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Abstract

The genomes of the two plant organelles encode for a relatively small number of proteins. Thus, nuclear genes encode the vast

majority of their proteome. Organelle-to-nucleus communication takes place through retrograde signaling (RS) pathways. Signals

relayed throughRSpathwayshavean impactonnucleargeneexpressionbut their target-genes remainelusive inanormal stateof the

cell (considering that only mutants and stress have been used so far). Here, we use maize cytolines as an alternative. The nucleus of a

donor line was transferred into two other cytoplasmic environments through at least nine back-crosses, in a time-span of> 10 years.

The transcriptomes of the resulting cytolines were sequenced and compared. There are 96 differentially regulated nuclear genes in

two cytoplasm-donor lines when compared with their nucleus-donor. They are expressed throughout plant development, in various

tissues and organs. One-third of the 96 proteins have a human homolog, stressing their potential role in mitochondrial RS. We also

identified syntenic orthologous genes in four other grasses and homologous genes in Arabidopsis thaliana. These findings contribute

to the paradigm we use to describe the RS in plants. The 96 nuclear genes identified here are not differentially regulated as a result of

mutation, or any kind of stress. They are rather key players of the organelle-to-nucleus communication in a normal state of the cell.
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Introduction

Plants have an important energy-converting organelle besides

the mitochondrion: the plastid. Both organelles contain a

small number of genes in their genomes: 120 in the plastid

and 57 in the mitochondria, respectively (Sugita and Sugiura

1996; Unseld et al. 1997). But the organellar genomes out-

number the nuclear genome by as much as 5,000 to 1

(Bendich 1987; Cavelier et al. 2000). Despite this ratio, it

was originally thought that organellar DNA was highly con-

served compared with its nuclear counterpart and therefore,

that any phenotypic variation was mainly due to the latter

(Wolfe et al. 1987). This view is currently changing with the

aid of new technologies (e.g., next generation sequencing—

NGS), which offer the possibility of transcriptome-wide gene

expression and comparative analyses. In this respect, Moison

et al. (2010) sequenced plastid and mitochondrial genomes in

95 accessions of Arabidopsis and concluded that there was

considerable genetic polymorphism in both organelles.

Furthermore, there is a significant body of evidence showing

that cytoplasm–nucleus interaction is important in explaining

phenotypic variation in many different species, like rice,

mouse, yeast or Drosophila (Roubertoux et al. 2003;

GBE
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Tao et al. 2004; Rand 2005; Dimitrov et al. 2009). Retrograde

pathways have been defined in order to describe the existing

cross-talk between the organelles and the nucleus, and to

understand how nuclear gene expression (NGE) is modulated

according to signals received from both organelles (Gray et al.

2003; Rhoads and Subbaiah 2007; Chi et al. 2013).

Mutants that are defective in the retrograde signaling (RS)

pathways have been extensively used in trying to untangle

how organelles control NGE (reviewed in Jung and Chory

2010). But mutants have limited potential to explain this phe-

nomenon in a broader context. This is because the genes

identified to respond to RS are linked to a single original stim-

ulus, which is a mutation and all the expression changes

downstream are the result of it. Therefore it still remains

unclear if these genes are the only targets of the retrograde

pathways or other adjustments come into play in a nonmutant

cell environment. These other adjustments might change

the paradigm we use to explain organelle-to-nucleus

communication.

To circumvent the problem of using the less informative

mutants, Joseph et al. (2013) recently took a metabolomics

approach using the reciprocal Kas�Tsu Arabidopsis recombi-

nant inbred lines (RILs) population to investigate the effect of

the cytoplasm on cell metabolites. They concluded that 80%

of the metabolites are controlled by the cytoplasmic genome.

Thus, it is clear that the cytoplasmic genetic make-up of the

cell plays an important role in the functioning of nuclear loci,

but no key players responsible for the observed effect have

been identified yet.

Cytolines represent a better model to study the effect of

cytoplasm (including its organellar genomes) on NGE than RILs

in Arabidopsis. By repeated backcrossing one can transfer the

nucleus from a donor line (used as male/pollen donor) to sev-

eral other cytoplasms, thus creating isonuclear lines, or cyto-

lines. The plastids and mitochondria present in the resulting

lines are only of maternal origin, as they are not transmitted by

pollen in most angiosperms and all studied grasses (Conde

et al. 1979; Soliman et al. 1987). Maize (Zea mays ssp.

mays), like other cereal crops, is an ideal candidate for the

creation of such cytolines. It has an easy pollination process

and also has visible and easily measurable phenotypes, which

may vary depending on the cytoplasm. For these reasons,

Allen (2005) used one maize inbred line and back-crossed it

repeatedly into various cytoplasms of teosinte (Zea mays ssp.

parviglumis; maize’s ancestor) and observed the phenotypes

of the resulting cytolines. He concluded that cytoplasmic ge-

nomes have a significant effect on morphological, develop-

mental, and functional characters. These results were based

on empirical phenotypic observations. No molecular approach

has been implemented to understand the changes taking

place in the newly created lines at the gene expression level.

Tang et al. (2013) took a step forward and analyzed the mo-

lecular background (not gene expression) of several maize

cytolines that displayed significant phenotypic differences

when compared with their donor lines. The authors were in-

terested in two important traits for maize breeding: plant

height and ear height. Using 154 microsatellite markers, 22

quantitative trait loci (QTLs) were identified through simple

sequence repeat (SSR) mapping, which may contain genes

directly under the control of the cytoplasmic genomes (chlo-

roplast or mitochondria).

Interactions between cytoplasmic and nuclear genomes

also influence agronomic traits of rice, but no specific loci

have been identified either (Tao et al. 2004). In a recent

study, Crosatti et al. (2013) transferred the wheat nucleus

(Triticum aestivum) into two other species to examine NGE

in depth using microarray technology. About 540 nuclear

genes were found to have a significantly altered expression

pattern when the wheat nucleus was transferred into

Hordeum chilense cytoplasm, whereas only 11 and 28

genes significantly changed their expression in transfers to

cytoplasm from Aegilops uniaristata and Aegilops tauschii,

respectively.

To sum up, all studies above present significant evidence

that organellar genomes are involved in controlling NGE, but

mainly mutants have been used so far in untangling the RS

pathways in various organisms. Maize is a model plant well

suited for studies of NGE using cytolines, which circumvent

the shortcomings of mutants. No study has used NGS tech-

nology to sequence the whole transcriptome in such lines.

They have been subjected, instead, to phenotypic, microarray,

and metabolomics analyses (Tao et al. 2004; Allen 2005;

Crosatti et al. 2013; Joseph et al. 2013).

Here, we transferred the nucleus of a donor line into two

other cytoplasmic environments of the same species (Zea

mays ssp. mays), through at least nine back-crosses, thus cre-

ating three cytolines. Their transcriptome was sequenced

using an Illumina HiSeq2500 instrument and the data vali-

dated using a custom-made microarray chip. We identified

96 nuclear genes that could potentially function as targets

of the RS pathways. More importantly, these genes are not

differentially regulated as a result of mutation or any kind of

stress. They are rather key players of the organelles-to-nucleus

communication in a normal state of the cell. We also identified

syntenic genes in four other grasses and homologous genes in

Arabidopsis thaliana, hinting towards a general mechanism in

plants, where the RS pathways target these key nuclear genes.

Material and Methods

Plant Material and RNA Extraction

Inbred line TC208 was back-crossed ten times (as pollen

donor) to inbred lines TC316 and W633, respectively, during

1992–2004. The resulting cytolines (TC208(cytTC316),

TC208(cytW633), and TC208) have been maintained by

self- or sib-cross ever since. The three original inbred lines

had been created through at least ten self-crosses. All lines
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used in the present study are fertile, including Cyt1 and Cyt2.

There are no statistically significant phenotypic differences

between the three cytolines. Seeds were sowed in the green-

house and kept under natural light (9.5 h daylength). Nine-

day-old seedlings were sampled at noon from all three lines

being immediately frozen in liquid nitrogen. Total RNA was

isolated with TriReagent (Sigma–Aldrich). Three biological rep-

licates for each genotype were used. Total RNAs were further

purified with RNeasy Mini Kit (Qiagen) and their quality was

evaluated with Bioanalyzer 2100 (Agilent Technologies) based

on RNA integrity. RIN (RNA integrity number) was� 8 for all

samples.

Microarray Assay and Data Analysis

Cy-3 labeled microarray probes (cRNA-Cy3) were synthesized

from 200 ng of total RNA using one-color Low Input Quick

Amp Labeling Kit, according to Agilent manufacturer’s proto-

col. The quality of synthesized cRNAs was checked with

Nanodrop ND-1000 spectrophotometer (NanoDrop

Technologies) considering a minimal yield of 1.65 mg and a

specific activity >6 pmol/ml Cy3/mg cRNA. The probes were

hybridized on Agilent maize custom arrays 4X180k containing

176,026 in situ synthesized 60-mer oligonucleotide features

(without controls). Hybridization was carried out for 17 h at

65 �C, followed by washing and scanning on SureScan

Microarray Scanner at 2 mm. In addition, to avoid the ozone

effects on Cy-3 signal, a supplementary organic solvent con-

taining an ozone scavenging compound dissolved in acetoni-

trile was used after washing step. Feature Extraction (FE)

software v. 11.0 was used for image processing.

Preprocessing and differential data analysis were performed

on median signal from raw files generated by FE, using stan-

dard functions in R/Bioconductor (https://www.bioconductor.

org/; last accessed October 6, 2016) and custom written rou-

tines. Control and flagged spots were removed and data were

normalized between arrays using quantile method imple-

mented in normalizeBetweenArrays function/limma package

(Ritchie et al. 2015). Transcripts originating from the same

gene were combined by taking the median value of the in-

tensities. The differentially expressed sequences were selected

with limma package by fitting a linear model for each se-

quence and using an empirical Bayes smoothing to moderate

the standard errors. A gene was considered differentially ex-

pressed when the P value adjusted for multiple testing

(Benjamini–Hochberg method) was <0.01.

Online Software and Tools Used

The patterns of gene expression in 25 maize tissues were

compiled using data from Sekhon et al. (2011) curated in

MaizeGDB (Lawrence et al. 2007) within the Gene Models

tool: http://beta.maizegdb.org (last accessed October 6,

2016). Syntenic orthologs in the Poaceae family and

Arabidopsis homologs for the 96 genes of interest were

pulled out from the same data base, which curates data

from Schnable et al. (2012), and annotations from the 284

Zea mays release of Phytozome 10 (Schnable et al. 2009).

BLASTP searches for the 96 putative proteins were performed

against the human genome on the NCBI webpage. No puta-

tive or predicted proteins were taken into account and only

hits with e-value� e�10 were considered.

TargetP 1.1 server (http://www.cbs.dtu.dk/services/TargetP/;

last accessed October 6, 2016) (Emanuelsson et al. 2007) was

used to predict the subcellular localization of the translated se-

quences corresponding to the 96 genes. There are four possible

predictions (chloroplast, mitochondrion, secretory pathway and

any other location), each with an associated reliability class (RC)

from one (most reliable) to five (least reliable).

PLACE database (Higo et al. 1999) (http://www.dna.affrc.

go.jp/PLACE/) was used for screening the 500 bp promoter

region of the 96 genes of interest for GATA, G-box, and

CCAC motifs. The 500-bp promoter sequences were retrieved

from Gramene, using BioMart (http://ensembl.gramene.org/

biomart; last accessed October 6, 2016).

Transcriptome Analysis

The transcriptome of each of the three cytolines was se-

quenced in triplicates using a HiSeq2500 Illumina sequencer.

Each RNAseq library consisted of more than 35mio paired-end

reads of 2�150 bp in length. Reads were first checked for

sequence quality (http://www.bioinformatics.babraham.ac.

uk/projects/fastqc; last accessed October 6, 2016) before map-

ping them to the reference maize genome (AGPv3.23) using

the spliced mapping approach implemented in TopHat2 (Kim

et al. 2013). For each gene of the corresponding annotation

we counted the number of reads mapping to it using the

program HTSeq-count (Anders and Huber 2010). Significant

different expression levels between the three strains were as-

sessed using the R-package DESeq2 (Love et al. 2014). P

values were corrected for multiple testing following

Benjamini and Hochberg (1995) and a significant threshold

of 0.01 was applied.

Reads not mapping to the reference genome (AGPv3.23,

which includes the two organellar genomes) were used to find

novel transcripts of the two cytoplasm-donor lines

(TC208(cytTC316) and TC208(cytW633). First, the unmapped

reads were assembled individually for all three strains using

Trinity version 2.1.1 (Grabherr et al. 2011). Second, the tran-

scriptomes of the two cytoplasm-donor lines were filtered for

transcripts not present in the reference transcriptome

(AGPv3.25) and the donor strain TC208 using cd-hit-est (Li

and Godzik 2006). Transcripts were defined to be novel if

the sequence identity threshold or the length difference

cutoff were <80%. Third, the transcriptomes of the two

lines were filtered for common novel transcripts using cd-

hit-est (Li and Godzik 2006). Transcripts were defined as iden-

tical if their sequence identity threshold and their length
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difference cutoff were >99% and 80%, respectively.

Transcripts with low complexity or repeat sections were fil-

tered out using RepeatMasker (Smit et al. 2014). Finally,

NCBI-BLAST version 2.2.29 (Camacho et al. 2009) and

BLAST2GO (Conesa et al. 2005) were used to annotate the

transcripts and to perform a GOterm enrichment analysis.

Results

Cytolines Are the Result of at Least Ten Crosses

Considering that maize has a life cycle of ~ 6 months, a bree-

der needs at least 10 years to create cytolines in temperate

climate conditions, which allow for just one generation a year.

We used the inbred line TC208 as nucleus donor (B in fig. 1;

henceforth line “B”) and the inbred lines TC316 and W633 as

cytoplasm donors/nucleus acceptors (A1 and A2 in fig. 1). It is

important to note that the three starting lines (TC208, TC316,

W633) were also generated through at least ten self-crosses,

resulting in inbred lines (i.e., all loci in the genome are homo-

zygous). Based on their pedigree, TC208 and TC316 are part

of the “Lancaster Sure Crop”, whereas W633 is part of

“Minnesota 13” heterotic groups, according to the maize

germplasm classification by Troyer (1999). The extant genetic

variability within the “Lancaster Sure Crop” heterotic group

(Smith and Smith 1987), corroborated with the membership

of W633 to a different heterotic group (“Minnesota 13”) sup-

port our conclusion that the two cytoplasm donors/nucleus

acceptors lines carry different cytoplasm.

Line B’s nuclear material replaces half of the acceptor’s

nuclear material in the first cross (fig. 1). Consequently, the

paternal line B will contribute 50% of the cell’s proteome, i.e.,

line B’s nuclear genes will code 50% of the proteins present in

the cytoplasm of the F1 progenies. In subsequent crosses, line

B’s contribution towards the generation of the cytoplasm itself

will constantly increase up to 99.95%. At the end of the tenth

cross, the resulting cytoplasm will be composed of the organ-

elles of line A1/A2, but in a cytoplasmic environment gener-

ated exclusively from translating line B’s mRNA. Thus, the

three cytolines (Cyt1, Cyt2, and B) have the same nucleus

and cytoplasm, but different organelles (chloroplast and mito-

chondria) that were not transmitted through the pollen of line

B (always used as paternal line). Therefore, the only influence

that could trigger a change in NGE would be exerted through

the RS pathway. The cytolines were later maintained by sib-

mating or self-mating. They are the result of approximately

two decades of breeding efforts, considering the inbreeding

process of the three lines (B, A1, and A2), which had preceded

the cytolines creation.

The Organellar Genomes Differentially Regulate over
1,000 Nuclear Genes

Transcriptome sequencing, using an Illumina HiSeq 2500 in-

strument, revealed that 5,009 genes changed their expression

pattern in Cyt1 and 1,914 in Cyt2, respectively, when com-

pared with their nucleus donor line B (using a stringent

Padj<0.01 cutoff). The comparison of the two cytolines

alone resulted in 3,646 differentially regulated genes. These

were filtered out when B versus Cyt1 and B versus Cyt2 gene

sets were overlapped (supplementary table S1, Supplementary

Material online) to help in the deconvolution of the genes of

interest, i.e., common to the two cytolines when compared

with the nucleus donor. Thus, Cyt1 and Cyt2 have 1,179

genes in common that share the same expression patterns

when compared with the nucleus donor line B. Of these,

608 are up-regulated and 571 are down-regulated (fig. 2

and supplementary table S1, Supplementary Material

online). These shared genes are potential end-receptors in a

general mechanism used by the RS pathways to communicate

with the nucleus in a normal state of the cell.

To further refine the gene set and classify the genes ac-

cording to their biological function we used their log2 fold

change values as input for the MapMan software (Thimm

FIG. 1.—Cytolines are created by at least ten crosses. Three cytolines

(B, Cyt1, and Cyt2) were created by crossing inbred line B (always as male:

i.e., pollen donor) into inbred lines A1 and A2, respectively. After ten such

crosses, 99.95% of the acceptor lines/cytoplasm donors’ genetic material

is replaced by that of inbred line B. Neither mitochondria, nor chloroplast

are transmitted through pollen. The three cytolines share the same nu-

cleus, which resides on different cytoplasmic environments, each charac-

terized by its own organellar genomes.
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et al. 2004). MapMan is a widely used software in the Omics

field (having collected more than 1,200 citations so far) due to

its modular structure, which allows for the creation of nonre-

dundant gene ontologies (Scavenger module), easy visualiza-

tion of the genes of interest on schematic diagrams (Image

Annotator module), and most importantly, due to its statistical

power in evaluating the genes’ responses in the context of

metabolic pathways or biological processes (PageMan

module). As described in Usadel et al. (2009; a follow-up ar-

ticle of Thimm et al. 2004), MapMan is superior to other tools

that handle Omics data. The latter ones have a deficit precisely

in the plant signaling pathway, which is of interest to us. We

therefore used the latest mapping file version available for

maize (Zm_B73_5b_FGS_cds_2012) in our analyses using

MapMan.

Key Nuclear Receptors of the RS Pathways

Ninety-six nuclear genes have been identified by MapMan as

differentially regulated in both Cyt1 and Cyt2, when compared

with B (fig. 3 and supplementary table S2, Supplementary

Material online). Down-regulated genes are more abundant

than up-regulated ones, with 56 and 40 representatives, re-

spectively. MapMan placed 91 of the genes in 14 of its 34 bins,

which were used to categorize gene functions, whereas five

could not be assigned (fig. 4). More than half of those assigned

fit to just three of the bins: secondary metabolism (18), cell wall

(16) or lipid metabolism (14). The remaining are involved in

CHO metabolism (9), amino acid metabolism (8), glycolysis

(6), photosystem (PS) (6), mitochondrial electron transport

(4), fermentation (3), nucleotide metabolism (2), tetrapyrrole

metabolism (2), and three more classes with just one represen-

tative (N-metabolism, RNA regulation of transcription, and

TCA). On an average, two-thirds of the genes involved in sec-

ondary metabolism, cell wall, glycolysis, PS, and fermentation

are down-regulated in the two cytolines. Only the genes in-

volved in lipid metabolism and CHO metabolism have more up-

regulated representatives (fig. 4). More details on the sub-bins

used by MapMan and the distribution of the 96 genes among

them can be found in columns 3–4 of supplementary table S3,

Supplementary Material online.

To validate our findings, we analyzed the same three cyto-

lines (B, Cyt1 and Cyt2) using the microarray technology.

About 19 genes (highlighted in blue in fig. 3) had the same

expression pattern in both Cyt1 and Cyt2 transcriptomes,

whereas 19 more (highlighted in green) were validated in

one of the two samples, when compared with B. As shown

in figure 3 and supplementary table S2, Supplementary

Material online, the 19 genes highlighted in blue tend to clus-

ter towards the ends of the heat-map generated from log2

fold changes values.

Consequently, considering the stringent criteria used to

define the set of 96 genes (Padj<0.01 and MapMan’s internal

filters) and the superior power of the NGS technique, our

further analyses focused on the whole set of 96 genes defined

above.

The Candidate Genes Are Ubiquitously Expressed
throughout Plant Development

We used data from Sekhon et al. (2011), curated in MaizeGDB

(Lawrence et al. 2007), to check for gene expression patterns

in various tissues, organs, and developmental stages of the

maize plant for all our candidate genes. Out of the 96, there

were 82 for which data were available (supplementary table

S4, Supplementary Material online). Leaf is the organ where

most of the genes are expressed (79), followed by fruit, stem

internode, shoot apical meristem, tassel and ear inflorescence,

inflorescence bract, primary shoot system, seedling coleoptile,

shoot apex, and central spike of the ear, all of which have over

70 genes expressed (fig. 5). There are 46 genes that are ex-

pressed in all 25 tissues analyzed, whereas 67 are expressed in

at least 20 tissues. The remaining ones are expressed in more

than ten tissues (nine representatives) and five more, whose

expression is restricted to less than ten tissues (supplementary

table S4, Supplementary Material online).

The 96 Genes Have Syntenic Orthologs in the Poaceae
Family and Homologs in A. thaliana and Humans

Considering their ubiquitous expression above, we expected

the genes to have orthologous copies at least in other grasses.

Therefore, we took advantage of the exiting data on ortholo-

gous genes in the Poaceae family (Schnable et al. 2012), cu-

rated in MaizeGDB (Lawrence et al. 2007), and subtracted the

FIG. 2.—Up- (") and Down-regulated (#) genes with the same ex-

pression pattern in the two cytolines (Cyt1 and Cyt2) when compared with

the nucleus donor line B. Out of the 5,009 differentially regulated

(Padj<0.01) genes in Cyt1 and 1,914 in Cyt2, respectively, 608 are up-

regulated and 571 are down-regulated in both, when compared with B.
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Gene ID 
 
 

Heat-map 
 

Loc. 
 
 

MapMan 
annotation 
 

GATA 
     G-Box 
           CCAC 

A/Sb/Si/O/B 
orthologous 
genes 

H.s. 
 
 

Chr 
 
 

GRMZM2G107076 5,54 _ Sec. met. 3 - 2 + + + + + + 5 
GRMZM2G006290 3,94 _ Not assigned 2 - 2 + x x x x 8 
GRMZM2G076239 3,62 _ PS 10 - 4 + + + + + + 2 
GRMZM2G046070 3,02 M Sec. met. 4 - 3 + + + + + + 2 
GRMZM2G401970 1,95 C Lipid met 5 - 4 + + + + + 6 
GRMZM2G531230 1,93 _ AA met. - - 9 + + + + + + 2 
GRMZM2G098346 1,89 _ Ferm. 4 - 2 + + + + +  + 4 
GRMZM2G135470 1,85 M Sec. met. 6 2 3 + + + + + + 10 
GRMZM2G116876 1,67 _ Lipid met - - 1 + + + + + 5 
GRMZM2G140996 1,65 _ Sec. met. 4 - 1 + + + + + 6 
GRMZM2G010348 1,40 _ Mito ET 2 - 3 + + + + +  + 8 
GRMZM2G156026 1,32 C Sec. met. 5 - 2 + + + + +  4 
GRMZM2G147701 1,29 M Lipid met - - 4 + + + + +  + 4 
GRMZM2G055667 1,26 C Lipid met 3 - 4 + + + + x  8 
GRMZM2G174598 1,25 S Cell wall 3 - 4 + + + + +  4 
GRMZM2G090980 1,18 _ Sec. met. 5 - 4 + + x x x  + 9 
GRMZM2G423137 1,14 M PS 4 - 4 + + + + + 4 
GRMZM2G117357 0,84 _ Lipid met 4 - 3 + + + + x + 6 
GRMZM2G443715 0,72 M Cell wall 2 - 10 + + + + + 9 
GRMZM2G013357 0,71 S Sec. met. 3 2 5 + + x + x  + 2 
GRMZM2G044775 0,68 C Nucl. met. 5 - - + + + + +  + 8 
GRMZM2G157113 0,65 _ Lipid met 5 - - + + x x x + 6 
GRMZM2G154124 0,61 _ Cell wall 1 - 6 + + + + + 1 
GRMZM2G042179 0,51 _ Cell wall 4 - 3 + + + + + + 4 
GRMZM2G004534 -0,32 _ Glycolysis 1 - 6 + + + + + + 10 
GRMZM2G074282 -0,33 C AA met. 7 - 1 + + + + + + 5 
GRMZM2G132898 -0,35 M Lipid met 3 - 6 + + + + + + 1 
GRMZM2G122715 -0,36 C Not assigned 2 - 5 + + + + + 4 
GRMZM2G029566 -0,40 _ Cell wall 3 - 1 + + + + + + 4 
GRMZM2G036759 -0,43 _ TCA 3 - 3 x x x x x + 9 
GRMZM2G112609 -0,43 _ Mito ET 3 - 7 + + + + + + 1 
GRMZM2G106578 -0,44 C Lipid met - 2 2 + + + + + + 2 
GRMZM2G454952 -0,47 C Sec. met. - - 1 + + + + + 7 
GRMZM2G070199 -0,49 _ Mito ET 4 - 8 + + + + + + 6 
GRMZM2G082007 -0,50 _ Sec. met. 4 - 2 + + + + + + 4 
GRMZM2G345493 -0,51 _ Glycolysis 1 - 7 + + + + + + 9 
GRMZM2G120724 -0,52 S Cell wall 7 - 2 + + + + + 2 
GRMZM2G177631 -0,52 _ Cell wall 5 - 3 + + + + + 7 
GRMZM2G103281 -0,53 S Lipid met 4 2 1 + + + + + + 4 
GRMZM2G072091 -0,54 C CHO met. 4 - - + + + + + + 9 
GRMZM2G010555 -0,56 _ Mito ET 4 - 9 + + + + + 2 
GRMZM2G025171 -0,64 C PS 1 - 1 + + x + + + 4 
GRMZM2G139360 -0,70 M Glycolysis 4 - 2 + + + + + + 1 
GRMZM2G145029 -0,73 C Sec. met. 5 - - + + + + + + 8 
GRMZM2G060886 -0,74 _ Lipid met 8 - 3 + + + + + 8 
GRMZM2G027955 -0,87 C CHO met. 1 - 5 + + + + + 6 
GRMZM2G155242 -0,91 _ CHO met. 2 - - + + + + + + 1 
GRMZM2G140107 -0,92 _ CHO met. - - 7 + + + + + 3 
GRMZM2G093666 -0,94 C AA met. 10 - 3 + + + + + 1 
GRMZM2G114127 -0,94 _ Cell wall 4 - 2 + + + + + 5 
GRMZM2G004528 -0,99 _ CHO met. 2 4 6 + + + + + + 9 
GRMZM2G051185 -1,05 S Cell wall 1 - 11 + x x + x 4 
GRMZM2G103197 -1,12 _ Tpyrl. synt. 2 - 3 + + x x + 1 
GRMZM2G110881 -1,23 _ Sec. met. 6 - 4 + + + + + + 5 
GRMZM2G140994 -1,36 M RNA r.trs. 3 - 1 + + + + + + 8 
GRMZM2G306566 -1,38 _ Lipid met - - 2 + + + + x 5 
GRMZM2G044107 -1,43 S Cell wall 3 - 3 + x x x x  4 
GRMZM2G021794 -1,46 S Cell wall 7 - 5 + + + + + 6 
GRMZM2G119941 -1,51 S CHO met. 3 - 2 + + + + + 2 
GRMZM2G079477 -1,61 C Nucl. met. 3 - 7 x x x x x + 4 
GRMZM2G097297 -1,64 _ Sec. met. 1 - 8 + x + x x 4 

FIG. 3.—Nuclear genes that respond to retrograde signaling pathways. The complete form of this figure is presented as supplementary table S2,

Supplementary Material online. Col. 1—gene IDs of those validated in both microarray analysis are highlighted in blue, whereas those validated by one of the
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syntenic orthologs in four other species: Sorghum bicolor,

Setaria italica (foxtail millet), Oryza sativa ssp. japonica (rice),

and Brachypodium distachyon. Indeed, the vast majority (88)

of the 96 genes have such syntenic orthologs in the other

grasses (fig. 3 and supplementary tables S2 and S3,

Supplementary Material online). The remaining eight do

have an orthologous copy in at least one other grass species

but they are not syntenic.

When the Arabidopsis thaliana genome was queried, 82 of

the genes had a homologous copy. The eight genes missing a

syntenic ortholog in the Poaceae do not have a homologous

copy in A. thaliana.

We also performed BLASTP searches of all 96 putative pro-

teins against the human genome, taking into account only hits

with an e-value� e�10 and query coverage of at least 50%;

no putative or predicted proteins in human were considered.

FIG. 3.—Continued

microarrays, in green; Col. 2—log2 fold changes in Cyt1 and Cyt2 were averaged an used for the heat-map; Col. 3—subcellular localization of the putative

proteins, as predicted by TargetP 1.1 (C= chloroplast, M= mitochondrion, S= secretory pathway, any other location); Col. 4—gene annotation according to

the classes used by MapMan; Col. 5–7—number of occurrences of three motifs in the 500bp promoter region; Col. 8—Presence (+) or absence (x) of a

homologous gene in the other five species (A = Arabidopsis thaliana, Sb = Sorghum bicolor, Si = Setaria italica, O = Oryza sativa, B= Brachypodium distach-

yon); Col. 9—Presence (+) of a homologous copy in human; Col. 10—Chromosomal location for each gene.

FIG. 4.—Gene functions of the putative proteins are sorted using MapMan into 14 of its 34 bins.
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Thus, we identified 35 human proteins with significant homol-

ogy to our maize sequences. The full list, containing maize

genes and their corresponding human proteins, query cover-

age (%), e-value, and identity (%), is included in supplemen-

tary table S3, Supplementary Material online.

There Are Twice as Many Proteins Being Targeted to the
Chloroplast than Mitochondria and Secretory Pathway
Taken Together

TargetP 1.1 server (Emanuelsson et al. 2007) was used to

predict the subcellular localization of the translated sequences

corresponding to the 96 genes. Among those, 30 contain a

chloroplast transit sequence, 17 a mitochondrial targeting

peptide, and nine are directed to the secretory pathway

(fig. 6). However, the software differentiates five reliability

classes (RC) when predicting the localization, an RC = 1 indi-

cating the strongest prediction. When considering only pro-

teins with RC = 1 or RC = 2, the results have a similar pattern,

with chloroplast-directed proteins accounting for almost

double the ones targeted to mitochondria and secretory path-

way (fig. 6 and supplementary table S2, Supplementary

Material online).

FIG. 5.—Expression pattern for 82 genes of interest across the 25 tissues investigated by Sekhon et al. (2011).

FIG. 6.—Subcellular localization according to TargetP 1.1. Black columns—all predicted results; grey columns—only RC (reliability class)� 2

(i.e., strongest prediction). C, chloroplast transit peptide; M, mitochondrial targeting peptide; S, secretory pathway signal peptide.
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Of special interest were the 35 genes identified above as

having a human homologous copy. We expected none of

those to be targeted to the chloroplast. Indeed, 29 genes

translate into proteins predicted to target the mitochondria,

secretory pathway or another location. However, six were

predicted to have chloroplast localization (highlighted in

yellow in supplementary table S2, Supplementary Material

online), based on their chloroplast transit sequence. Among

those, five had RC� 3 (i.e., not a reliable prediction) whereas

one had an RC = 2. Furthermore, all six have an identity of

<40% when their amino acid sequence was used as query in

BLASTP against human data (supplementary table S3,

Supplementary Material online).

Promoter Analysis (500 bp)

The promoter regions of genes that are under the control of

retrograde pathways have been shown to contain several

motifs, like GATA, G-box, or CCAC. The first two are present

in the promoters of genes responsive to light and plastid ret-

rograde signals (Chi et al. 2013), whereas the CCAC motif is

bound by ABI4, a transcription factor that modulates NGE and

integrates signals coming from three RS pathways

(Koussevitzky et al. 2007). We screened the 500-bp promoter

region of our candidate genes for such motifs using the PLACE

database (Higo et al. 1999).

The G-box occurred at least twice in the promoters of 14

genes, with two of those having the motif present 4 times.

In addition, nine genes have been identified as having

more than ten GATA or CCAC motifs, a strong indication

that they are under the control of RS pathways (bolded in

red in fig. 3). Another set of 18 genes have 5–10 GATA

motifs in their promoters, whereas 23 have 5–10 CCAC

motifs (supplementary table S2, Supplementary Material

online).

FIG. 7.—Chromosomal positions of the 23 genes that fit within previously defined QTLs for two agronomically important traits. Start positions are given

for the SSR markers (boxed) and the genes (in italic). Start positions of the genes that cluster together are bolded.
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The number of occurrences of each of the three motifs

investigated represents a significant enrichment. By chance

alone, one would expect the G-box (which is a six-bases

motif: CACGTG) to occur 0.195 times in a 500-bp window,

the CCAC motif to occur 3.153 times, and the GATA motif to

occur 4.659 times.

Twenty-Three Genes from This Study Fit within QTLs
Previously Defined in Maize Cytolines, Responsible for
Plant Height and Ear Height

The 96 genes of interest are evenly spread across the ten

maize chromosomes (fig. 3 and supplementary table S3,

Supplementary Material online). We used their chromosomal

positions in a comparison with data available from Tang et al.

(2013). The authors’ main objectives were to use maize cyto-

lines to assess the impact of a new cytoplasmic environment

on two phenotypes of interest (namely, plant height and ear

height) and to identify the QTLs responsible for them. Our

hypothesis was that part of the 96 genes likely fit within

such QTLs, as proof of their role in RS. We retrieved the chro-

mosomal positions of the SSR markers that had been used to

define those QTLs and anchored our 96 genes to the map

(fig. 7). There are 23 genes that co-localize with eight QTLs

defined by Tang et al. (2013). Among these, 15 fit within QTLs

defined for ear height, and 18 within QTLs defined for plant

height, respectively. Ten are part of two QTLs responsible for

both characters, on chromosomes 6 and 9. Some are clus-

tered together, with two of the QTLs (delimited by umc1014-

umc1762 and phi065-umc1492) harboring five genes each

on chromosome 6 and 9, respectively. Furthermore, there

are two instances where the genes are <200 kb apart:

GRMZM2G110881 is 102,279 bp away from

GRMZM2G107076 (QTL defined by nc007 and umc2291,

on chromosome five) and GRMZM2G054465 is 186,489 bp

away from GRMZM2G443715 (QTL defined by phi065 and

umc1492, on chromosome nine). Three others are <1 Mb

apart (fig. 7).

Novel Transcripts Are Being Produced in Cyt1 and Cyt2

We used Trinity (Grabherr et al. 2011) to perform a de novo

assembly of the RNA-seq data in the three cytolines. Only the

transcripts that did not map to the reference genome se-

quence of inbred line B73 (Schnable et al. 2009) were used.

Next, the transcripts flagged by RepeatMasker (Smit et al.

2014) as having a transposable or retro-transposable element

origin were discarded. Thus, approximately 600 transcripts

were identified as common in the two cytoplasm-donor

lines (Cyt1 and Cyt2) when compared with the nucleus

donor line B (supplementary table S5, Supplementary

Material online). The genes coding for them are silent (or ex-

pressed at undetectable levels) in the donor line and become

expressed as a result of the novel cytoplasmic environment of

Cyt1 and Cyt2, respectively. To get more insights into the

functions of these putative proteins we used the software

BLAST2GO (Conesa et al. 2005). Interestingly, more than

100 transcripts are categorized as GO:0006355 (“regulation

of transcription, DNA-templated”), GO:0006351 (“transcrip-

tion, DNA-templated”), GO:1903506 (“regulation of nucleic

acid-templated transcription”) or GO:0010468 (“regulation

of gene expression”). Many more are involved in signal trans-

duction (e.g., GO:0007165), protein phosphorylation (e.g.,

GO:0006468) and other processes that could potentially

alter NGE as a result of retrograde signals received from the

new organellar genomes of the two cytolines (supplementary

figs. S1 and S2, Supplementary Material online).

Discussion

Maize Cytolines Provide an Alternative to Studying RS

Retrograde signaling pathways are still the subject of much

debate, despite many of their components being identified

and integrated into complex networks (Chi et al. 2013).

Research on mitochondria-to-nucleus communication is less

advanced. It is however clear that a certain overlap does exist

between chloroplast and mitochondrial RS, with ABI4 tran-

scription factor providing a strong case in this regard (Giraud

et al. 2009). Studies on the plastid RS were first reported in

barley mutants (Bradbeer et al. 1979) but quickly shifted to

Arabidopsis, as a more amenable model organism, whereas

research on mitochondrial RS mainly focused on yeast

(Saccharomyces cerevisiae) (Liu and Butow 2006). In a recent

review, Ng et al. (2014) show that Arabidopsis was almost

exclusively used for understanding the impact of mitochon-

drial RS on nuclear genes and acknowledge the need to move

to other plant models. The same is true in the field of chloro-

plast signaling, where Arabidopsis has been extensively used

(Chi et al. 2013), mainly because of the availability of mutants

for almost all the nuclear genes.

Indeed, mutants that are defective in the RS pathways and

stress, have both been center points in trying to understand

how NGE is regulated by signals coming from the organelles.

But studying how nuclear genes expression changes as a result

of a (single) stimulus may not provide a holistic view of the

mechanism. Therefore, the use of mutants and stress does not

have the potential to identify key nuclear genes that respond

to retrograde signals in a normal state of the cell, but cytolines

do. This is because the same nucleus is under the influence of

different cytoplasms, each having its own set of organellar

genomes. By identifying genes that are differentially regulated

in such cytolines, we can argue that these are molecular

switches that the RS pathways use to relay signals to the nu-

cleus and control NGE according to the cell’s needs. However,

our experimental design cannot capture the entire set of nu-

clear genes that respond to retrograde signals. To do so, one

can envision a similar approach to defining the pan-genome/

pan-transcriptome of a species by sequencing the

Maize Cytolines Unmask Key Nuclear Genes That Are under the Control of Retrograde Signaling Pathways in Plants GBE

Genome Biol. Evol. 8(11):3256–3270. doi:10.1093/gbe/evw245 Advance Access publication October 3, 2016 3265
Downloaded from https://academic.oup.com/gbe/article-abstract/8/11/3256/2680039
by Universitaetsbibliothek Bern user
on 04 June 2018

Deleted Text:  
Deleted Text: 23 
Deleted Text: g
Deleted Text: t
Deleted Text: s
Deleted Text: f
Deleted Text: p
Deleted Text: d
Deleted Text: m
Deleted Text: c
Deleted Text: r
Deleted Text: p
Deleted Text: h
Deleted Text: e
Deleted Text: h
Deleted Text: 10 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
Deleted Text: less than 
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: less than 
Deleted Text:  
Deleted Text: t
Deleted Text: a
Deleted Text: b
Deleted Text: p
Deleted Text: P S 
Deleted Text: .
Deleted Text: to
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
Deleted Text: nuclear gene expression
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
Deleted Text: c
Deleted Text: p
Deleted Text: a
Deleted Text: s
Deleted Text: ,


transcriptomes of a larger cytolines pool. The 96 genes iden-

tified here are a valuable addition to the scant extant knowl-

edge on the nuclear targets of RS. We labeled them as “key

nuclear genes” that respond to RS pathways, having been

filtered from the larger set of 1,179 candidates (fig. 2 and

supplementary table S1, Supplementary Material online) and

based on their functional analysis, as we show below.

Filter Criteria and Microarray Validation

Here, we identified 96 nuclear genes that are differentially

regulated in the two cytoplasm-donor lines (Cyt1 and Cyt2

in fig. 1) compared with the nucleus-donor line (B in fig. 1).

However, depending on how stringent we set the selection

criteria, there are up to 1,179 candidate genes (fig. 2 and

supplementary table S1, Supplementary Material online).

This is almost twice the number of genes identified by

Crosatti et al. (2013) as being differentially regulated when

wheat nucleus was transferred to Hordeum chilense cyto-

plasm. The authors identified 540 genes as differentially reg-

ulated in an interspecies comparison—where one would

expect significant changes to occur—whereas our experimen-

tal setup is intraspecific. The filtering criteria used in the study

above were a 2-fold change in expression and a P value� 0.05

for a gene to be considered as having altered expression. In

contrast, we used a much more stringent P value (� 0.01) that

was even adjusted for multiple testing, but did not set a fold-

change threshold. Using these criteria we avoided missing

important genes from the analyses, like transcription factors,

whose impact on NGE might be substantial even with a slight

change in their transcript level. Working with the entire

dataset is also important when analyzing gene expression

using MapMan, as the software sets the results in the context

of metabolic pathways or biological processes (Usadel et al.

2009). As an example of genes that would have been missed

when using a fold-change threshold is GRMZM2G010349,

which has a log2 fold change of 0.56 (supplementary table

S2, Supplementary Material online). Its homologous copy in

Arabidopsis, AT1G68830 (supplementary table S3,

Supplementary Material online), codes for STN7, a protein

that is proposed to act as a signaling or a sensing component

for the redox signals within the plastid (Pesaresi et al. 2009;

Dietzel et al. 2015), and is part of one of the four classic

chloroplast RS pathways (plastid redox state).

GRMZM2G010349 is also a good example when the two

platforms for transcriptome analysis are compared: NGS ver-

sus microarray. Using just the microarray technique this gene

would have been missed from the analysis (supplementary

table S2, Supplementary Material online), whereas NGS pro-

vides a higher resolution. As we show above, when the ex-

periments carried out using the NGS platform were replicated

using a custom-made microarray there was a core set of 19

genes that could be validated in both Cyt1 and Cyt2 and 19

more genes in just one (i.e., 38 out of the 96). The first 19,

highlighted in blue in figure 3, tend to cluster towards the

ends of the heat-map generated from log2 fold change values.

This can be attributed to the microarray platform, which has a

lower dynamic range compared with an NGS instrument

being able to identify only those genes that are either strongly

up- or down-regulated. It is also worth mentioning that

not all of the 96 genes identified by NGS-transcriptome anal-

ysis were spotted on the custom-made microarray chip.

These are: GRMZM2G071226, GRMZM2G066865 and

GRMZM2G066791.

When comparing the number of differentially regulated

genes from B versus Cyt1 and B versus Cyt2, respectively,

they differ by 2.6-fold (fig. 2 and supplementary table S1,

Supplementary Material online). We speculate that the

extant difference relates to the pedigree of the three inbred

lines used to create the three cytolines. This translates into

different polymorphisms of the organellar genomes of Cyt1

and Cyt2 having a differentiated impact (through RS) on the

gene expression of B line nucleus. However, in order to prop-

erly assess this impact, one would have to sequence a repre-

sentative pool of organellar genomes in maize, similar to the

work of Moison et al. (2010) in Arabidopsis. The number of

inbred lines selected for this analysis would have to be pro-

portional to the maize genetic diversity worldwide. To the best

of our knowledge such a comprehensive study has not been

undertaken yet.

Ubiquitous Expression Pattern for the Genes of Interest

We argue that the 96 genes identified here are molecular

switches targeted by the RS pathways. Their ubiquitous ex-

pression pattern throughout plant development strengthens

our hypothesis. There are 46 genes (among the 82 for which

data was available) that are expressed in all 25 tissues analyzed

in Sekhon et al. (2011) (gene expression pattern in all 25 tis-

sues is detailed in supplementary table S4, Supplementary

Material online). The fact that only 82 of the 96 genes of

interest are found within the data reported by Sekhon et al.

(2011) can be explained by: (1) the platform used by the au-

thors in their transcriptome analysis (i.e., microarray vs. NGS,

in the present study)—it is worth noting that one gene is

reported to be expressed only in the flower

(GRMZM2G306566), whereas we confirm here that it is ex-

pressed in nine-day-old seedling, too, (2) the arbitrary thresh-

old used by the authors, which excluded data coming from

2,647 probes (8.6% of total), and (3) the high intraspecific

variability of maize (Hirsch et al. 2014), which leads to signif-

icant differences when different inbred lines are analyzed, in-

cluding gene copy number variation (Springer et al. 2009).

Figure 5 summarizes the expression patterns for the 82

genes for which data were available. Based on these observa-

tions, we speculate that the genes we identified here are

housekeeping genes, playing important roles in all tissues

and throughout plant development. Our study complements
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the “Genome-wide atlas of transcription during maize devel-

opment” by Sekhon et al. (2011) adding new data at whole

seedling stage (nine days old). It also provides evidence for eight

more genes (GRMZM2G114486, GRMZM2G054465,

GRMZM2G058675, GRMZM2G101004, GRMZM2G029856,

GRMZM2G038821, GRMZM2G172794, and

GRMZM2G079477) being expressed in maize seedlings,

which are not mentioned in the atlas above. These eight

genes seem to be restricted to maize, when searching for ho-

mologous copies in Arabidopsis, members of the Poaceae

family, or human (supplementary table S2, Supplementary

Material online).

Majority of Genes of Interest Are Involved in Secondary
Metabolism, Cell Wall, or Lipid Metabolism

The fact that secondary metabolism genes are well repre-

sented (fig. 4) may be an indication that cytolines’ nuclei are

still exposed to a certain level of stress in their new cytoplasmic

environment. This is because various stress factors have been

shown to trigger the production of secondary metabolites

(Ramakrishna and Ravishankar 2011). Consequently, one

could hypothesize that cytolines act as a mutation per se,

thus resembling the widely used mutations and stress factors

as tools for studying RS. The high number of genes mapped to

the “cell wall” bin of MapMan may be explained by the high

complexity of the cell wall itself, a structure that is only present

in plants and whose maintenance requires an intensive traffic

through the secretory pathways (Kim and Brandizzi 2014).

Indeed, several of our candidate genes code for proteins

that are targeted to the secretory pathway (fig. 6). Lipid me-

tabolism is the third most abundant bin, grouping 14 of the 96

genes. Lipids play important roles for instance in cell signaling

(Hannun and Obeid 2008), thus conferring potential roles as

relays to some of those 14 proteins. For example,

GRMZM2G060886 and GRMZM2G093666 putative proteins

are part of the adenosyl-L-methionine-dependent methyl-

transferases superfamily, whose members are involved in

signal transduction (Schubert et al. 2003). Several other

genes, including STN7-ortholog, which are not part of the

three most abundant classes mentioned here, may play a

role in relaying signals received from the retrograde pathways:

(1) GRMZM2G122715 is a putative calcium sensing receptor,

with a role in sensing and signaling environmental stimuli in

Arabidopsis (Bordo and Bork 2002); (2) GRMZM2G454952, a

ZDS (zeta carotene desaturase) putative protein, has been

shown to act in a signaling pathway that controls chloroplast

and leaf development. Furthermore, in cases of ZDS deficiency

numerous nuclear and chloroplast genes are differentially reg-

ulated, causing abnormal leaf development (Avendaño-

Vázquez et al. 2014); (3) GRMZM2G106578 is a putative

DGK5 (diacylglycerol kinase). These kinases catalyze the con-

version of DAG (diacylglycerol), a known second messenger,

to PA (phosphatidic acid), playing a central role in cell signaling

(Mérida et al. 2008).

Genes of Interest Have Syntenic Orthologs in the Grasses
and Homology to Human Proteins

To further build upon the importance of our genes of interest,

we identified their syntenic orthologs (i.e., genes that occur in

the same order on a chromosome) in four more plant species

from the Poaceae family, using data from Schnable et al.

(2012). We identified syntenic orthologs for the vast majority

of the 96 genes (fig. 3 and supplementary table S2,

Supplementary Material online) and conclude that they play

important roles in the cell, which are conserved throughout

the Poaceae lineage. Aside from the grasses, we identified 82

Arabidopsis homologs, hinting towards a general mechanism

for the retrograde control of NGE in plants, where the genes

identified here play key roles.

In addition, there were 35 human proteins with significant

homology to our maize sequences. About 7 of the 35

proteins (GRMZM2G004528, GRMZM2G010348,

GRMZM2G029566, GRMZM2G070199, GRMZM2G345493,

GRMZM2G098346, GRMZM2G155242) exhibit >50% iden-

tity with the human homologous protein sequences and a

query coverage >90% (fig. 3). Based on their conservation

within the animal lineage we hypothesize that they are poten-

tial targets of the mitochondrial RS, rather than chloroplast.

The first five have not been functionally characterized in

maize, but their Arabidopsis homologs retain the function de-

scribed in human (supplementary table S3, Supplementary

Material online). The last two are part of the “classical” gene

set of maize (Schnable and Freeling 2011), which includes ap-

proximately 500 genes that are supported by at least three

publications and have mutant phenotype data available.

Their function diverged from that in humans. Interestingly,

GRMZM2G098346, which codes for alcohol dehydrogenase-

2 (Adh2), originated from a duplication event of Adh1 65

million years ago, before the radiation of grasses (Gaut et al.

1999). Therefore, all grasses have this second copy, whose role

remains elusive, but could be involved in RS, as we show here.

Previous studies have proven that the process of mitochon-

drial RS is generally conserved in the animal lineage, including

humans (reviewed in Liu and Butow 2006). Thus,

Saccharomyces cerevisiae has mainly been used to study mi-

tochondrial RS in a eukaryotic cell. Based on the ancient en-

dosymbiosis of the mitochondrion with the eukaryotic cell we

can speculate that parts of these pathways are conserved in

the plant lineage, too; the five Arabidopsis genes that retain

the same function as in human support this hypothesis.

Most of the Proteins Are Targeted to the Chloroplast

In terms of cellular localization, most of the proteins that carry

a signal peptide are targeted to the chloroplast, whereas

the mitochondria and the secretory pathways are less

Maize Cytolines Unmask Key Nuclear Genes That Are under the Control of Retrograde Signaling Pathways in Plants GBE

Genome Biol. Evol. 8(11):3256–3270. doi:10.1093/gbe/evw245 Advance Access publication October 3, 2016 3267
Downloaded from https://academic.oup.com/gbe/article-abstract/8/11/3256/2680039
by Universitaetsbibliothek Bern user
on 04 June 2018

Deleted Text: ,
Deleted Text:  
Deleted Text: ,
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
Deleted Text: g
Deleted Text: i
Deleted Text: a
Deleted Text: i
Deleted Text: s
Deleted Text: m
Deleted Text: c
Deleted Text: w
Deleted Text: l
Deleted Text: m
Deleted Text: Sang-Jin 
Deleted Text: i
Deleted Text: ii
Deleted Text: iii
Deleted Text: i
Deleted Text: h
Deleted Text: s
Deleted Text: o
Deleted Text: g
Deleted Text: h
Deleted Text: h
Deleted Text: p
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
Deleted Text: Seven
Deleted Text: more than 
Deleted Text: greater than 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
Deleted Text: James C 
Deleted Text:  
Deleted Text: million years ago (
Deleted Text: p
Deleted Text: a
Deleted Text: t
Deleted Text: c


represented, in accordance with their reduced proteomes. The

chloroplast proteome is composed of 3,500–4,000 polypep-

tides (Soll and Schleiff 2004), almost twice that of the mito-

chondria (2,000–3,000) (Millar et al. 2005) and 3 times larger

than that of the secretory pathway (1,400) (Gilchrist et al.

2006; Rojo and Denecke 2008). The estimate for the secretory

pathway may not be accurate for plants, where gene families

involved in trafficking have expanded considerably to cope

with the characteristics of the endomembrane system,

which differs from that of animals (Rojo and Denecke

2008). Thus, when only RC values� 2 are considered (i.e.,

strongest prediction by TargetP), there are more proteins tar-

geted to the secretory pathway, compared with the mito-

chondria, but the majority is still composed of chloroplast-

targeted proteins (fig. 6).

Potential Roles of Genes Identified Here in the Already
Described RS Pathways

There are four widely accepted plastid RS pathways: tetrapyr-

role intermediate biosynthesis, plastid gene expression (PGE),

plastid redox state, and reactive oxygen species (ROS). ABI4 is

a transcription factor that integrates signals from the first

three (Chi et al. 2013) but also those received through the

mitochondrial retrograde pathway (Giraud et al. 2009). It

binds the CCAC motif found in the promoter region of a

plethora of genes, including other transcription factors

(Koussevitzky et al. 2007; León et al. 2012). Among the 96

gene identified here there are six that have more than ten

binding sites for ABI4 in their promoter region (fig. 3 and

supplementary table S2, Supplementary Material online), hint-

ing towards their role in the nuclear response to signals

coming from the organelles. Three others have more than

ten GATA motifs, which are part of light-regulation of tran-

scription (Reyes et al. 2004), thus linked to the tetrapyrrole

intermediate biosynthesis pathway of RS. Also, signals from

the plastid redox state are initiated in the plastid with the

participation of STN7 (Pesaresi et al. 2009; Dietzel et al.

2015). Its maize ortholog, GRMZM2G010349, is among the

96 genes we have identified as differentially regulated in the

three cytolines. A number of other members from our gene

set have Arabidopsis homologs that act under the control of

the plastoquinone redox state (Jung et al. 2013). These are:

GRMZM2G155242, GRMZM2G140994, GRMZM2G401970,

GRMZM2G147701, GRMZM2G013357, GRMZM2G044107,

GRMZM2G103197, GRMZM2G122715, GRMZM2G174598.

The Arabidopsis homologs for these genes are listed in sup-

plementary table S3, Supplementary Material online.

Furthermore, GRMZM2G004534 is a putative pyruvate

kinase, which could be involved in the MAPK cascades that

are characteristic to the fourth RS pathway, i.e., reactive

oxygen species (Chi et al. 2013). All of the above indicate

that many of the genes we have identified here are potentially

involved at different levels in the four RS pathways currently

defined for plastid to nucleus communication. By means of

ABI4 transcriptional activity, which integrates signals coming

from the mitochondria, they may also act as nuclear receptors

for this organelle’s retrograde signals.

The signals relayed through the four plastid RS pathways

are grouped into two categories according to their function:

biogenic control and operational control (reviewed in Pogson

et al. 2008). The first category includes signals related to or-

ganelle biogenesis, which are mainly generated during early

plant development, whereas the latter responds to develop-

mental and environmental cues that command adjustments

of the energy metabolism. Our experimental setup captures

both modes of RS, biogenic and operational, probing NGE in

9-day-old seedlings. However, it does not differentiate be-

tween the two.

Co-Localization of Genes and QTLs Defined for Two
Important Agronomic Traits

Plant height and ear height are two of the most important

agronomic traits for maize, directly linked to biomass produc-

tion and yield, respectively. Tang et al. (2013) demonstrated

that 39.91% of the phenotypic variation observed for ear

height and 8.75% for plant height was due to the influence

of the cytoplasmic environment on the nucleus. We hypoth-

esize that the 23 genes identified here to co-localize with the

QTLs defined by Tang et al. (2013) are nuclear targets of the

cytoplasmic signals that cause the observed phenotypic varia-

tion. Nine of those genes are part of either lipid metabolism (5)

or cell wall (4) bins defined by MapMan (supplementary tables

S2 and S3, Supplementary Material online), two classes of

importance for the phenotypic traits of interest.

GRMZM2G443715, e.g., is involved in cellulose synthesis,

whereas GRMZM2G157113 is involved in fatty acid synthesis

and elongation. GRMZM2G348551 is one of the “classical”

genes of maize (Sugary2) and functions as a starch synthase.

However, other genes are involved in lipid or cell wall degra-

dation, an indication that there is a complex interplay among

them leading to the observed phenotypes (supplementary

table S3, Supplementary Material online).

Transcript De Novo Assembly of the Reads Not Matching
the Reference Genome

Because of the incomplete status of the B73 genomic se-

quence (Schnable et al. 2009), one would expect that not

all of the transcripts identified in an RNA-seq experiment of

another inbred line would match the reference. Plus, the av-

erage rate of polymorphism in two maize inbred lines is ten

times higher than that in humans and higher than that ob-

served between humans and chimpanzees (Buckler et al.

2006). Copy number variation (CNV) and presence/absence

variation (PAV) are also high when two maize inbred lines are

compared (Springer et al. 2009). In this context it is conceiv-

able that new transcripts are identified every time a new
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inbred line is investigated. Here, we used Trinity to perform a

de novo assembly of the reads that did not map to the refer-

ence genome and then subjected them to BLAST2GO analysis

(Conesa et al. 2005). Next, we compared those de novo tran-

scripts that are common to the two cytoplasm-donor lines

versus the nucleus-donor line (i.e., common to Cyt1 and

Cyt2 compared with B). We hypothesize that the ~ 600 tran-

scripts identified (supplementary table S5, Supplementary

Material online) are the result of a change in the methylation

status of the genes encoding them. They only become active

in the new cytoplasmic environments of Cyt 1 and Cyt2.

Future work will need to validate the presence of these pre-

dicted transcripts before probing the methylation status of the

respective gene bodies and promoter sequences in the nu-

cleus-donor line and the two cytoplasm-donor lines. The

approximately 100 transcripts included in GO terms related

to gene expression (GO:0006355, GO:0006351,

GO:1903506, and GO:0010468) (supplementary figs. S1

and S2, Supplementary Material online) are of particular inter-

est, as they could further impact NGE in a cascade effect (e.g.,

the transcripts that are included in GO:0006355 regulate

those in GO:0006351).

Conclusions

Through a laborious breeding process that took >10 years to

complete we have created three cytolines, sharing the same

nucleus but different organellar genomes in their correspond-

ing cytoplasmic environments. We used an Illumina HiSeq

2500 instrument to sequence their transcriptome and identi-

fied 96 key nuclear genes, which integrate signals coming

through the retrograde pathways. Our approach differs

from previous studies through the use of cytolines, rather

than the use of mutants that are defective in the RS pathways

or cells that are under some sort of stress. This allowed us to

investigate RS in a normal state of the cell. In total, 96 genes

are differentially regulated in both Cyt1 and Cyt2 compared

with the nucleus donor line B. They have a ubiquitous expres-

sion pattern and the vast majority of them have a syntenic

ortholog in the four other grass species investigated, as well as

an orthologous copy in A. thaliana. Therefore, these findings

contribute to the paradigm we use to describe the RS in

plants. Concurrently, we present strong evidence that at

least 7 of the 96 genes are well conserved in the animal lin-

eage, representing potential targets in a mitochondria-to-nu-

cleus communication, for which no distinct pathway has been

described so far.

Supplementary Material

Supplementary figures S1 and S2 and tables S1–S5 are avail-

able at Genome Biology and Evolution online (http://www.

gbe.oxfordjournals.org/).
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Muriel Fragnière is also acknowledged for their excellent tech-

nical support, and the Next Generation Sequencing Platform

of the University of Bern for performing the high-throughput

sequencing experiments. This work was supported by two

grants of the Romanian National Authority for Scientific

Research, CNDI-UEFISCDI, numbers PN-II-PT-PCCA-2011-

3.1-0511-103/2012 and PN-II-RU-TE-2014-4-1767-41/2015

to MM, who was also partially supported by a Sciex-NMSch

grant, number 13.334/2014 to RB and PN 16 19 BIODIVERS,

institutional funding. We also thank the canton of Berne for

financial support.

Literature Cited
Allen JO. 2005. Effect of teosinte cytoplasmic genomes on maize pheno-

type. Genetics 169:863–880.

Anders S, Huber W. 2010. Differential expression analysis for sequence

count data. Genome Biol. 11:R106.

Avendaño-Vázquez A-O, et al. 2014. An uncharacterized apocarotenoid-

derived signal generated in z-carotene desaturase mutants regulates

leaf development and the expression of chloroplast and nuclear genes

in Arabidopsis. Plant Cell 26:2524–2537.

Bendich AJ. 1987. Why do chloroplasts and mitochondria contain so many

copies of their genome?. BioEssays 6:279–282.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a

practical and powerful approach tomultiple testing. J R Statist Soc

Ser B. 57:289–300.

Bordo D, Bork P. 2002. The rhodanese/Cdc25 phosphatase superfamily.

Sequence-structure-function relations. EMBO Rep. 3:741–746.

Bradbeer W, Atkinson Y, Börner T, Hagemann R. 1979. Cytoplasmic syn-

thesis of plastid polypeptides may be controlled by plastid-synthesised

RNA. Nature 279:816–817.

Buckler ES, Gaut BS, McMullen MD. 2006. Molecular and functional di-

versity of maize. Curr Opin Plant Biol. 9:172–176.

Camacho C, et al. 2009. BLAST+: architecture and applications. BMC

Bioinformatics 10:421.

Cavelier L, Johannisson A, Gyllensten U. 2000. Analysis of mtDNA copy

number and composition of single mitochondrial particles using flow

cytometry and PCR. Exp Cell Res. 259:79–85.

Chi W, Sun X, Zhang L. 2013. Intracellular signaling from plastid to nu-

cleus. Annu Rev Plant Biol. 64:559–582.

Conde MF, Pring DR, Levings CS. 1979. Maternal inheritance of

organelle DNA’s in Zea mays-Zea perennis reciprocal crosses.

J Hered. 70:2–4.

Conesa A, et al. 2005. Blast2GO: a universal tool for annotation, visuali-

zation and analysis in functional genomics research. Bioinformatics

21:3674–3676.

Crosatti C, et al. 2013. Cytoplasmic genome substitution in wheat affects

the nuclear-cytoplasmic cross-talk leading to transcript and metabolite

alterations. BMC Genomics 14:1–22.

Dietzel L, et al. 2015. Identification of early nuclear target genes of plas-

tidial redox signals that trigger the long-term response of arabidopsis

to light quality shifts. Mol Plant. 8:1237–1252.

Dimitrov LN, Brem RB, Kruglyak L, Gottschling DE. 2009. Polymorphisms in

multiple genes contribute to the spontaneous mitochondrial genome

instability of Saccharomyces cerevisiae S288C strains. Genetics

183:365–383.

Maize Cytolines Unmask Key Nuclear Genes That Are under the Control of Retrograde Signaling Pathways in Plants GBE

Genome Biol. Evol. 8(11):3256–3270. doi:10.1093/gbe/evw245 Advance Access publication October 3, 2016 3269
Downloaded from https://academic.oup.com/gbe/article-abstract/8/11/3256/2680039
by Universitaetsbibliothek Bern user
on 04 June 2018

Deleted Text: to
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
Deleted Text: .
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
Deleted Text: more than 
Deleted Text:  
Deleted Text: to
Deleted Text: seven 
Deleted Text: <Name of 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw245/-/DC1
Deleted Text: materials given in callout; in red text and linked> 
http://www.gbe.oxfordjournals.org/
http://www.gbe.oxfordjournals.org/


Emanuelsson O, Brunak S, Heijne von G, Nielsen H. 2007. Locating pro-

teins in the cell using TargetP, SignalP and related tools. Nat Protoc.

2:953–971.

Gaut BS, Peek AS, Morton BR, Clegg MT. 1999. Patterns of genetic diver-

sification within the Adh gene family in the grasses (Poaceae). Mol Biol

Evol. 16:1086–1097.

Gilchrist A, et al. 2006. Quantitative proteomics analysis of the secretory

pathway. Cell 127:1265–1281.

Giraud E, Van Aken O, Ho L, Whelan J. 2009. The transcription factor ABI4

is a regulator of mitochondrial retrograde expression of alternative

oxidase1a. Plant Physiol. 150:1286–1296.

Grabherr MG, et al. 2011. Full-length transcriptome assembly from RNA-

Seq data without a reference genome. Nat Biotechnol. 29:644–652.

Gray JC, Sullivan JA, Wang J-H, Jerome CA, MacLean D. 2003.

Coordination of plastid and nuclear gene expression. Philos Trans R

Soc B Biol Sci. 358:135–144.

Hannun YA, Obeid LM. 2008. Principles of bioactive lipid signalling: lessons

from sphingolipids. Nat Rev Mol Cell Biol. 9:139–150.

Higo K, Ugawa Y, Iwamoto M, Korenaga T. 1999. Plant cis-acting regu-

latory DNA elements (PLACE) database: 1999. Nucleic Acids Res.

27:297–300.

Hirsch CN, et al. 2014. Insights into the maize pan-genome and pan-

transcriptome. Plant Cell 26:121–135.

Joseph B, Corwin AJ, Baohua L, Atwell S, Kliebenstein DJ. 2013.

Cytoplasmic genetic variation and extensive cytonuclear interactions

influence natural variation in the metabolome. eLife 2:e00776:1–21.

Jung H-S, Chory J. 2010. Signaling between chloroplasts and the nucleus:

can a systems biology approach bring clarity to a complex and highly

regulated pathway?. Plant Physiol. 152:453–459.

Jung H-S, et al. 2013. Subset of heat-shock transcription factors required

for the early response of Arabidopsis to excess light. PNAS

110:14474–14479.

Kim D, et al. 2013. TopHat2: accurate alignment of transcriptomes in the

presenceofinsertions,deletionsandgenefusions.GenomeBiol.14:R36.

Kim S-J, Brandizzi F. 2014. The plant secretory pathway: an essential fac-

tory for building the plant cell wall. Plant Cell Physiol. 55:687–693.

Koussevitzky S, et al. 2007. Signals from chloroplasts converge to regulate

nuclear gene expression. Science 316:715–719.

Lawrence CJ, Schaeffer ML, Seigfried TE, Campbell DA, Harper LC. 2007.

MaizeGDB’s new data types, resources and activities. Nucleic Acids

Res. 35:D895–D900.

León P, Gregorio J, Cordoba E. 2012. ABI4 and its role in chloroplast

retrograde communication. Front Plant Sci. 3:1–13.

Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and compar-

ing large sets of protein or nucleotide sequences. Bioinformatics

22:1658–1659.

Liu Z, Butow RA. 2006. Mitochondrial retrograde signaling. Annu Rev

Genet. 40:159–185.

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change

and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550.
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