n
≥0 and

∑
i σi = p, which we will abbreviate to

σ � p) into an orthogonal basis with square norms

(eσ |eσ ) = σ1! · · · σn !
p! =:

(
p

σ

)−1

.

The scaling ensures that that the squared norm of a pure power (t1e1 + . . .+ tnen)
p equals

(
∑

i t2
i )

p. The scaled monomials

fσ :=
√(

p

σ

)
eσ

form an orthonormal basis of V , and we equip V with the standard Gaussian distribution
relative to this orthonormal basis.

Now, our variety X can be defined by the parameterization

ψ : R
n → S p

R
n,

t �→ t p =
∑
σ�p

tσ1
1 · · · tσn

n

√(
p

σ

)
fσ .

In fact, if p is odd, then this parameterization is one-to-one, and X = imψ . If p is even,
then this parameterization is two-to-one, and X = imψ ∪ (− imψ).
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Definition 4.1 Define Crit to be the subset of V × X consisting of all pairs of (v, x) such
that v − x ⊥ Tx X .

4.2. Parameterizing Crit

We derive a convenient parameterization of Crit, as follows. Taking the derivative of ψ at
t �= 0, we find that T±t p X both equal t p−1 · R

n . In particular, for t any non-zero scalar
multiple of e1, this tangent space is spanned by all monomials that contain at least (n − 1)
factors e1. Let W denote the orthogonal complement of this space, which is spanned by all
monomials that contain at most (p − 2) factors e1. For u ∈ e⊥

1 \ {0}, recall from Subsection
3.2 the orthogonal map Ru ∈ SOn that is the identity on 〈e1, u〉⊥ and a rotation sending e1
to a scalar multiple of e1 + u on 〈e1, u〉. We write S p Ru for the induced linear map on V ,
which, in particular, sends ep

1 to (e1 + u)p. We have the following parameterization of Crit:

e⊥
1 × Rep

1 × W → Crit,(
u, w0ep

1 , w
) �→ (

w0S p Ruep
1 , w0S p Ruep

1 + S p Ruw
)
.

Combining with the projection to V , we obtain the map

ϕ : e⊥
1 × Rep

1 × W → V, (u, w0ep
1 , w) �→ S p Ru(w0ep

1 + w).

Following the strategy in Section 2, the expected number of critical points of dv on X for a
Gaussian v equals

I := 1

(2π)dim V/2

∫
e⊥

1

∫ ∞

−∞

∫
W

| det J(u,w0,w)ϕ|e−(w2
0+||w||2)/2dwdw0du,

where we have used that S p Ru preserves the norm, and that w ⊥ ep
1 .

To determine the Jacobian determinant, we observe that J(u,w0,w)ϕ restricted to
Tw0ep

1
Rep

1 ⊕ TwW is just the linear map S p Ru . Hence, relative to a block decomposition

V = (W + Rep
1 )

⊥ ⊕ Rep
1 ⊕ W we find

for a suitable linear map A(u,w0,w) : e⊥
1 → (W ⊕ Rep

1 )
⊥.

4.3. The shape of A(u,w0,w)

For the computations that follow, we will need only part of our orthonormal basis of V ,
namely ep

1 and the vectors

fi := √
pep−1

1 ei

fii := √
p(p − 1)/2ep−2

1 e2
i

fi j := √
p(p − 1)ep−2

1 ei e j

where 2 ≤ i ≤ n in the first two cases and 2 ≤ i < j ≤ n in the last case. The target space
of A(u,w0,w) has an orthonormal basis f2, . . . , fn , while the domain has an orthonormal
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basis e2, . . . , en . Let akl be the coefficient of fk in A(u,w0,w)el . To compute akl , we expand
w as

w =
∑

2≤i≤ j

wi j fi j + w′ =: w1 + w′

where w′ contains the terms with at most p − 3 factors e1. We have the identity

S p(Ru)
−1 ∂S p Ru(ei1 · · · ei p )

∂el
=

p∑
m=1

ei1 · · ·
(

R−1
u
∂Ru

∂el
eim

)
· · · ei p .

For this expression to contain terms that are multiples of some fk , we need that at least
p − 2 of the im are equal to 1. Thus, akl is independent of w′, which is why we need only
the basis vectors above.

As in the case of ordinary tensors, we make the further simplification that u = te2.
Then, we have to distinguish two cases: l = 2 and l > 2. For l = 2 formula (7) applies,
and we compute modulo 〈 f2, . . . , fn〉⊥

(S p Rte2)
−1 ∂(S

p Rte2(w0ep
1 + w1))

∂e2

= (S p Rte2)
−1
∂
(

S p Rte2

(
w0ep

1 +∑
2≤i wi i fi i +∑

2≤i< j wi j fi j

))
∂e2

= 1

1 + t2

⎛
⎝pw0ep−1

1 e2 − 2w22
√

p(p − 1)/2ep−1
1 e2 −

∑
2< j

w2 j

√
p(p − 1)ep−1

1 e j

⎞
⎠

= 1

1 + t2

⎛
⎝(√pw0 −√

2(p − 1)w22

)
f2 −

∑
2< j

√
p − 1w2 j f j

⎞
⎠ .

For l > 2 formula (6) applies, but in fact the second term never contributes when we
compute modulo 〈 f2, . . . , fn〉⊥:

(S p Rte2)
−1 ∂

(
S p Rte2

(
w0ep

1 + w1
))

∂el

= (S p Rte2)
−1
∂
(

S p Rte2

(
w0ep

1 +∑
2≤i wi i fi i +∑

2≤i< j wi j fi j

))
∂el

= 1√
1 + t2

(
pw0ep−1

1 el − 2wll

√
p(p − 1)/2ep−1

1 el

− √
p(p − 1)

⎛
⎝∑

2≤i<l

wil e
p−1
1 ei +

∑
l< j

w2 j e
p−1
1 e j

⎞
⎠
⎞
⎠

= 1√
1 + t2

⎛
⎝(√pw0 −√

2(p − 1)wll

)
fl −

∑
i �=l

√
p − 1wil fi

⎞
⎠ ;

here we use the convention that wil = wli if i > l. We have thus proved the following
proposition.
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Proposition 4.2 The determinant of A(te2,w0,w) equals

1

(1 + t2)n/2
det

⎛
⎜⎜⎜⎝√

pw0 I −√
p − 1 ·

⎡
⎢⎢⎢⎣

√
2w22 w23 · · · w2n

w23
√

2w33 · · · w3n
...

...
...

w2n w3n · · · √
2wnn

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ .

We denote the (n − 1)× (n − 1)-matrix by C(w1).

4.4. The value of I

We can now formulate our theorem for symmetric tensors.

Proposition 4.3 For a standard Gaussian random symmetric tensor v ∈ S p
R

n (relative
to the Bombieri norm), the expected number of critical points of dv on the manifold of
non-zero symmetric tensors of rank one equals

√
π

2(n−1)/2�( n
2 )

E

(
| det

(√
pw0 I −√

p − 1C(w1)
)

|
)
,

where w0 and the entries of w1 are independent and ∼ N (0, 1).

Proof Combining the results from the previous subsections, we find

I = 1

(2π)dim V/2
Vol(Sn−2)

·
∫ ∞

0

∫ ∞

−∞

∫
W

| det
(√

pw0 I −√
p − 1C(w1)

)
|e−w2

0+||w||2
2

tn−2

(1 + t2)n/2
dwdw0dt.

Here, like in the ordinary tensor case, we have used that the function F(u) in the definition
of I is O(e⊥

1 )-invariant. Now plug in

∞∫
0

tn−2

(1 + t2)
n
2

dt =
√
π

2

�( n−1
2 )

�( n
2 )

and Vol(Sn−2) = 2π
n−1

2

�( n−1
2 )

to find that I equals

1

2dim V/2π(dim V −n)/2�( n
2 )

·
∫ ∞

−∞

∫
W

| det
(√

pw0 I −√
p − 1C(w1)

)
|e−w2

0+||w||2
2 dwdw0.

Finally, we can factor out the part of the integral concerning w′, which lives in a space of
dimension dim V −1− (n −1)−n(n −1)/2 = dim V −n(n +1)/2. As a consequence, we
need only integrate over the space W1 where w1 lives, and have to multiply by a suitable
power of 2π :
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I = 1

2n(n+1)/4πn(n−1)/4�( n
2 )

·
∫ ∞

−∞

∫
W1

| det
(√

pw0 I −√
p − 1C(w1)

)
|e−w2

0+||w1||2
2 dw1dw0

=
√
π

2(n−1)/2�( n
2 )

E

(
| det

(√
pw0 I −√

p − 1C(w1)
)

|
)

as desired. �

4.5. Further dimension reduction

Since the matrix C from Proposition 4.3 is just
√

2 times a random matrix from the standard
Gaussian orthogonal ensemble, and, in particular, has an orthogonally invariant probability
density, we can further reduce the dimension of the integral, as follows.

Proof of Theorem 1.5 First, we denote the diagonal entries of C

w̃i i := √
2wi i , i = 2, . . . , n

Then, the joint density function of the random matrix C equals

fn−1(w̃i i , wi j ) := 1

2(n−1)/2 · (2π)n(n−1)/4
e−(w̃2

22+···+w̃2
nn)/4−∑2≤i< j≤n w

2
i j /2.

This function is invariant under conjugating C with an orthogonal matrix, and as a con-
sequence, the joint density of the ordered tuple (λ2 ≤ . . . ≤ λn) of eigenvalues of C
equals

Z(n − 1) fn−1(�)
∏
i< j

(λ j − λi ),

(see [21, Theorem 3.2.17] – The theorem there concerns the positive-definite case, but is
true for orthogonally invariant density functions on general symmetric matrices). Here, �
is the diagonal matrix with λ2, . . . , λn on the diagonal, and

Z(n − 1) = πn(n−1)/4∏n−1
i=1 �(i/2)

.

Consequently, we have

I =
√
π

2(n−1)/2�( n
2 )

∫
λ2≤...≤λn

∞∫
−∞

(
n∏

i=2

|√pw0 −√
p − 1λi |

)⎛⎝∏
i< j

(λ j − λi )

⎞
⎠

· Z(n − 1) fn−1(�)

(
1√
2π

e−w2
0/2
)

dw0dλ2 · · · dλn .

= 1

2(n2+3n−2)/4
∏n

i=1 �(i/2)

∫
λ2≤...≤λn

∞∫
−∞

(
n∏

i=2

|√pw0 −√
p − 1λi |

)
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·
⎛
⎝∏

i< j

(λ j − λi )

⎞
⎠ e−w2

0/2−∑n
i=2 λ

2
i /4dw0dλ2 · · · dλn,

as required. �

4.6. The cone over the rational normal curve

In the case where n = 2, the integral from Theorem 1.5 is over a 2-dimensional space and
can be computed in closed form.

Theorem 4.4 For n = 2, the number of critical points in Theorem 1.5 equals
√

3p − 2.

A slightly different computation yielding this result can be found in [17].

4.7. Veronese embeddings of the projective plane

In the case where n = 3, the integral from Theorem 1.5 gives the number of critical points to
the cone over the p-th Veronese embedding of the projective plane. In this case, the integral
can be computed in closed form, using symbolic integration in Mathematica we have
the following result.

Theorem 4.5 For n = 3, the number of critical points in Theorem 1.5 equals

1 + 4 · p − 1

3p − 2

√
(3p − 2) · (p − 1).

We do not know whether a similar closed formula exists for higher values of n.

4.8. Symmetric matrices

In Example 1.6, we saw that the case where p = 2 concerns rank-one approximations to
symmetric matrices, and that the average number of critical points is n. We now show that
the integral above also yields n. Here, we have

I =
√
π

2(n−1)/2�( n
2 )

∫
λ2≤...≤λn

∞∫
−∞

(
n∏

i=2

|√2w0 − λi |
)⎛⎝∏

i< j

(λ j − λi )

⎞
⎠

· Z(n − 1) fn−1(�)

(
1√
2π

e−w2
0/2
)

dw0dλ2 · · · dλn .

Now, set λ1 := √
2w0. Then, the inner integral over λ1 splits into n integrals, according to

the relative position of λ1 among λ2 ≤ · · · ≤ λn . Moreover, these integrals are all equal.
Hence, we find

I = n

√
π

2(n−1)/2�( n
2 )

∫
λ1≤...≤λn

⎛
⎝ ∏

1≤i< j≤n

(λ j − λi )

⎞
⎠

· Z(n − 1) · 1

2n/2 · (2π)(n(n−1)+2)/4
e−(λ2

1+···+λ2
n)/4dλ1 · · · dλn
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= n

√
π

2(n−1)/2�( n
2 )

∫
λ1≤...≤λn

⎛
⎝ ∏

1≤i< j≤n

(λ j − λi )

⎞
⎠

· Z(n − 1) · fn(diag(λ1, . . . , λn)) · (2π)(n−1)/2dλ1 · · · dλn .

Now, again by [21, Theorem 3.2.17], the integral of
∏

1≤i< j≤n(λ j −λi ) · fn equals 1/Z(n).
Inserting this into the formula yields I = n.

5. Values

In this section, we record some values of the expressions in Theorems 1.1 and 1.5.

5.1. Ordinary tensors

Below is a table of expected numbers of critical rank-one approximations to a Gaussian ten-
sor, computed from Theorem 1.1. We also include the count over C from [6]. Unfortunately,
the dimensions of the integrals from Theorem 1.1 seem to prevent accurate computation
numerically, at least with all-purpose software such as Mathematica. Instead, we have
estimated these integrals as follows: for some initial value I (we took I = 15), take 2I

samples of C from the multivariate standard normal distribution, and compute the average
absolute determinant. Repeat with a new sample of size 2I , and compare the absolute
difference of the two averages divided by the first estimate. If this relative difference is
< 10−4, then stop. If not, then group the current 2I+1 samples together, sample another
2I+1, and perform the same test. Repeat this process, doubling the sample size in each step,
until the relative difference is below 10−4. Finally, multiply the last average by the constant
in front of the integral in Theorem 1.1. We have not computed a confidence interval for
the estimate thus computed, but repetitions of this procedure suggest that the first three
computed digits are correct; we give one more digit below.

Tensor format average count over R count over C

n × m min(n,m) min(n,m)
23 = 2 × 2 × 2 4.287 6
24 11.06 24
25 31.56 120
26 98.82 720
27 333.9 5040
28 1.206 · 103 40320
29 4.611 · 103 362880
210 1.843 · 104 3628800
2 × 2 × 3 5.604 8
2 × 2 × 4 5.556 8
2 × 2 × 5 5.536 8
2 × 3 × 3 8.817 15
2 × 3 × 4 10.39 18
2 × 3 × 5 10.28 18
3 × 3 × 3 16.03 37
3 × 3 × 4 21.28 55
3 × 3 × 5 23.13 61
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Except in some small cases, we do not expect that there exists a closed form expression
for E(| det(C)|). However, asymptotic results on expected absolute determinants such as
those in [22] should give asymptotic results for the counts in Theorems 1.1 and 1.5, and it
would be interesting to compare these with the count over C.

From [6], we know that the count for ordinary tensors stabilizes for n p−1 ≥ ∑p−1
i=1 (ni −

1), i.e. beyond the boundary format [23, Chapter 14], where the variety dual to the variety of
rank-one tensors ceases to be a hypersurface. We observe a similar behaviour experimentally
for the average count according to Theorem 1.1, although the count seems to decrease
slightly rather than to stabilize. It would be nice to prove this behaviour from our formula,
but even better to give a geometric explanation both over R and over C.

5.2. Symmetric tensors

The following table contains the average number of rank-one tensor approximations to S p
R

n

according to Theorem 1.5. The integrals here are over a much lower dimensional domain
than in the previous section, and they can be evaluated accurately with Mathematica.
On the right, we list the corresponding count over C. By [6, Theorem 12], these values are
simply 1 + (p − 1)+ · · · + (p − 1)n−1.
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