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Abstract 

Powdery mildew is an important disease of wheat caused by the obligate biotrophic fungus Blumeria 
graminis f. sp. tritici. This pathogen invades exclusively epidermal cells after penetrating directly through 
the cell wall. Because powdery mildew colonizes exclusively epidermal cells, it is of importance not only to 
identify genes which are activated, but also to monitor tissue specificity of gene activation. Acquired 
resistance of  wheat to powdery mildew can be induced by a previous inoculation with the non-host 
pathogen B. graminis f. sp. hordei, the causal agent of  barley powdery mildew. The establishment of  the 
resistant state is accompanied by the activation of genes. Here we report the tissue-specific cDNA-AFLP 
analysis and cloning of transcripts accumulating 6 and 24 h after the resistance-inducing inoculation with 
B. graminis f. sp. hordei. A total of 25 000 fragments estimated to represent about 17 000 transcripts were 
displayed. Out of these, 141 transcripts, were found to accumulate after Bgh inoculation using microarray 
hybridization analysis. Forty-four accumulated predominantly in the epidermis whereas 76 transcripts 
accumulated mostly in mesophyll tissue. 

Introduction 

Powdery mildew is an important disease of wheat 
(Triticum aestivum L.). It is caused by the obligate 
biotrophic fungus Blumeria graminis f. sp. tritici 
(Bgt) which colonizes exclusively epidermal cells of 
the host by penetrating directly through the cell wall 
and forming haustoria inside by invagination of the 
plasmalemma. Resistance to powdery mildew dis- 
ease can be conferred by race-specific resistance 
genes, and the first one in wheat has recently been 
cloned (Yahiaoui et al., 2004). Although such genes 
have been widely used in breeding programs, they 
are usually not durable because new virulent 
pathogen races emerge quickly. A more durable 
form of resistance observed in many plants is 
acquired resistance, which is a form of physiological 

resistance effective against a broad spectrum of 
pathogens. It is induced by a trigger event such as an 
attack by an incompatible pathogen. In many plant 
species, a local triggering event leads to the induc- 
tion of resistance of the whole plant (systemic 
acquired resistance, SAR; Ryals et al., 1996; Sticher 
et al., 1997; Durrant and Dong, 2004). In wheat, 
local acquired resistance against powdery mildew 
can be triggered by inoculation with spores of  
B. graminis f. sp. hordei (Bgh), the powdery mildew 
of barley for which wheat is not a host. 

Acquired resistance is accompanied by the 
activation of genes, including the well-known 
pathogenesis-related (PR) genes (Hunt and Ryals, 
1996; Maleck et al., 2000). It is thought and has 
been experimentally demonstrated in a number 
of host-pathogen systems that the products of  
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activated genes can be causally related to the 
physiologically resistant state (e.g. Broglie et al., 
1991; Alexander et al., 1993; Liu et al., 1994; Jach 
et al., 1995; Grison et al., 1996). In wheat, some of 
these defense-related genes were demonstrated to 
reduce the penetration efficiency of Bgt when 
transiently overexpressed in wheat epidermal cells 
(Schweizer et al., 1999a,b), and one was recently 
constitutively and specifically expressed in the 
epidermis of transgenic wheat plants, resulting in 
elevated resistance against powdery mildew (Alt- 
peter et al., in press). Thus, the knowledge of genes 
activated, particularly in the epidermis, upon 
induction of acquired resistance is important and 
may lead to a better understanding of the molec- 
ular resistance mechanism and the biotechnolog- 
ical development of increased and durable 
resistance against powdery mildew in wheat. 

The aim of the study presented here was to 
identify host genes induced in the epidermis of Bgh- 
treated wheat leaves because the corresponding 
gene products may be directly responsible for 
resistance induction. Therefore, an RNA finger- 
printing method, cDNA-AFLP (amplified frag- 
ment length polymorphism; Vos et al., 1995; 
Bachem et al., 1996), was applied using epidermis 
preparation as the starting material for the identi- 
fication of transcripts accumulating in the epidermis 
upon Bgh inoculation, cDNA-AFLP displayed a 
total of 363 differentially expressed cDNA frag- 
ments 6-9 and 23 26 h post-inoculation (hpi). To 
analyse the expression of the corresponding genes in 
more detail, the fragments were subcloned and 
arrayed on glass slides. Microarrays were hybri- 
dised to cDNA probes derived from epidermal and 
mesophyll preparations as well as from whole leaves 
of  Bgh-inoculated and un-inoculated control plants. 
The experiments identified 44 genes predominantly 
activated in the epidermis, many of which were 
novel or not known to be activated by pathogen 
inoculation, as well as 80 genes whose transcripts 
accumulated predominantly in mesophyll tissue. 

Results 

c D N A - A F L P  analysis and cloning o f  transcripts 
f rom Bgh-inoculated epidermis preparations 

Seven-day-old wheat seedlings (Triticum aestivum 
cv. Fidel) were inoculated with Blumeria graminis f. 

sp. hordei (Bgh) at a density of approximately 
200 conidia/mm 2. The abaxial epidermis of primary 
leaves of Bgh-inoculated and uninoculated control 
plants was harvested 6-9 and 23-26 h post-inocu- 
lation (hpi), respectively. Since the isolation of 
epidermal tissue was time-consuming, material was 
collected during 3 h. For simplicity, the time range 
6-9 and 23-26 hpi are referred to as 6 and 24 hpi, 
respectively. The first collection period coincides 
approximately with appressorium formation, the 
second one with haustorium establishment. RNA 
was extracted from the collected plant material and 
used for cDNA-AFLP analysis according to (Vos et 
al., 1995; Bachem et al., 1996). The cDNA frag- 
ments were amplified using all possible 256 selective 
primer combinations. The size of the AFLP frag- 
ments ranged from 50 to 700 bp; for each primer 
combination, 80-120 bands were observed. The 
majority of the bands showed no change in the 
intensity between different lanes. In total, ~25 000 
fragments were displayed, representing ~ 17 000 
mRNA as estimated on the basis of the analysis of 
80 random wheat cDNA sequences from nucleotide 
sequence databases which showed an average of one 
to two fragments generated with the enzyme com- 
bination employed (NcoI/Sau3AI; see Methods). 
Altered expression patterns were observed for 363 
fragments. Of these, 354 (97.5%) were induced by 
Bgh and only 9 (2.5%) were repressed by Bgh. 

The 363 differentially expressed fragments were 
excised from the gel, reamplified by PCR with the 
non-selective primers and purified. For confirma- 
tion of the cDNA-AFLP screening results, probes 
of the reamplified fragments were generated and 
hybridised to gel blots containing RNA from Bgh- 
treated and untreated whole leaves 6 and 24 hpi. 
In these experiments, 92 cDNA-AFLP 
bands (approximately 25%) resulted in pathogen- 
induced hybridization signals. These positive frag- 
ments were subcloned and 1-8 subclones per 
fragment were sequenced. The subclones of indi- 
vidual cDNA-AFLP fragments represented in 
most cases more than one sequence, indicating 
that a band contained mixed PCR products 
(Durrant et al., 2000; Zhang et al., 2003). 

The sequences of all subclones were compared 
with each other and assembled into contiguous 
sequence fragments (contigs) if they exhibited an 
overlap of > 20 bp with > 85% sequence identity. 
Surprisingly, some contigs comprised sequences of 
subclones from cDNA-AFLP fragments derived 



from up to 12 different selective primer combina- 
tions (data not shown). However, overlap 
sequence identity among clones of a contig was 
not always complete, indicating that such contigs 
likely represented more than one closely related 
gene. Nevertheless, cDNA-AFLP clones repre- 
sented by a contig were not evaluated individually 
but treated as one contig in further analyses. 

Expression analysis of  genes corresponding 
to cDNA-AFLP clones by microarray hybridization 

Because the analysis described above showed that 
many excised cDNA-AFLP bands contained more 
than one sequence, a cDNA microarray containing 
1-8 subclones of all 363 cDNA-AFLP bands was 
produced using previously described methods 
(Eisen and Brown, 1999; Reymond et al., 2000) in 
order to analyse the expression of the corresponding 
genes (see Materials and methods). The total 
number of subcloned cDNA-AFLP fragments spot- 
ted on the microarray was 1088. In addition, the 
microarray contained 160 cDNA fragments ob- 
tained from a suppression subtractive hybridization 
(SSH; Diatchenko et aL, 1996) screen for genes 
activated in powdery mildew attacked leaves after 
syringolin A treatment, which induces hypersensitive 
cell death of colonized cells (W~ispi et al., 1998; W~spi 
et al., 2001). Furthermore, the microarrays contained 
control genes and 23 artificial genes (supplementary 
material, table). The positive control genes com- 
prised 10 genes previously known to be powdery 
mildew-inducible, two syringolin A-inducible genes, 
and three BTH (benzo [1,2,3] thiadiazole-7-carbo- 
thioic acid S-methyl ester)-inducible genes (Grrlach 
et al., t996). Thirty potential housekeeping wheat 
and barley genes as well as two human genes were 
included for normalization. 

cDNA microarray hybridizations were carried 
out with probes derived from RNA of whole 
leaves of Bgh-inoculated wheat 6 and 24 hpi and 
of corresponding uninoculated control plants, 
respectively. In addition, hybridization probes 
were prepared from the abaxial epidermis which 
was stripped from inoculated and control leaves, 
respectively, 24 hpi. These preparations were con- 
taminated to a certain degree by adhering meso- 
phyll cells. For simplicity, we refer to the 
remainder of the stripped leaves as mesophyll 
preparations in the following, although the adaxial 
epidermis was still present. 
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RNA from whole leaves was subjected to the 
indirect labelling procedure. Due to low yields of 
RNA from epidermal preparations, mRNA was 
amplified prior to the indirect labelling (Poirier 
and Erlander, 1998; Pfibon et al., 2001). For 
consistency, both epidermis and mesophyll RNA 
was amplified, although sufficient total RNA from 
mesophyll preparations for the indirect labelling 
procedure was available. Hybridization signals 
were normalized using the control genes (see 
Materials and methods). 

Four and six biologically independent experi- 
ments with probes of RNA derived from 
Bgh-treated whole leaves were performed for the 
6- and the 24-h timepoint, respectively. Experi- 
ments with probes from epidermis and mesophyll 
samples at the 24-hpi timepoint were performed in 
three biologically independent repetitions. Genes 
were considered significantly induced if the aver- 
age hybridization signal ratio (treatment/control) 
was >2 with an error probability P < 0.05 (Stu- 
dent's t test; see Methods). This average was taken 
over all individual clones represented in a contig. 
An overview of the number of clones/contigs that 
showed signal ratios of >2 in these hybridization 
experiments is presented in Figure 1. In order to 
assess epidermis specificity of gene expression, 
the mesophyll contamination in epidermis prepa- 
rations was estimated by using the ribulose- 
1,5-bisphosphate carboxylase (rubisco) gene, 
which is exclusively expressed in cells possessing 
chloroplasts, as a mesophyll marker. The ratio Qm 
of the mesophyll signal Xm of a gene X and the 
mesophyll signal Rm of the rubisco gene was 
calculated and compared to the ratio Qe of the 
corresponding epidermis signal Xe and the epider- 
mis (contamination) signal R e of rubisco tran- 
scripts. An epidermis specificity factor ES = Oe/ 
Qm was calculated which describes the allocation 
of the signal to the epidermis and the mesophyll. 
An ES value clearly greater than one (Qe > Qm) 
indicates that gene X was (at least also) activated 
in the epidermis. Thus, ES values >2 were taken as 
evidence that the corresponding transcripts accu- 
mulated (also) in the epidermis. 

Table 1 lists the 44 clones/contigs resulting in 
signal ratios (inoculated/control) >2 (P < 0.05) 
and ES values >2, i.e. corresponding to genes 
whose transcripts accumulated in the epidermis 
24 h after Bgh inoculation. The sequences of eight 
of these clones/contigs were most similar to fungal 
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(A) 6 h post infection (Bgh) 
primary leaves 

(B) 24 h post infection (Bgh) 
primary leaves 

17 
clones/contigs 

I 
I I 

4 single 13 contigs 
clones [ 

93 single 
clones 

(C) 24 h post infection (Bgh) 
epidermis 

83 
clones/contigs 

I 
I I 

43 single 40 contigs 
clones I 

301 single 
clones 

(D) 24 h post infection (Bgh) 
mesophyll 

85 
clones/contigs 

I 
I I I 

29 single 56 contigs 47 single 
clones I c lones 

369 single 
clones 

99 
clones/contigs 

I 
I 

52 contigs 

I 
360 single 

clones 
Figure 1. Overview over clones/contigs corresponding to genes induced more than twofold. The number of cDNA-AFLP and SSH 
clones and contigs, respectively is given corresponding to transcripts that accumulated statistically significantly at least twofold 
after Bhg inoculation as revealed by microarray hybridization experiments. The hybridization probes were derived from whole 
leaves at 6 hpi (A) and 24 hpi (B), respectively, or from epidermis (C) and mesophyll (D) preparations at 24 hpi. 

sequences and therefore likely are derived from Bgh. 
All of  these have a transcript signal ratio <2 in 
hybridization experiments with mesophyll-derived 
probes. Apparent ly ,  the adaxial epidermis, which 
was also inoculated with Bgh was too minor a 
component  in the mesophyll  samples for the fungal 
transcripts to be reliably detected. The two clones/ 
contigs with no significant sequence similarity 
(Table 1, category,  'unknown')  and with signal 
ratios and ES values similar to the fungal clones 
may therefore also be o f  fungal origin. All other 
clones/contigs either exhibit greatest sequence sim- 
ilarity to plant genes and /or  are also expressed in the 
mesophyll  and therefore likely represent wheat 
genes (Table 1). Table 2 lists the 72 clones/contigs 
with signal ratios >2 (P  < 0.05) and ES values <2, 
i.e. genes whose transcripts likely accumulate pre- 
dominant ly  or exclusively in the mesophyll.  

In the hybridizat ion experiments with probes 
derived f rom whole leaves 6 and 24 hpi, 76 
clones/contigs gave signal ratios >2 (P < 0.05). 

Of  these, 51 are also listed in Table 1 or Table 2, i.e. 
were also detected with amplified probes derived 
from epidermis or mesophyll  preparations. The 
remaining 25 clones/contigs, which are listed in 
Table 3, were detected only with probes obtained 
from whole leaves. The complete data for the 76 
clones/contigs are available online as supplemen- 
tary material (Table $2). A list with the accession 
numbers of  all clones giving hybridization signal 
ratios >2 as well as their association with contigs is 
presented in Table $3 (supplementary material). In 
addition, this table contains also the gene bank 
accession numbers o f  wheat  ESTs exhibiting >95% 
sequence identity in the overlap region and their 
Affymetrix gene chip accession numbers if they are 
included on the chip. 

Verification of microarray data 

The names of  clones/contigs printed in boldface in 
Tables 1-3 originated from c D N A - A F L P  bands 
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Table 1. Microarray  da ta  for genes induced by Bgh predominant ly  in the epidermis (ES > 2). 

Putative funct ion (accession #) EST ID a E-val b ES ~ Epi a P valc Meso  d P val e 

Defense protein 
Germ±n-like protein 4, T. aestivum (AJ237942) 
Stress-related peroxidase,  H. vulgare (AJ003141) ctg 114 

Phenolic metabolism 
Phenylalanine ammonia- lyase ,  H. vulgare (Z49146) 

Detoxification, redox processes 
Alternative oxidase m R N A ,  T. aestivum (AF174004) 
Glutathione S-transferase,  A. tauschii (AY013754) 
Berberine bridge enzyme-like protein,  
A. thaliana (Q9FKV0)  

Cytochrome P450 (CYP71E1),  Sorghum bicolor (048958) ctg 36 
NAD-dependent  formate  dehydrogenase ,  mitochondrial  etg 45 
precursor, H. vulgate (D88272) 

Vesicle transport 
Putative VAMP-assoc ia ted  protein,  ctg 99 
A. thai±aria (Q9SHC8) 

Small GTP-b ind ing  protein  R a b  (Ras-related protein), RB_339.8 
Brass±ca campestris (U38471) 

Polyphosphoinosi t ide b inding protein  Sshlp ,  ctg 107 
Glycine max (A F024651) 

BCS 1-1ike/AAA-type ATPase- l ike  protein, OA_a 1B08 
A. thaliana (Q8LBK2)  

Fungal origin 
e D N A  clone D01275 similar to retinal short-chain,  RB_43A.5 
Bgh (AW792581) 

Appressor ium stage EST library o f  Bgh c D N A  ctg 22 
clone A00191-R, Bgh (BM360927) 
Glyceraldehyde 3-phosphate  dehydrogenase,  Bgh (X99732) ctg 122 
T4 c D N A  library under  condi t ions  o f  nitrogen deprivation, ctg 82 
Botrytis cinerea (AL 1 15778) 

e D N A  clone C00255, Bgh (AW788184) ctg 10 
28S ribosomal R N A  gene, Neofabraea  alba (AY064705) ctg 116 
e D N A  clone DO 1017 similar to S-adenosyt-methionine RB_96.1 
synthetase,  Bgh (AW792123) 

e D N A  clone C01137, Bgh (AW789466) ctg 40 

Protein degradation 
Putative subtilase, O. sativa (Q8S1H9) ctg 46 
Putative subtilase, O. sativa (Q8S1HS) ctg 108 

Kinase, receptor 
Putative lectin-like protein kinase,  O. sativa (Q7XIH4) RB_78.2 
Putative receptor-like prote in  kinase,  O. sativa (Q8LN27) RB_99.2 
Putative L R R  receptor like prote in  kinase, ctg 105 
O. sativa (Q8W5K7)  

Phytochrom B signalling 
Gigantea (GI) m R N A ,  T. aestivum (AF543844) etg 1 
Transpor t  protein 
High affinity sulphate  t ransporter ,  All±urn cepa (Q8W161) etg 7 
Diverse proteins 
18S r ibosomal R N A ,  Z. mays (U42796) RB_148.2 

N / A  3.5 31.5 ± 4.9 
7e -06  5 4.2 :t: 1.2 

etg 101 l e - 1 0 8  2 3.8 ± 0.5 

OA_a 1E06 4e -87  
OA b3D05 9e -22  
etg 55 l e - 1 2  

< 0 . 0 0 1 1 2 . 9  ± 2.3 <0.001 
0.002 2.2 ± 0.2 <0.001 

(0.00l 5.7 ± 0.9 <0.001 

12 2.4 ± 0.4 0.002 1.3 ± 0.1 0.031 
11 5.4 ± 1.1 <0.001 2.7 ± 0.6 0.024 
6.4 7.8 ± 1.7 <0.001 1.9 ± 0.2 <0.001 

2e-18  4.5 5.4 ± 0.7 
l e - 6 3  4.1 9.6 ± 0.9 

<0.001 2.3 ± 0.2 <0.001 
<0.001 4.9 ± 0.3 <0.001 

2e-15  6.7 15.6 ± 2.4 <0.001 9.3 ± 1.6 <0.001 

3e-37  4.7 2.5 ± 0.5 0.024 1.4 ± 0.3 0.174 

4e-51 3.8 9.8 ± 4.6 0.008 5.8 ± 2.2 0.008 

5e-38  2.2 4.3 ± 0.7 <0.001 3.7 ± 0.5 <0.001 

l e - 1 0 7  35 25.7 ± 17.5 0.030 0.9 ± 0.1 0.284 

2e -92  14 8.7 ± 2.3 <0.001 1.9 ± 0.2 <0.001 

6e -14  4 4.7 ± 0.6 0.004 2.7 ± 0.8 0.067 
l e - 0 3  3.7 3.0 ± 0.6 0.019 1.1 ± 0.1 0.196 
2e -07  2.8 2.6 ± 0.9 0.044 1.5 ± 0.2 0.028 

l e - 1 0 5  3.9 21.2 ± 1.3 <0 .00112.7  ± 0.8 <0.001 

2e -15  2.9 4.6 i 0.4 <0.001 3.9 ± 0.3 <0.001 

2e -40  7.5 2.5 ± 0.4 0.015 1.1 ± 0.1 0.352 

l e - 1 9  4.3 2.6 ± 0.3 <0.001 1.4 ± 0.1 <0.001 
3e-18  3.4 2.2 ± 0.5 0.001 1.4 ± 0.1 0.018 

9e-31 3.1 2.5 ± 0.5 0.005 1.1 ± 0.1 0.365 

3e-68  7.6 5.9 ± 1.8 <0.001 1.2 + 0.1 0.029 
0 3.7 2.9 ± 0.4 <0.001 1.3 i 0.2 0.126 
8e-86 3.4 3.4 ± 1.3 0.044 1.4 ± 0.3 0 . i24  

l e -71  11 7.9 ± 3.4 0.015 1.0 ± 0.1 0.332 
l e - l l  8.5 5.6 ± 1.3 <0.001 1.2 + 0.1 0.016 
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Table 1. Cont inued .  

Puta t ive  funct ion (accession #) EST ID a E-val b ES c Epi d P val e Meso a P val e 

Unknown 
c D N A  clone wlmkl .pk0019.g2,  T. aestivum (CA662411) RB_74.2 
c D N A  clone:J023102L09, O. sativa (AK100543) ctg 9 
W h e a t  EST BQ162027 a3A04 
EST, clone 11815R, Triticum turgidum (AJ615560) RB_96.2 
W h e a t  EST CA668159 RB 78.3 
C h r o m o s o m e  10, section 37 o f  77, O. sativa (AE017083) ctg 59 
N o  significant homology  RB_12.1 
W h e a t  EST CA669769 
W h e a t  EST CD883151 
W h e a t  EST CA705231 
W h e a t  EST CA686488 
B A C  clone: OSJNBa0007H12,  genomic  D N A ,  
O. sativa (AP004990) 

N o  significant homology  
W h e a t  EST CD93390 
N o  significant homology  
N o  significant homology  

ctg 37 
RB 255.8 
RB 153,2 
ctg 13 
ctg 16 

4 e - l l  8 6.7 4- 1.4 0.007 4.3 4- 1.4 0.022 
8e-17 6.7 3.7 4- 0.6 <0.001 1.2 4- 0.1 0.004 
2e-86  5.7 28.5 4- 5.9 <0.001 7.4 4- 1.3 <0.001 
2e-15  3.7 6.0 + 0.9 0.004 4.2 4- 0.9 0.011 
3e-34  3,7 4.2 4- 1.2 0.032 1.9 4- 0.5 0.125 
l e -04  3.7 3.0 ± 0.4 <0.001 1.7 + 0.1 <0.001 
N/A 3,6 3.0 4- 0.6 0.022 2.0 4- 0.2 0.015 
l e -102  2.8 5.8 4- 0.8 <0.001 2.7 4- 0.3 <0,001 
1e-43 2.8 2.0 4- 0.4 0.046 0.9 4- 0.0 0.094 
8e-37  2.7 2.3 4. 0.8 0.079 2.0 4- 0.4 0.032 
2e-37  2.5 8.3 4- 1.7 <0.001 4.8 4- 0.9 <0.001 
4e-10  2.3 2.9 4- 0.5 <0.001 1.6 + 0.1 <0.001 

OA_b2E03 N /A  2.2 2.9 ± 0.3 <0.001 2.9 ± 0.2 <0.001 
RB 164.4 3e-34  2.2 2.2 4- 0.9 0,120 2.1 ± 0.3 0.021 
ctg 62 N/A 2.1 2.1 4- 0.4 0.002 1.6 4- 0.3 0.029 
O A _ b l A 0 6  N /A  2.1 2.0 ± 0.3 0.021 0.9 4- 0.0 0.144 

a Clones/cont igs  in boldface revealed transcript  accumula t ion  in R N A  gel blot hybridizations.  Accession numbers  of  clones are listed in 
table $3 (supplementary  material).  
b Blast  hit  E-value. 
c Epidermis  specificity factor. 
a Hybr id iza t ion  signal ratio obtained with probes f rom Bgh inoculated and control  epidermis (Epi) and  mesophyll  (Meso) prepara-  
tions, respectively. Rat ios  >2 are in boldface. 
e p values indicate the  significant difference o f  the mean  logz-transformed ratios o f  chal lenged plants  over ratio one in three inde- 
pendent  experiments .  

which resulted in hybridization signals accumulat- 
ing after powdery mildew inoculation when used 
as probes in RNA gel blot hybridizations (see 
above; data not shown). Although a cDNA-AFLP 
band may have contained more than one sequence, 
the fact that subclones from these bands also 
detected accumulating transcripts in the micro- 
array hybridization experiments is consistent with 
the RNA gel blot hybridization results and cor- 
roborates the microarray data. 

In addition, the microarray hybridization data 
were verified by quantitative RT-PCR for seven 
transcripts accumulating strongly in the epidermis 
after Bgh inoculation. PCR was performed in the 
presence of 33p-c~-dCTP and aliquots were taken 
after 19, 22, 25, 28, and 31 cycles using actin as a 
standard. These products were separated on non- 
denaturing polyacrylamide gels, exposed to phos- 
phor screens and signals were quantified using 
OptiQuant software (Perkin-Elmer). The values 
were normalized using a calibration curve calcu- 
lated from the actin standard (see Methods). Since 
a contamination of epidermis preparations with 
mesophyll cells was not avoidable, the signal of the 

mesophyll marker rubisco was used to calculate 
the epidermal and mesophyll portion of the signal 
of a probe, as described above. The results 
obtained (Figure 2) were very similar to the 
microarray data obtained for these clones, con- 
firming the reliability of the microarray hybridiza- 
tion results. 

Discussion 

Microarray hybridization analysis 

Two different labelling methods were used to 
generate fluorescent probes. If  enough total RNA 
was available, i.e. if RNA was extracted from total 
leaves, mRNA was isolated and subjected to the 
standard, indirect labelling method. If only limited 
amounts of total RNA were available, i.e. if 
RNA was extracted from the epidermis and the 
mesophyll, the RNA was amplified using T7-RNA 
polymerase prior to standard labelling. This 
amplification step may distort the relative abun- 
dance of individual RNA species, although there 
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Table 2. Microarray  data  for genes induced by Bgh predominantly in the mesophyl l  (ES < 2). 

Putative funct ion (accession #) EST ID a E-val b ES c Epi d P val e Meso  d P valc 

Defense protein 
f l - l ,3-Endoglucanase,  T. aestivum (Y18212) 
/~-l ,3-Endoglucanase, T. aestivum (Y18212) 
]~-l ,3-Endoglucanase, T. aestivum (Y18212) 
Thaumat in- l ike  protein TLP4,  H. vulgare (AF355455) 
/¢-l,3-glucanase, T. aestivum (AF112965) 
Pathogenesis  related protein 1.1, T. aestivum (AJ007348) 
Thaumat in- l ike  protein, T. aestivum (X58394) 
Pathogenic  related protein in response to 
Bgh, H. vulgare (Y10813) 

Thaumat in- l ike  protein TLP8,  H. vulgate (AF355458) 
]%l,3-Endoglucanase,  T. aestivum (Y18212) 
WCI-5,  T. aestivum (U32431) 
Germin  9f-2.8 gene, T. aestivum (M63223) 
N B S - L R R  disease resistance protein  homologue,  
H. vulgate (AJ507096) 

Superoxide d ismutase-4A,  Z. mays (Xt7564) 
Chit inase II (PR-3), H. vulgare (AJ276226) 

Phenolie metabolism 
Cinnamyl  alcohol dehydrogenase ,  Lolium multifiorum 

Detoxifieation, redox processes 
Put. glutathione S-transferase,  71 aestivum (BT009348) 
N A D H  dehydrogenase,  S. tuberosum (AJ245862) 

Abiotic stress 
Chaperonin  hsp60, Z. mays (L21006) 
HSP70, P. Sativum (X54739) 

Vesicle t ranspor t  
Put.  M e m b r a n e  associated protein,  A. thaliana (AY096741) 

Protein degradation 
Subti l is in-chymotrypsin inhibitor  2, H. vulgare (Y08625) 
Lon  protease homolog  1, Z. mays (Q8GV57) 
Alpha  subuni t  o f  20S proteasome,  O. sativa (Q9LSU1) 

Kinase, receptor 
Similar to wak4 (wall-associated kinase), 
A. thaliana (Q9LWG6)  

Putat ive histidine kinase, O. sativa (Q852H8) 
Leucine-rich-like protein, Aegilops tausehii (Q8LKV9) 

Transcription factor 
Myb-related protein, O. sativa (Q7XBH4) 

Transport 
Sec61 a lpha subunit ,  H. vulgare (AY044237) 
UDP-galac t  ose /UDP-glucose  t ransporter ,  
A. thaliana (AY115566) 

Put. peptide t ranspor ter  protein,  H. vulgare (AJ495773) 

Glyeosylation 
Putative immediate-early salicylate-induced 
glucosyltransferase,  O. sativa (Q84M46) 

Cis-zeatin O-glucosyltransferase,  Z. mays (Q8S465) 

ctg 15 l e - 1 4 0  0.9 8.5 ± 0.7 
ctg 69 l e - 8 3  0.8 7.5 -4- 0.7 
ctg 91 l e - 1 0 0  0.9 6.0 ± 0.5 
ctg 83 7e-46  1 4.4 -4- 1.1 
ctg 79 l e - l l l  0.5 4.2 -4- 1.5 
ctg 72 l e - 7 3  0.5 3.2 ± 0.8 
ctg 85 2e -66  0.6 3.0 ± 0.5 
etg 39 6e -08  1.3 2.5 -4- 0.2 

<0.001 21.0 ± 1.4 <0.001 
<0.001 25.2 • 1.0 <0.001 
<0.001  12.0 ± 0.9 <0 .001  
<0.001 12.1 + 3.4 <0.001 

0.009 18.1 ± 6.3 0.010 
<0.001 8.9 =t= 1.6 <0.001 
<0.001 7.6 ± 0.7 <0.001 
<0.001 2.8 -4- 0.3 <0.001 

ctg 18 4e -08  1.1 2.3 -4- 0.4 <0.001 3.4 + 0.4 <0.001 
c t g 6  3e-28  0.5 2.0 + 0.4 0.009 6.5 + 0.7 <0.001 
RB_360.4 l e - 1 0 9  1.3 1.8 ± 0.4 0.064 3.5 ± 0.3 0.003 
c t g 5 7  3e-73  0.5 1.7 + 0.2 0.039 5.4 ± 0.8 <0.001 
OA a lE08 4e-51 1 1.7 i 0.4 0.035 2.2 ± 0.7 0.012 

c t g 6 4  3e-22  0.8 1.3 -4- 0.1 0.059 3.3 • 0.3 <0.001 
etg 28 6e-22  0.8 1.3 + 0.1 <0.001 2.5 -4- 0.1 <0.001 

ctg 98 l e - 5 7  1.5 2.6 -4- 0.1 <0.001 2.2 -4- 0.4 <0.001 

ctg 17 2e-25  1.6 4.2 ± 0.4 <0.001 5.0 -4- 0.6 <0.001 
OA a 2 B l l  5e -62  1.1 2.7 -4- 0.3 <0.001 3.3 + 0.6 0.010 

OA b l C 0 9  8e -40  1.1 1.4 -4- 0.3 0.261 5.2 -4- 1.6 0.006 
OA a3B09 8e-48  0.9 0.8 i 0.1 <0.001 2.9 + 0.6 <0.001 

e t g 4  l e - 0 7  1.7 2.2 -4- 0.2 <0 .001  1.9 ± 0.1 <0 .001  

etg 29 3e -24  1.8 6.7 + 0.4 <0.001 15.5 ± 0.9 <0.001 
RB 216A.4 8e -19  1.2 2.7 ± 0.9 0.090 2.2 J: 0.5 0.044 
O A _ b l G 0 5  2e -42  0.3 0.9 -4- 0.2 0.224 3.0 + 0.5 <0.001 

ctg 52 l e - 0 8  1.5 9.1 • 1.4 <0.001 6.1 -4- 0.5 <0.001 

ctg 33 7e-21 0.9 1.7 -4- 0.2 <0.001 3.3 -4- 0.7 <0.001 
RB_286.2 l e - 1 4  1 1.4 -4- 0.3 0.162 2.4 -4- 0.3 0.010 

RB 226.2 7e-09  1.3 1.6 + 0.6 0.227 2.0 -4- 0.3 0.014 

ctg 121 3e -34  0.8 4.9 -4- 1.1 0.003 9.8 ± 2.1 <0.001 
ctg 53 5e-88  0.5 2.6 ± 0.1 <0.001 4.0 :t: 0.2 <0.001 

c t g 2 1  l e - 3 3  1.9 2.1 -4- 0.3 <0.001 1.6 ± 0.2 <0.001 

c tg48  2e -29  1.1 35.3 -4- 5.6 <0.001 34.2 :t: 4.2 <0.001 

ctg 27 3e -10  1.7 2.8 ± 0.4 <0.001 3.3 + 0.5 <0.001 
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Table 2. Cont inued.  

Putat ive funct ion (accession #) EST ID a E-val b ES c Epi d P val e Meso d P val e 

Diverse processes 
PIR7a  and  PIR7b  genes, O. sativa (Z34271) ctg 58 3e-23 1.4 3.9 ± 1.0 < 0.001 3.6 
Putat ive myosin-l ike protein, A. thaliana (AKl18721)  RB_226.3 6e-17  0.9 3.8 ± 0.5 0.005 9.7 
Kaurene  synthase,  Z. mays  (AF105149) etg 47 l e - 2 0  1.8 2.7 4- 0.5 <0.001 2.8 
3-phosphoshik imate  1-carboxyvinyltransferase,  etg 119 7e-21 0.8 2.3 ± 0.3 <0.001 4.2 
Z.  mays  (Q946U9) 

2-oxoglutarate  dehydrogenase,  A. thaliana (AJ223802) OA_a3B02 le -103  1.7 2.1 + 0.2 <0.001 1.3 
Calreticulin (CRH2),  H. vulgate (L27349) ctg 44 l e - 4 0  0.6 2.0 ± 0.2 <0.001 5.9 
Calreticulin (CRH2),  H. vulgare (L27349) etg 14 1e-169 1.1 2.0 ± 0.2 <0.001 3.9 
Calreticulin (CRH2),  H. vulgare (L27349) OA_b2C03 l e -105  1.4 1.9 ± 0.4 0.010 4.8 
d-TDP-glucose  dehydratase,  Phragmites australis OA_a2H02 l e -109  0.6 1.5 ± 0.2 0.003 4.0 

(AJ295156) 
Pir7b, O. sativa (Z34270) OA_b2A07 le -71  0.6 1.4 ± 0.2 0.105 3.5 
Cyclophilin, T. aestivum (AY290733) RB_244.2 6e-49  0.8 1.4 ± 0.2 0.082 3.3 
Elongat ion factor 1 a lpha-subuni t ,  T. aestivum (M90077) ctg 66 2e-67  1.3 1.4 ± 0.1 0.006 2.6 
Citrate  synthase,  O. sativa (AF302906) O A _ b l H l l  l e - 9 0  1.4 1.4 ± 0.2 0.029 2.0 
Put.  G D P - m a n n o s e  pyrophosphory lase ,  O. sativa RB_327.3 7e-56  1.2 1.3 ± 0.3 0.286 2.2 

(AP004705) 
60S r ibosomal  protein L10-2 (putat ive t u m o r  suppressor  ctg 117 9e-14  1.2 1.2 ± 0.1 <0.001 2.6 
SG12), O. sativa (P45636) 

Cytosolic G A P D H ,  T. aestivum (AF251217) OA_b3C10 4e-89  1 1.2 ± 0.1 0.154 2.2 
60S r ibosomal protein L12, A. thaliana (T45883) RB 50.4 6e-36  1.3 1.1 ± 0.1 0.302 2.0 
Pir7b, O. sativa (Z34271) OA_blB01 5e-80  0.6 1.0 4- 0.1 0.448 3.0 

Unknown 
Osr40g3 protein, O. sativa (Y08988) RB_282.5 3e-04  0.7 12.8 ± 3.2 0.004 27.0 
W h e a t  EST CD873563 ctg 25 l e - l 1 4  1.8 6.0 ± 0.5 <0.001 11.3 
B A C  clone:OJ1513_F02, genomic  D N A ,  RB_I90.3 4e-03  1.6 3.8 ± 0.2 <0.001 5.2 
O. sativa (AP005244) 

N o  significant homology  RB_107.2 N / A  1.9 3.7 ± 1.5 0.048 3.6 
N o  significant homology  ctg 115 N / A  1 3.2 ± 0.3 < 0.001 4.9 
W h e a t  EST BQ902295 ctg 123 2e-24  0.9 2.6 ± 0.4 0.003 3.9 
c D N A  clone:001-109-C01, O. sativa (AK062944) ctg 118 2e-03  1.2 2.5 ± 0.5 0.002 6.1 
N o  significant homology  ctg 120 N / A  0.7 2.5 ± 0.5 0.010 5.6 
N o  significant homology  RB_182.5 N / A  0.4 Z.1 -4- 0.0 <0.001 4.8 
C D N A  clone:J013161106, O. sativa (AK072199) etg 94 5e-21 1.2 2.0 ± 0.3 <0.001 3.6 
N o  significant homology  ctg 80 N / A  1.2 1.7 ± 0.3 0.004 2.4 
N o  significant homology  RB_151.1 N / A  0.8 1.5 ± 0.5 0.211 2.4 
B A C  clone: O S J N B b 0 0 9 1 E l l ,  genomic  D N A ,  etg 42 l e - 1 0  1 1.5 ± 0.2 0.007 2.1 
O. sativa (AL606629) 

N o  significant homology  RB_182.1 N /A  0.6 1.5 ± 0.2 0.069 2.0 
W h e a t  EST CA642908 etg 88 4e-68  0.5 1.4 ± 0.1 0.011 2.0 
Hypothet ical  protein, A. thaliana ( Q 8 R X U 1 )  OA_b2F09 2e-26  1.5 1.3 ± 0.2 0.016 2.1 
P A C  clone:P0684C01, genomic  D N A ,  O. sativa etg 100 6e-23  1.1 1.2 ± 0.1 0.193 3.1 

(AP002487) 
N o  significant homology  RB_164.1 N / A  1.5 1.2 ± 0.4 0.348 2.3 
c D N A  clone HRO4453 F10 L19, O. sativa (CN817762) ctg 77 1e-22 0.8 1.2 ± 0.3 0.360 2.0 
W h e a t  EST BE517301 RB_38B.3 3e-23  0.5 1.0 ± 0.2 0.084 2.5 
G D S L - m o t i f  l ipase/hydrolase-like, clone etg 49 l e - 1 9  0.9 0.6 ± 0.0 <0.001 2.0 
wlm24.pk0027.a6:fis, T. aestivum (BT009331)- 

± 0.6 <0.001 
± 1.7 0.004 
± 0.3 <0.001 
± 0.6 <0.001 

± 0.1 0.065 
± 1.0 <0.001 
+ 0.6 <0.001 
± 1.6 0.033 
± 0.9 0.003 

± 0.6 <0.001 
± 0.7 0.023 
± 0.4 <0.001 
± 0.2 <0.001 
± 0.4 0.023 

± 0.4 <0.001 

± 0.5 0.046 
± 0.3 0.026 
± 0.5 <0.001 

-4- 4.8 0.002 
± 1.2 <0.001 
± 0.4 <0.001 

4- 0.9 0.018 
+ 0.4 <0.001 
4- 0.7 0.002 
± 2.2 0.003 
+ 0.9 <0.001 
± 0.9 0.007 
-4- 0.8 <0.001 
± 0.4 <0.001 
-4- 0.7 0.044 
-4- 0.3 <0.001 

-4- 0.4 0.038 
-4- 0.5 0.031 
-4- 0.4 0.020 
-4- 0.4 <0.001 

4- 0.1 0.002 
± 0.2 <0.001 
4- 0.5 0.006 
-4- 0.1 <0.001 

a Clones/cont igs  in boldface revealed t ranscr ipt  accumulat ion in R N A  gel blot hybridizations.  
b Blast hit E-value. 
c Epidermis  specificity factor. 
d Hybr id iza t ion signal ratio obtained with probes f rom Bgh inoculated and control  epidermis (Epi) and  mesophyl l  (Meso)  prepara-  
tions, respectively. Rat ios  >2 are in boldface. 
e p values indicate the significant difference o f  the m e a n  log2-transformed ratios o f  challenged plants  over ratio one in three inde- 
pendent  experiments.  



Table 3. Microarray  data  for induced genes exclusively detected in whole leaves 6 and 24 h after  inoculat ion with Bgh. 

Putative funct ion (accession #) EST ID a E-val b 6 hpi  P val e 24 hpi P vat e 
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Defense protein 
/M,3-Glucanase  ( G L U 2 )  gene, H. vulgare (M91814) ctg 26 l e - 5 2  
N B S - L R R  disease resistance protein homologue,  etg 12 8e-04  
H. vulgare (Q84KD0)  

beta-glucanase,  barley ($35156) RB 24.4 4e -5  

Phenolic metabo l i sm 
Phenylalanine ammonia- lyase ,  H. vulgare (Z49146) etg 11 l e - 4 3  

Oxidative burst ,  detoxification 
Putative N A D P H - d e p e n d e n t  oxidoreductase,  OA_a2C02 2e-15  
P. somniferum (Q9SQ64) 

Putative cy tochrome P450 (CYP87), O. sativa (Q7XU41) etg 70 4e -44  

Abiotic stress 
Hsp23.5, T. aestivum (AF104107) OA alB01 3e -34  
Hsp23.6, T. aestivum (AF104108) O A _ a l H 0 2  2e-88  

Protein degradation 
Ubiqui t in-conjugat ing enzyme (UBC), H. vulgare (AY220735) RB_178.8 6e-10  

Kinase, receptor 
Putative wall-associated kinase 2, O. sativa (Q9ARV3) ctg 104 5e-09  

Diverse proteins 
Putative aspar ta te  aminotransferase ,  O.sativa (Q94315) RB 218.2 8e-16  
Adenylate kinase-a,  O. sativa (Q08479) OA a3A08 3e-32  
Prohibitin, Z. m a y s  (AF236371) OA_a3C03 l e -114  
Alanine amino t rans fe rase  (patent), H. vulgate (Z26322) OA a2D10 3e-99  
Glucose-6-phosphate  isomerase-like RB_291.4 5e-46  
protein, O. sativa (AY224509) 

Phosphoglycerate  mutase ,  T. aestivum (AF475111) OA_b2G09 0 
Cytoplasmat ic  aconi ta te  hydratase ,  A. thaliana (AY136414) OA b3G05 4e-48  
A D P  forming succinate-CoA ligase b-chain, OA_b lD01  3e-77  
A. thaliana (AY099707) 

Succinyl-CoA-ligase beta  subuni t ,  A. thaliana (AJ001808) O A _ b l E I  1 5e -46  

Unknown 
No significant homology  RB_104.3 N / A  
c D N A  clone:J013165K20, O. sativa (AK072222) ctg 41 7e -04  
Whea t  EST BE413608 ctg 103 4 e - l l  
Whea t  EST CD883425 O A _ b l H 0 8  2e-58  
Whea t  EST BT009374.1 OA b3C12 0 
Whea t  EST BF484342 OA b3E09 2e-31 

1.7 4- 0.3 0.022 4.7 + 1.2 <0.001 
1.0 4- 0.0 0.274 2.0 4- 0.2 <0.001 

1.0 4- 0.1 0.419 2.0 4- 0.3 0.003 

1.0 4- 0.0 0.349 2.6 4- 0.3 <0.001 

1.6 t 0.2 0.015 3.1 4- 0.4 <0.001 

1.1 4- 0.0 0.037 3.6 + 0.1 <0.001 

2.1 4- 0.4 0.006 2.6 ~: 0.3 <0.001 
1.4 4- 0.2 0.015 2.5 4- 0.5 <0.001 

1.4 4- 0.3 0.091 5.4 4- 0.8 <0.001 

1.3 + 0.1 0.001 2.9 4- 0.3 <0 .001  

1.4 ± 0.4 0.175 2.2 4- 0.3 0.002 
1.2 4- 0.1 0.118 3.2 4- 0.3 <0.001 
1.1 4- 0.1 0.279 4.7 4- 1.0 <0.001 
1.1 4- 0.1 0.263 2.7 4- 0.4 <0.001 
1.1 4- 0.1 0.132 2.1 4- 0.2 <0.001 

1.0 4- 0.1 0.405 2.3 4- 0.2 <0.001 
1.0 ± 0.1 0.385 2.2 4- 0.1 <0.001 
0.9 4- 0.1 0.024 2.3 4- 0.3 <0.001 

0.8 4- 0.1 0.007 2.2 4- 0.2 <0.001 

1.4 + 0.2 0.035 2.6 4- 0.4 0.002 
1.3 4- 0.1 0.009 2.9 4- 0.5 <0.001 
1.1 4- 0.1 0.086 3.1 4- 0.4 <0.001 
1.1 4- 0.1 0.155 2.3 4- 0.3 <0.001 
1.0 :t_ 0.1 0.437 2.0 4- 0.2 <0.001 
0.9 ± 0.1 0.131 2.4 4- 0.3 <0.001 

a Clones/contigs in boldface revealed transcript  accumulat ion in R N A  gel blot hybridizations.  Access ion n u m b e r s  o f  clones are listed in 
table $3 ( supplementary  material).  
b Blast hit E-value. 
c p values indicate the significant difference of  the mean  log2-transforrned ratios o f  challenged p lants  over ratio one in four  and  six 
independent  exper iments  for the 6-and 24-h t imepoint,  respectively. 

are many reports showing that this method is to be 
preferred over other amplification methods 
(Poirier and Erlander, 1998; Pfibon et  al., 2001). 
However, comparing the results obtained from 
microarrays hybridised with probes labelled with 
different methods revealed that firstly, the sets of 
genes detected as being up-regulated were not 

identical, and secondly, that the ratios between 
control and treatment signals of  transcripts 
detected with both methods showed differences. 
Nevertheless, the positive and the negative control 
genes showed the expected up-regulation and 
ratios around one, respectively, and thus, both 
methods delivered reliable results. 
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Figure 2. RT-PCR quantification of selected epidermis-specific transcripts, mRNA levels were determined by RT-PCR using 
labelled 33p-e-dCTP. The relative quantity of amplified DNA was detected using a phosphor imager instrument and was expressed 
in relative digital light units (DLU). The data were normalised using actin transcripts as a standard. A-G. Average levels in two 
independent experiments of selected transcripts in Bgh-treated and non-treated wheat tissues (E, epidermis; M, mesophyll; L, whole 
leaves) at 6 and 24 hpi, respectively. Below each graph, an example of an autoradiogram of a polyacrylamide gel with the reaction 
products is shown. The PCR cycle (cyc) number is indicated for every sample. An autoradiogram of a polyacrylamide gel with 
RT-PCR products obtained with rubisco specific primers and actin specific primers is shown in (H) and ([), respectively. 

M a n y  different  m e t h o d s  exist to  normal ise  data ,  
e.g. to ta l  intensi ty  no rma l i sa t ion  (Quackenbush ,  
2002) and  L O W E S S  normal i sa t ion  (Cleveland, 
1979, 1981). B o t h  m e thods  require as prerequisite 
tha t  the elements  spo t t ed  on the a r ray  represent  a 
r a n d o m  col lect ion o f  genes o f  an  organism.  The  
mic roa r r ays  used in this work ,  however ,  represented 

a selection o f  genes f r o m  screenings. M o s t  o f  these 
genes were likely to be induced  by Bgh and  
syringolin A, respectively,  and  thus, neither o f  these 
normal i sa t ion  m e t h o d s  or  o the r  global  methods  can 
be used. Therefore ,  a no rma l i s a t i on  method  was 
developed tha t  relies on  a small f ract ion o f  genes 
tha t  likely do  no t  change  their expression levels after  



treatment with diverse agents (Reymond et al., 
2000). Several putative housekeeping genes and 
genes which showed no change in expression with 
several treatments obtained from preliminary 
experiments were used to calculate a factor that 
allows the correction of the signal intensities of one 
channel. Analysis of the normalisation factors of 
many experiments revealed that the signals of the 
red channel usually were lower than the signals of 
the green channel, which confirms the findings of 
others (Dudoit et al., 2002). Nevertheless, the 
differences in signal intensities of the control spots 
between the two channels were relatively small, 
because the two channels were equalised before 
acquiring the image with the help of the ScoreCard 
calibration control spots. Moreover, since the Cy5 
signals tended to be weaker than the Cy3 signals, the 
induction ratio is likely an underestimation 
since usually the treatment sample was labelled 
with Cy5. 

Powdery mildew interacts exclusively with the 
epidermis of the host, and it is therefore of interest 
to identify the genes which are expressed in 
epidermis cells. However, epidermis specificity of 
gene expression difficult to asses when the hybrid- 
ization probes are derived from epidermis prepa- 
rations contaminated with an sizable amount of 
mesoderm tissue, as was the case in our experi- 
ments. We tried to correct for the mesophyll 
contamination by calculating the epidermis spec- 
ificity value ES from the ratios of test gene signal 
to rubisco gene signal observed with epidermal 
and mesophyll probes, respectively. The calculated 
ES values underestimate the epidermis specificity 
because the signal of a gene originating from the 
adaxial epidermis still present in our mesophyU 
samples attributed to the mesophyll. The epider- 
mal fraction in the mesophyll preparations was 
estimated by measuring the portion of epidermis 
and mesophyll areas in cross-sections of primary 
wheat leaves, which were determined to be 
approximately 25% and 75%, respectively (data 
not shown). Therefore, the remaining adaxial 
epidermis in mesophyll samples accounted for 
approximately 12% of the volume. Moreover, the 
epidermis consists of different cell types with the 
majority lacking chloroplasts. However, the guard 
cells possess chloroplasts and are photosyntheti- 
cally active. This cell type constitutes about 
10-15% of the number of total cells, and, there- 
fore, contributed in addition to the mesophyll 
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contamination of epidermis samples as estimated 
from the rubisco gene signal observed with hybrid- 
ization probes derived from epidermis samples. 
This may in part also explain that the ES value of 
several genes was below the value of one, as e.g. 
thaumatin-like protein (WIR2), which exhibited an 
ES of 0.5 (Table 2). Another reason for values 
smaller than one may be that in mesophyll 
samples, the hybridization of rubisco cDNA with 
DNA of the rubisco spots reached saturation due 
to the high concentration of probe representing 
rubisco transcripts, and, thus, the acquired signal 
was not proportional to the rubisco cDNA in the 
hybridization solution. Hence, the rubisco gene 
expression was likely to be underestimated in 
experiments with mesophyll probes. In conclusion, 
on the one hand, overestimation of rubisco 
expression in epidermis samples and on the other 
hand, underestimation of rubisco signal in meso- 
phyll samples may have contributed to generally 
too low ES values. Thus, an ES value of >2 as 
evidence for transcript accumulation in the 
epidermis certainly is conservative. 

Transcripts accumulating in the epidermis 
upon Bgh-inoculation 

In the cDNA microarray hybridization analysis, 
transcripts corresponding to many different con- 
tigs/clones were shown to exhibit an ES value of 
(ES _> 2) and therefore to accumulate in the 
epidermis after inoculation with Bgh. 

Several genes were identified which likely are 
involved in detoxification and redox processes. An 
alternative oxidase transcript (clone OA_alE06, 
Table 1) showed an exceptionally high ES value of 
12. Alternative oxidase (AOX) is a mitochondrial 
enzyme encoded in the nucleus that may help to 
reduce reactive oxygen species (ROS) production in 
mitochondria. A O X  antisense tobacco plants show 
an enhanced hypersensitive response (Vanlerberghe 
et al., 2002), and, conversely, overexpression pro- 
tected cells from HR (Maxwell et al., 1999). This 
may seem paradoxical in the wheat-Bgh interaction 
analysed here, where about 50-70% of the cells 
interacting with the fungal spores undergo HR 
(unpublished observation). Thus, one may specu- 
late that AOX accumulates in mitochondria of cells 
neighbouring an attacked cell and acts to restrict 
the size of lesions caused by HR (Ordog et al., 
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2002). Two other genes involved in ROS metabo- 
lism were induced in the epidermis: GLP4 
(AJ237942; Table 1), whose product has recently 
been shown to exhibit superoxide dismutase activ- 
ity and to contribute to quantitative powdery 
mildew resistance in wheat and barley (Schweizer 
et al., 1999; Christensen et al., 2004), and a 
peroxidase gene (ctg 114; Table 1). Epidermally 
induced genes likely involved in detoxification 
encode a gluthatione-S-transferase (OA_b3D05; 
Table 1), a berberine bridge enzyme-like enzyme, a 
cytochrome P450, and mitochondrial NAD-depen- 
dent formate dehydrogenase (FDH). In potato, 
F D H  was found to be strongly induced by stresses 
and by spraying with formate and methanol 
(Hourton-Cabassa et al., 1998). In plants, a likely 
source of methanol in leaves is from pectin deme- 
thylation of cell walls (Obendorf et al., 1990). An 
enzyme capable of this reaction is the pectin methyl 
esterase, which is induced after wounding in Ara- 
bidopsis leaves (Reymond et al., 2000). Pectin (e.g. 
galacturonan) is produced during cell wall synthe- 
sis, e.g. cell expansion and pathogen defense (Levy 
and Staehelin, 1992; Fall and Benson, 1996) and 
constitutes up to 35% of the cell wall mass of 
dicotyledonous plants, but is less abundant in cell 
walls of grasses. However, the production of 
methanol may lead to accumulation of formate in 
epidermal cells, since they produce cell wall com- 
ponents in order to withstand penetration of 
pathogens. In this regard, the induction of the 
formate dehydrogenase may be viewed rather as a 
secondary response to infection than a primary one. 

Two epidermally induced genes encode pro- 
teins likely involved in vesicle docking. Ctg 99 
(Table 1) codes for a protein with similarity to 
VAP27, a VAP33-1ike tomato protein found to 
bind to Cf-9, the product of  the Cf-9 resistance 
gene, in a yeast two-hybrid screen (Laurent et al., 
2000). V A P 3 3  was described initially in Aplysia 
californica as a member of the SNARE complex 
involved in vesicular docking and neurotransmit- 
ter exocytosis (Skehel et al., 1995). VAP33 is a 
presynaptic membrane protein that interacts spe- 
cifically with VAMP. This interaction is 
responsible for the docking and fusion of the 
synaptic vesicle to the plasma membrane. Thus, 
transcripts corresponding to ctg 99 encode a 
protein likely involved in vesicle docking. Clone 
RB_339.8 (Table 1) encodes a protein with sim- 
ilarity to the Rab family of small G-proteins, 

members of which are involved in SNARE 
complex formation during vesicle docking (St~d- 
hof, 1997; Sato and Wickner, 1998; Jahn et al., 
2003). VEsicle docking has recently been shown to 
be important in the defense against pathogens in 
Arabidopsis and barley. The Arabidopsis PEN1  
gene and the barley R O R 2  gene, which both are 
involved in penetration resistance, encode func- 
tional syntaxins. Syntaxins are members of the 
SNARE superfamily that mediate membrane 
fusion events. Arabidopsis pen l  mutant plants 
exhibit an impaired non-host penetration resis- 
tance against barley powdery mildew, whereas the 
barley R O R 2  gene is required for mlo-mediated as 
well as for basal penetration resistance to Bgh 
(Freialdenhoven et al., 1996). ROR2 interacts 
with HvSNAP34, a SNAP-25 SNARE homolog 
in the yeast two-hybrid protein interaction assay 
and it is required for full resistance (Collins et al., 
2003). Since SNARE proteins are required for 
resistance, it implies a role for membrane fusion 
in pathogen defense. Indeed, recent observations 
showed that large vesicles (2-3/~m) containing 
H202 were detected in the host cells beneath 
appressoria (Collins et al., 2003). Consistently, 
the accumulation of vesicles at the site of 
penetration was negatively influenced by ror 
mutants and the extent of resistance coincided 
positively with the amount of vesicles. 

Several induced genes were identified that 
encode proteins involved in signal transduction 
processes. A lectin-like kinase (clone RB_78.2; 
Table 1) and two leucine-rich repeat (LRR) recep- 
tor-like kinases (RLK; ctg 105 and ctg 99.2; 
Table 1) were specifically expressed in the epider- 
mis. Such proteins may be involved in the recog- 
nition of fungus-associated molecular patterns like 
the one recently described by Schweizer et al. 
(2000). Recently, Eckey et al. (2004) reported the 
cloning of a lectin domain-containing receptor-like 
kinase from powdery mildew-infected bar- 
ley (accession (AJ427599). The biolistic dsRNA- 
mediated knock-down of the AJ427599-encoded 
protein resulted in a 26% reduction of the pene- 
tration efficiency of a compatible powdery mildew 
isolate, suggesting that the corresponding gene was 
expressed in epidermal cells, because only these 
cells can be biolistically transformed. However, the 
protein encoded by RB_78.2 is not closely related 
in sequence to the AJ427599-encoded protein and 
thus is not the ortholog. 



One of the most strongly expressed genes in 
both epidermal and mesophyll tissues was the gene 
corresponding to ctg 1 (Table 1) which shows 
similarity to the G I G A N T E A  (GI)  gene. Muta- 
tions in the GI gene of Arabidopsis cause a 
pleiotropic phenotype with effects on flowering 
time in response to photoperiod, phytochrome B 
signalling, the circadian clock and carbohydrate 
metabolism (Eimert et al., 1995; Fowler et al., 
1999; Park et al., 1999; Huq et al., 2000). The GI 
ortholog of rice was also shown to regulate 
flowering time in rice (Hayama et al., 2003). 
Recently, GI was found to be induced 10-fold 
after cold acclimation in Arabidopsis (Fowler and 
Thomashow, 2002) and to be localised in the 
nucleus (Huq et al., 2000). Interestingly, GI was 
among the proteins found in a yeast two-hybrid 
screen for proteins that interact with SPINDLY 
(SPY), and it was shown to interact with the 
tetratricopeptide repeat (TPR)-domain of SPY. 
SPY was initially identified as a negative regulator 
of gibberellin signalling in Arabidopsis, but also 
functions in previously undefined pathways (Tseng 
et al., 2004). TPRs can act as scaffolds for the 
assembly of multiprotein complexes (Blatch and 
Lassie, 1999), e.g. in the assembly of Hsp70-Hsp90 
multichaperone complexes (Scheufler et al., 2000). 
To our knowledge, no association with responses 
to pathogen-attack has been reported for GI, and 
the function of this gene with respect to pathogen- 
defense, if any, remains presently unknown. 

Genes induced in the mesophytl  ( E S  value <2) 

Genes induced by Bgh that exhibited an ES value <2 
and therefore were mostly expressed in the meso- 
phyll are listed in Table 2. In addition to defense- 
related genes encoding homologs of the rice Pir7 
esterases (clone OA_b2A07, OA_b 1 B01, and ctg 58; 
W/ispi et al., 1998), superoxide dismutase (ctg 64), 
and some other proteins, a prominent group of 
induced genes encode well known PR proteins 
(Table 2). For the PR-2 (/3-1,3-glucanases) and PR- 
5 (thaumatin-like proteins; TLPs) classes, several 
homologous transcripts were found to accumulate 
following Bgh inoculation. 

Three calreticulin transcripts (ctg 44, ctg 14, 
clone OA_b2C03; Table 2) were also shown 
to accumulate. Plant calreticulin genes were 
previously shown to be pathogen-induced and 
are thought to have a role as chaperones in the 
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endoplasmatic reticulum (ER) necessary for the 
secretion of PR and other secreted proteins 
(Denecke et al., 1995; Nelson et al., 1997; Jelitto- 
Van Dooren et al., 1999). Apparently, the ER 
translocation capacity is also increased as tran- 
scripts encoding a protein similar to the Sec61 
alpha subunit of this translocation apparatus (ctg 
121; Table 2) were found to strongly accumulate in 
response to Bgh inoculation. Also induced is a 
gene encoding a putative UDP-galactose/UDP- 
glucose transporter (ctg 53) which may provide the 
substrates for protein glycosylation of secreted 
proteins or polysaccharide biosynthesis in the 
compartments along the secretory pathways. 

Ctg 48 and ctg 27 show similarity to glucos- 
yltransferases. The gene corresponding to ctg 48 
was the most strongly induced in the mesophyll 
(Table 2). The substrates of GTs are quite diverse, 
including plant hormones, secondary metabolites 
involved in stress and defense responses, and 
xenobiotics such as herbicides. These compounds 
can be activated or inactivated by glucosylation. 
Glucosides play also a role in the accumulation of 
phenylpropanoids that would be toxic in their free 
form and generally, they are stored as glucosides 
in plants. GTs were identified to be induced after 
wounding and pathogen-attack (Lee and Raskin, 
1999). One of these genes encoding a GT of 
tomato (Twi l )  is involved in the conjugation of 
small molecular weight substrates such as phen- 
olics and flavonoids (O'Donnell et al., 1998). In 
tobacco, two GTs, which act on phenylpropa- 
noids and benzoic acid derivates, including sali- 
cylic acid, were found to be induced by infection, 
treatment with elicitors and salicylic acid 
(Fraissinet-Tachet et al., 1998). Recently, tobacco 
plants depleted of UDP-Glc:phenylpropanoid 
glucosyltransferase by antisense expression were 
shown to be more susceptible to virus infection 
and to accumulate less scopoletin glucosides 
(Chong et al., 2002). These results suggest that 
glucosyltransferases are important in the response 
to pathogens, however, the substrate of GTs 
found in this work is presently not known. 

Induced genes involved in signal transduction 
and gene regulation encode a Myb-related 
transcription factor (clone RB_226.2), a putative 
histidine kinase (ctg 33), an LRR-RLK (clone 
RB_286.2), and a protein similar to wall-associated 
kinases (WAK; ctg 52). The latter proteins contain 
a cytoplasmatic Ser/Thr kinase (STK) domain and 
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an extracellutar region with similarity to vertebrate 
epidermal growth factor (EGF)-like domains. 
WAKs are considered to physically link the extra- 
cellular matrix and the cytoplasm and to be 
involved in signalling (He et al., 1996; Kohorn, 
2000; Anderson et al., 2001). Expression of  WAK1 
in Arabidopsis is stimulated by the resistance 
activators INA (2,6-dichloroisonicotinic acid) and 
SA (salicylic acid) as well as by Pseudomonas 
syringae (He et al., 1998). It has been demonstrated 
that the induction of WAK1 is required for plants 
to withstand Pseudomonas syringae infection (He et 
al., 1998). Recently, (Park et al., 2001) demon- 
strated that a glycine-rich secreted protein of 
Arabidopsis (AtGRP-3) specifically bound to the 
extracellular domain of WAK1. Moreover, 
AtGRP-3 induced PR-1 and triggered a positive 
feedback loop that up-regulated the expression of 
WAK 1 and AtGRP-3.  In contrast, WAK4 of 
A. thaliana is implicated in cell expansion since 
silencing of W A K 4  resulted in inhibition of cell 
elongation and an altered morphology (Lally et al., 
2001). 

In contrast to the epidermis, no induction of 
subtilisin proteases was detected, but a subtilisin- 
chymotrypsin inhibitor-2-1ike genes was strongly 
induced (Table 2). 

Induced genes revealed by probes f rom whole 
leaves 6 and 24 hpi 

As evident from Figure 1, the set of induced genes 
as revealed by hybridization probes derived from 
epidermal and mesophyll preparations is not 
completely congruent with the one obtained with 
probes from whole leaves. This is probably mainly 
due to the fact that the latter probe was labelled 
with a different procedure (indirect labelling) than 
the former two, which where amplified before the 
indirect labelling (see Methods). Thus, the distor- 
tions in the representation of  the true transcript 
abundances may not have been identical. From the 
25 genes uniquely revealed with probes from whole 
leaves, the two most strongly induced genes seem 
noteworthy: Clone RB_178.8 corresponds to a 
protein homologous to a ubiquitin-conjugating 
enzyme and clone OA_a3C03 to a prohibitin. 

Ubiquitin-conjugating enzymes (ubiquitin-car- 
rier proteins) are involved in ubiquitin-proteasome 
proteolytic pathways the importance of  which with 
respect to plant defense regulation is increasingly 

recognised (Devoto et al., 2003). Briefly, the target 
protein is bound to a specific ubiquitin-protein 
ligase (E3). The ubiquitin-activating enzyme (El) 
together with the ubiquitin carrier protein (E2) 
activate ubiquitin. The activated E2-ubiquitin- 
complex is bound to a E3-substrate-complex 
where the ubiquitin is transferred from E2 to the 
substrate. This step is repeated several times and 
afterwards, the ubiquitin-tagged substrate is de- 
graded by the 26S proteasome complex (Glickman 
and Ciechanover, 2002). This pathway was shown 
to regulate hypersensitive cell death mediated by 
race-specific resistance genes in barley and Ara- 
bidopsis, and several genes required for this 
process encode proteins interacting with E3 com- 
plexes (Austin et al., 2002; Azevedo et al., 2002). 
Several other E3-ubiquitin-ligases have been iden- 
tified as candidates for involvement in defense 
signalling pathways (Salinas-Mondrag6n et al., 
1999; Durrant et al., 2000). However, to date, 
there are not many reports on ubiquitin-carrier 
proteins that are up-regulated after fungal treat- 
ment, as is the one corresponding to clone 
RB 178.8. 

In barley, the identification of powdery mildew- 
induced genes by cDNA-AFLP at the 4 and 12 hpi 
timepoints has recently been reported (Eckey et al., 
2004). In these experiments, whole leave material 
was used. For 29 ESTs, Bgh-induced transcript 
accumulation was shown using RT-PCR. In addi- 
tion to the lectin domain-containing receptor like 
kinase mentioned above, a number of  proteins are 
encoded by these clones that are similar to 
peptides encoded by clones identified in this study: 
A putative peptide transporter (AJ495773/ctg 21; 
Table 2), phenylalanin ammonia-lyase (AJ427587 
and BE415189/ctg 101 and ctg 11; Tables 1 and 3, 
respectively), a cytochrome P450 (AJ495774/ctg 
36; Table 3), and a 3-phosphoshikimate 1-carb- 
oxyvinyltransferase (AJ495777/ctg 119; Table 2). 
Differences in the nature of cDNA-AFLP clones 
obtained in our work and the one of Eckey et al. 
(2004) may be due to a number of causes, 
including different experimental setup (epidermis 
preparation vs. whole leaf tissue), different time 
points, and the use of different plant species. 

Contig 119 (Table 2) encodes a putative 3-phos- 
phoshikimate 1-carboxyvinyltransferase, an en- 
zyme involved in chorismate synthesis. 
Transcripts encoding several enzymes in the shik- 
imate pathway were also shown to be members of 



a set of 22 transcripts accumulating both in 
compatible and incompatible interactions of pow- 
dery mildew with barley until about 16 hpi, but 
afterwards differing in abundance: in compatible 
interaction this set decreases in abundance, while 
in incompatible interactions, a high abundance is 
maintained for a longer time (Caldo et al., 2004). 
This pattern suggested that in compatible interac- 
tions, the fungus is able to suppress host defense 
responses. We have previously found evidence for 
suppression of expression of certain wheat PR 
protein genes in compatible powdery mildew/ 
wheat interactions (W~ispi et al., 2001). Although 
other transcripts in the set of 22 transcripts encode 
proteins in pathways (e.g. oxidative stress, lignin 
biosynthesis) to which also proteins belong 
encoded by clones found in this work, we cannot 
draw any conclusions about their time course 
behaviour with regard to compatible or incompat- 
ible interactions. 

In conclusion, hybridization of microarrays of 
cloned cDNA-AFLP fragments using probes 
derived from epidermal and mesophyll tissue 
preparations of wheat leaves has allowed to 
determine the tissue specific expression of a set of 
genes that are activated upon Bgh inoculation. 
Overexpression (after cloning of full length 
cDNAs) and suppression by RNA interference of 
genes induced in the epidermis using the transient 
ballistic expression system previously described 
(Schachermayr et al., 1994; Schweizer et al., 1999, 
2000) will allow the functional characterization of 
this set of genes in resistance against wheat 
powdery mildew. 

Material and methods 

Plant and fungal growth conditions and treatment 

Plants were grown on standard soil (Einheitserde, 
Buchenberg, Germany) in a growth chamber (I6 h 
light period at 22, 8 h dark period at 18 °C; 60% 
relative humidity). 

The powdery mildew fungi Blumeria graminis f. 
sp. hordei (Bgh, Reckenholz accession (4.8) and 
Blumeria graminis f. sp. tritici (Bgt, Reckenholz 
accession (92315), both Swiss field isolates, were 
maintained on Hordeum vulgare cv. Express and 
Triticum aestivum cv. Arina, respectively, by 
weekly transfer to fresh plants. 
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Inoculation of wheat plants with powdery 
mildew fungi was usually made with 7-day-old- 
seedlings at a spore density of 150-250 conidia/ 
mm 2. Wheat plants were inoculated with either the 
incompatible fungus (Bgh) or the compatible 
fungus (Bgt) by brushing barley or wheat plants 
infected one week earlier over the test plants. Plant 
material was collected from different tissues at 
various time points after infection. 

For the cDNA-AFLP screening, wheat seed- 
lings (Triticum aestivum cv. Fidel, winter wheat) 
were grown in 20 pots, each containing 10-12 
seedlings, in the same growth chamber. The 
plants of 10 randomly chosen pots were mock- 
inoculated, while the remaining plants were 
treated with Blumeria graminis f. sp. hordei 
(Reckenholz accession (92315) at a spore density 
of 200 conidia/mm 2. This interaction is com- 
pletely incompatible. About 50-70% of the 
wheat epidermal cells attacked by this fungal 
isolate undergo hypersensitive cell death, whereas 
the remaining cells prevent penetration by the 
fungus through papilla formation. Inoculated 
and un-inoculated control plants were then again 
incubated in the same growth cabinet. The 
abaxial epidermis of Bgh-treated and non-treated 
first leaves of all plants was harvested after 6-9 
and 23-26 hpi, respectively, and immediately 
frozen in liquid nitrogen. The same experimental 
setup was also used for the preparation of 
microarray hybridization probes, except that in 
addition to the abaxial epidermis, the remainder 
of the stripped leaves was also collected, and for 
some experiments whole first leaves where 
harvested. 

R N A  extraction and poly(A)  + RNA isolation 

RNA was isolated from collected plant material 
that was ground to a fine powder in liquid nitrogen 
using pestle and mortar. The material was sus- 
pended in a 1:1 mixture of phenol and 2x NETS 
(200 mM NaC1, 2 mM EDTA, 20 mM Tris-HCl, 
1% SDS, pH 7.5) that was preheated to 80 °C 
(Dudler and Hertig, 1992). 

Poly(A) + RNA was isolated from 200 to 
1000/~g of total RNA using oligo(dT) OLIGO- 
TEX ® (Qiagen, Basel, Switzerland). All steps 
were performed according to manufacturer's 
protocol. 
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Template preparation, amplified fragment length 
polymorphism (AFLP)  and PAGE analysis 

The cDNA used for cDNA-AFLP was synthesised 
using a cDNA-synthesis kit of Invitrogen (Invi- 
trogen, Basel, Switzerland; Cat. No. 18267-013) 
according to manufacturer's protocol. Starting 
material for each reaction was 2 #g of poly(A) + 
RNA derived from epidermal RNA. The template 
for cDNA-AFLP was prepared according to Vos 
et al. (1995) and Bachem et al. (1996). The cDNA 
was digested with the restriction enzymes NcoI and 
Sau3AI (Amersham Biosciences, Uppsala, Swe- 
den). Next, NcoI and Sau3AI adapters were 
ligated to the cDNA fragments using T4 DNA 
ligase (Roche Applied Science, Penzberg, Ger- 
many). Following ligation, cDNA fragments were 
subjected to PCR pre-amplification. The 20 times 
diluted pre-amplification product was as a tem- 
plate in the selective PCR amplification reaction. 

The sequences of adapters and primers used for 
cDNA-AFLP and the PCR reaction conditions were 
as follows: NcoI adapter top strand, 5"-CCTGTA- 
GACTGCGTACAC-3'; NcoI adapter bottom strand: 
5 ' -CATGGTGTACGCAGTCTA C-3'; Sau3AI 
adapter top strand, 5 '-AGCGATGAGTCCTGAG- 
3"; Sau3AI adapter bottom strand, 5'-GATCCT- 
CAGGACTCAT-3'; NcoI preamplification primer, 
5'-AGACTGCGTACACCATGG-3';  Sau3AI pre- 
amplification primer, 5'-ATGAGTCCTGAG- 
GATC-3"; NcoI selective amplification primers, 5'- 
AGACTGCGTACACCATGGNN-3"; Sau3AI 
selective amplification primers, 5'-ATGA GTC- 
CTGAGGATCNN-3' .  All oligonucleotides were 
HPLC purified (Microsynth AG, Balgach, Switzer- 
land). The NcoI and Sau3AI bottom strand oligo- 
nucleotides were phosphorylated at the 5' end using 
T4 polynucleotide kinase (Amersham Biosciences, 
Uppsala, Sweden), annealed to the corresponding 
primer and ligated to the digested cDNA. Pre- 
amplification reactions were performed with an 
initial 2 min synthesis step at 72 °C following 20 
cycles (30 s, 94 °C; 60 s, 60 ° C; 2 min, 72 °C) and a 
final elongation step (2 min, 72 °C). The product 
was diluted 20 times (total volume: 400 #1). The 
selective N-primers were labelled with [y-33p]-ATP 
at the 5'-end using T4 polynucleotide kinase. Each 
primer labelling reaction was performed in a 25 #1 
volume containing 10 #M N-primer, 50 #Ci 
[y-33p]-ATP (Hartmann Analytic GmbH, Glattb- 
rugg, Switzerland), 1× reaction buffer (10mM 

Tris-acetate, 50 mM K-acetate, pH 7.5), and 0.5 U 
polynucleotide kinase (Amersham Biosciences, 
Uppsala, Sweden). A touch down thermocycling 
reaction was carried out in a 20 pl volume containing 
3 #1 template from the pre-amplification step, 
0.3 #M labelled N-primer, 0.3 #M S-primer, 
200 #M each for dATP, dGTP, dCTP and dTTP, 
lx reaction buffer (10 mM Tris-HC1 pH 9, 1.5 mM 
MgCI2, 50 mM KC1, Amersham Biosciences) and 
1 unit Taq-polymerase (Amersham Biosciences) 
using the settings: 2 min, 94 °C [30 s, 94 °C; 30 s, 
65~0.9 °C per cycle; 2 min, 72 °C] 9 cycles [30 s, 
94 °C; 30 s, 57 °C; 2 min, 72 °C] 23 cycles. All 
amplification reactions were performed in a PE 
GeneAmp 9600 thermocycler (Perkin-Elmer Life 
and Analytical Sciences, Monza, Italy) 

Selective amplification products were mixed 
with formamide dye (98% formamide, 10 mM 
EDTA pH 8, bromophenol blue, xylenecyanol) at 
a 2:1 ratio and 3/A of each product was separated 
on a polyacrylamide gel (5% acrylamide, 0.25% 
bisacrylamide, 7.5 M urea, 1× TBE [89 mM Tris- 
borate, 2 mM EDTA, pH 8]). The electrophoresis 
was performed at 52 °C (~100W)  until the 
bromophenol blue reached the bottom of the gel. 
Gels were dried onto Whatman 3MM paper 
(Whatman, Maidstone, UK), positionally marked 
with a stapler on Kodak Biomax MR film (Kodak, 
New Haven, USA, CAT 871 5187) and exposed 
for 1.5 d at room temperature. 

Isolation, subcloning and sequencing 
of  AFLP fragments 

The developed films were aligned on the gels with 
staples. The bands of interest were excised from the 
dried gel with a scalpel and incubated for 1 h at 37 
on a benchtop shaker (Vaudaux-Eppendorf AG, 
Sch6nenbuch, Switzerland) in 100 #1 TE (10 mM 
Tris, 1 mM EDTA, pH 8) and stored at -20 °C. 
Excision of the correct band was controlled by 
exposing the gel again to an X-ray film. The 
fragments were recovered by PCR using the pre- 
amplification conditions (no initial 2 min synthesis 
step) and performing 30 cycles. PCR products were 
purified with GFX spin columns (Amersham 
Biosciences, Uppsala, Sweden), digested with 
NcoI/Sau3AI (Amersham Biosciences, Uppsala, 
Sweden) and ligated to a modified cloning vector 
pBSK + (Stratagene, La Jolla, USA) containing an 
NcoI site between the PstI and SmaI sites in the 



multiple cloning site. To achieve this, the oligo- 
nucleotides 5"-GCCATGGCCCGGGG and 5"- 
GATCCCCCGGGCCATGGCTGCA were an- 
nealed and ligated between the PstI and BamHI 
sites of the multiple cloning site. 

Sequences were determined using an automated 
sequencer (ABI377, Applied Biosystems, Foster 
City, USA) and were compared to DNA and 
protein sequence databases (including the wheat, 
barley, and rice EST databases with 595 000, 
393 000, and 370 000 entries as of December 
2004) with the programs blastn, blastx tblastx 
(Altschul et al., 1990). 

Microarray preparation 

Inserts of cDNA-AFLP clones were amplified by 
polymerase chain reaction (PCR) using M13 
reverse and M13 forward primers carrying an 
amino group at the 5"-hydroxy end. All steps were 
carried out according to Reymond et al. (2000) 
except that the spotting solution was 3 x SSC, 3 M 
betaine. 

Microarray fabrication was performed accord- 
ing to published methods (Schena et al., 1995; 
Shalon et al., 1996, Reymond, 2000 (1166) using 
an OmniGrid 100 gridding robot equipped with 8 
printing pins (Genomic Solutions, Ann Harbor, 
USA). 

Preparation o f  fluorescent probes 

For microarray hybridization experiments, fluo- 
rescent probes were prepared from RNA 
extracted from inoculated and uninoculated 
wheat plants. 

Indirect labelling: Purified polyA + RNA was 
reverse transcribed in the presence of aminoallyl- 
dUTP. Two #g polyA + RNA was mixed with 
2 #1 primer-mix (500 ng/#l oligo-dT (21-mer), 
600 ng/#l random nonamer and, optionally, with 
2 #1 Lucidea ScoreCard Spike RNA [Amersham 
Biosciences, Uppsala, Sweden]). The volume of 
the sample was adjusted to 15/~1 with H20 and 
incubated at 70 °C for 10 min. After the sample 
was cooled on ice for 5 min, the following 
components were added: 5 #1 5x first-strand- 
buffer (Invitrogen AG, Basel, Switzerland), 50x 
aminoallyl-dNTP mix (25 mM dGTP, 25 mM 
dCTP, 25 mM dATP, 17.5 mM aa-dUTP, 
7.5 mM dUTP, Sigma-Aldrich, Buchs SG, 

263 

Switzerland), 2.5/~1 DTT 0.1 mM (Invitrogen), 
0.7 /~1 RNaseOUT (40 U//A Invitrogen), 0.3 #1 
H20 (RNase free) and 1 kL1 SuperScript II reverse 
transcriptase (200 U/~I, Invitrogen). The sample 
was put at 25 °C for 10 min, then incubated for 
2 h at 42 °C. After 1 h at 42 °C, additional (1 /~1) 
SuperScript II was added. To inactivate the 
enzyme, the samples were incubated at 70 °C 
for 10 min. Afterwards, 0.5/~1 RNase H (5 U//tl, 
Amersham Biosciences) was added and samples 
were incubated for 15 min at 37 °C. To purify the 
sample, 0.5 #1 EDTA (pH 8) and 2.5 #1 
QuickClean resin (BD Biosciences, Basel, 
Switzerland) was added, vortexed for 1 min and 
briefly centrifuged. The supernatant was applied 
onto a 0.45/~m spin filter (Cat. No. U F C 3 0 H V  
25, Millipore, Volketswil, Switzerland) and cen- 
trifuged for 2 min at 12 000 x g. The nucleic 
acids were precipitated by adding 150 #1 Touch- 
Down precipitation reagent according to the 
manufacturer's protocol (ActiveMotiv, Rixensart, 
Belgium). The dried pellet was dissolved in 10/A 
1.5x coupling buffer (75 mM sodium bicarbonate, 
pH 9). Afterwards, 5 #1 of fluorescent dye 
(7.5 mM; Cy3 or Cy5, Amersham Biosciences; 
AlexaFluor 555 or AlexaFluor647, Molecular 
Probes, Leiden, The Netherlands) dissolved in 
DMSO (BD Biosciences) was added to the 
sample and incubated for 1 h at room tempera- 
ture in the dark. The labelled DNA was precip- 
itated with 75 #1 TouchDown precipitation 
reagent and the pellet was dissolved in 100 #1 
dH20. The probe was purified using the Qiaquick 
PCR Purification Kit (Qiagen, Basel, 
Switzerland). The steps were carried out accord- 
ing to manufacturer's protocol except that three 
washing steps were performed instead of one and 
that the DNA was eluted twice with 35 #1 Tris-Cl 
(2.5 mM, pH 8) at 50 °C. For each probe, a 
photospectrum was taken to ensure frequencies of 
incorporated dye per 1000 nucleotides of 15 or 
more. The two differently labelled probes (control 
and treated sample) were pooled and dried to 
completion. The pellet was dissolved with 60/tl 
hybridisation buffer (0.4% SDS, 3x SSC, 4 ng/#l 
tRNA. 

Amplification labelling: Samples with limited 
starting material were labelled using an amplifica- 
tion step. cDNA synthesis was carried out with 
1 #g total RNA and T7-oligo(dT) primer (Mes- 
sageAmp aRNA-Kit; Ambion, Cambridgeshire, 
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UK). Subsequently, cDNA was in vitro transcribed 
using T7 RNA polymerase producing antisense 
RNA (aRNA). The amplified aRNA was used as 
template for the indirect labelling procedure 
described above. The only difference was that 
oligo(dT) primers were omitted and more random 
nonamers (2 #g) were used. 

rial, table) to determine the correction factor F. 
The factor was calculated as the median of the sum 
of the quotient of the net values of both channels. 
The formula is shown below: 

The background signal was determined by the 
mean signal of the ScoreCard negative control 
spots and used as cut-off value. Spots with signals 

((cy5 signal mean)x - (cy5 back ground median)x) 
F = medianx~housekeeping spots \(cy3 signal mean)x (cy3 back ground median)xJ 

Hybridization reaction, scanning and microarray 
analysis 

Before hybridisation, the probe solution was 
boiled for 2 min, centrifuged for 1 min at 
12 000 x g and then rapidly applied to the micro- 
array under a cover slip having two protruding 
edges (Lifterslips, Erie Scientific Company, 
Portsmouth, USA). The assembly was placed into 
a hybridisation chamber (TeleChem International 
Inc., Sunnyvale, USA). Before the chambers were 
sealed, 100 #1 hybridisation buffer was put into the 
two grooves on each side of the chamber. The 
slides were incubated 14-16 h in a water bath at 
64 °C in a dark place and subsequently washed in 
the following solutions: 2x SSC, 0.1% SDS twice 
for 5 min, 0.2x SSC twice for 1 min, 0.1x SSC 
twice for 1 min. Slides were dried by centrifugation 
at 130 x g for 5 min before scanning. 

Microarrays were scanned with a scanning laser 
microscope (ScanArray 5000; PerkinElmer Life 
and Analytical Sciences, Monza, Italy). Separate 
images were acquired for each fluor at a resolution 
of 10 #m per pixel. To normalise the two channels 
with respect to signal intensity, the photomultiplier 
and the laser power settings were adjusted such 
that the signal ratio of the ScoreCard calibration 
controls was as close to 1.0 as possible. 

The average fluorescence intensity for each 
fluor and for each gene was determined by using 
ImaGene 4.2 software (Biodiscovery Inc., E1 
Segundo, USA). The parameters of data acquisi- 
tion were the following: signal low, 0; signal high, 
1; background low, 0.03; background high, 0.95; 
background buffer, 4; background width, 20. 

To correct for variations in samples of control 
and treatment, the data were normalised using 
putative housekeeping genes (supplementary mate- 

lower than the cut-off value were set to this value. 
The expression ratios were determined using 

the normalised signal intensities. To identify dif- 
ferentially expressed genes, a Student's t test was 
performed on logz-transformed expression ratios 
to check whether the ratios were different from 1 
(one sample hypothesis). If  a gene was represented 
by more than one spot on the microarray, the 
ratios of all spots were included in the analysis. 
For all experiments, only genes with an expression 
ratio >2 and a P value < 0.05 were considered. 

RT-PCR analysis 

Total RNA was treated with DNase (Qiagen, 
Basel, Switzerland) and cleaned up with RNeasy 
columns (Qiagen, Basel, Switzerland) according 
to the manufacturer's protocol. Each first strand 
cDNA reaction was performed in a 20 #1 volume 
containing 1 #g of total RNA, 0.5 #g oligo(dT) 
21-mer, 500 #M each for dATP, dGTP, dCTP 
and dTTP, 40 units of RNase inhibitor (RNase- 
OUT, Invitrogen AG, Basel, Switzerland), 
10mM DTT (Invitrogen), Ix reaction buffer 
(50 mM Tris-HC1, pH 8.3; 75 mM KCI; 3 mM 
MgC12) and 200 units Superscript II (Invitrogen). 
After incubation at 42 °C for 1 h, the reaction 
was stopped by incubation at 70 °C for 15 min. 

PCR was carried out in a 25 #1 volume con- 
taining 1.6 #1 of the first strand product, 200 #M 
of each dATP, dGTP, dCTP and dTTP, 300 nM 
of each primer, 2 #Ci [0~-33p]-dCTP (Hartmann 
Analytic GmbH, Glattbrugg, Switzerland), l x 
reaction buffer (10 mM Tris-HC1, pH 8.3, 
50 mM KC1, 1.5 mM MgCI2 and 0.001% gelatine) 
1 unit Taq-polymerase (Sigma-Aldrich, Buchs SG, 
Switzerland). The thermocycling conditions were: 



94 °C, 2 m i n  [94 °C, 15 min ;  60 °C, 60 min] x 19- 
31 cycles. Al iquo t s  of  5 #1 were t aken  every 3 
cycles s ta r t ing  at 19 cycles. The  react ions  were 
carr ied ou t  in a T - G r a d i e n t  cycler (Biometra,  
Chfi te l-St-Denis ,  Switzer land) .  

P roduc t s  (5 #1) were mixed  with 1 #1 of  gel 
load ing  buffer  (30% glycerol,  l x  TBE,  0.25% 
b r o m o p h e n o l  blue, 0 .25% Orange  G) and  sepa- 
ra ted  on  a n o n - d e n a t u r i n g  po lyac ry lamide  gel (5% 
acrylamide,  0 .25% bisacry lamide ,  l x  TBE).  The 
electrophoresis  was pe r fo rmed  at 50 V unt i l  the 

Orange  G reached the b o t t o m  of  the gel. Gels were 
dried on to  W h a t m a n  3 M M  paper ,  exposed to a 
p h o s p h o r  screen (Pe rk in -E lmer  Life and  Analyt i -  
cal Sciences, M o n z a ,  I ta ly)  for 30-60 min  and  
scanned  with a Cyc lone -S to rage -Phosphor -Sys t em 
(Perk in-Elmer) .  The  quan t i f i ca t i on  of  the gel 
b a n d s  was carr ied  ou t  us ing  O p t i Q u a n t  software 
(Perk inElmer) .  
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