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Abstract. For any holomorphic symplectic manifold (X,σ), a closed
Jacobi diagram with 2k trivalent vertices gives rise to a Rozansky-
Witten class

RWX,σ(Γ) ∈ H2k(X,OX).

If X is irreducible, this defines a number βΓ(X,σ) by RWX,σ(Γ) =
βΓ(X,σ)[σ̄]k.

Let (X [n], σ[n]) be the Hilbert scheme of n points on a K3 surface
together with a symplectic form σ[n] such that

∫

X[n](σ
[n]σ̄[n])n = n!.

Further, let (A[[n]], σ[[n]]) be the generalised Kummer variety of di-
mension 2n − 2 together with a symplectic form σ[[n]] such that
∫

A[[n]](σ
[[n]]σ̄[[n]])n = n!. J. Sawon conjectured in his doctoral thesis

that for every connected Jacobi diagram, the functions βΓ(X [n], σ[n])
and βΓ(A[[n]], σ[[n]]) are linear in n.

We prove that this conjecture is true for Γ being a connected Jacobi
diagram homologous to a polynomial of closed polywheels. We further
show how this enables one to calculate all Rozansky-Witten invariants
of X [n] and A[[n]] for closed Jacobi diagrams that are homologous to
a polynomial of closed polywheels. It seems to be unknown whether
every Jacobi diagram is homologous to a polynomial of closed poly-
wheels. If indeed the closed polywheels generate the whole graph
homology space as an algebrea, our methods will thus enable us to
compute all Rozansky-Witten invariants for the Hilbert schemes and
the generalised Kummer varieties using these methods.

Also discussed in this article are the definitions of the various graph
homology spaces, certain operators acting on these spaces and their
relations, some general facts about holomorphic symplectic manifolds
and facts about the special geometry of the Hilbert schemes of points
on surfaces.
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1. Introduction

A compact hyperkähler manifold (X, g) is a compact Riemannian manifold
whose holonomy is contained in Sp(n). An example of such a manifold is the
K3 surface together with a Ricci-flat Kähler metric (which exists by S. Yau’s
theorem [18]). In [15], L. Rozansky and E. Witten described how one can
associate to every vertex-oriented trivalent graph Γ an invariant bΓ(X) to X,
henceforth called a Rozansky-Witten invariant of X associated to Γ. In fact,
this invariant only depends on the homology class of the graph, so the invariants
are already defined on the level of the graph homology space B (see e.g. [1] and
this paper for more information about graph homology).
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Calculation of Rozansky-Witten Invariants 593

Every hyperkähler manifold (X, g) can be given the structure of a Kähler
manifold X (which is, however, not uniquely defined) whose Kähler metric
is just given by g. X happens to carry a holomorphic symplectic two-form
σ ∈ H0(X,Ω2

X), whereas we shall call X a holomorphic symplectic manifold.
Now M. Kapranov showed in [8] that one can in fact calculate bΓ(X) from
(X,σ) by purely holomorphic methods.
The basic idea is the following: We can identify the holomorphic tangent bundle
TX of X with its cotangent bundle ΩX by means of σ. Doing this, the Atiyah
class αX (see [8]) of X lies in H1(X,S3TX). Now we place a copy of αX

at each trivalent vertex of the graph, take the ∪-product of all these copies
(which gives us an element in H2k(X, (S3TX)⊗2k) if 2k is the number of trivalent
vertices), and finally contract (S3TX)⊗2k) along the edges of the graph by
means of the holomorphic symplectic form σ. Let us call the resulting element
RWX,σ(Γ) ∈ H2k(X,OX). In case 2k is the complex dimension of X, we can
integrate this element over X after we have multiplied it with [σ]2k. This gives
us more or less bΓ(X). The orientation at the vertices of the graph is needed
in the process to get a number which is not only defined up to sign.
There are two main example series of holomorphic symplectic manifolds, the
Hilbert schemes X [n] of points on a K3 surface X and the generalised Kum-
mer varieties A[[n]] (see [2]). Besides two further manifolds constructed by
K. O’Grady in [13] and [12], these are the only known examples of irreducible
holomorphic symplectic manifolds up to deformation.
Not much work was done on actual calculations of these invariants on the
example series. The first extensive calculations were carried out by J. Sawon
in his doctoral thesis [16]. All Chern numbers are in fact Rozansky-Witten
invariants associated to certain Jacobi diagrams, called closed polywheels. Let
W be the subspace spanned by these polywheels in B. All Rozansky-Witten
invariants associated to graphs lying in W can thus be calculated from the
knowledge of the Chern numbers (which are computable in the case of X [n]

([3]) or A[[n]] ([11]). However, from complex dimension four on, there are graph
homology classes that do not lie in W. J. Sawon showed that for some of these
graphs the Rozansky-Witten invariants can still be calculated from knowledge
of the Chern numbers, which enables one to calculate all Rozansky-Witten
invariants up to dimension five. His calculations would work for all irreducible
holomorphic manifolds whose Chern numbers are known.
In this article, we will make use of the special geometry of X [n] and A[[n]]. Doing
this, we are able to give a method which enables us to calculate all Rozansky-
Witten invariants for graphs homology classes that lie in the algebra C generated
by closed polywheels in B. The closed polywheels form the subspace W of the
algebra B of graph homology. This is really a proper subspace. However, C, the
algebra generated by this subspace, is much larger, and, as far as the author
knows, it is unknown whether C = B, i.e. whether this work enables us to
calculate all Rozanky-Witten invariants for the main example series.
The idea to carry out this computations is the following: Let (Y, τ) be any
irreducible holomorphic symplectic manifold. Then H2k(Y,OY ) is spanned by
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[τ̄ ]k. Therefore, every graph Γ with 2k trivalent vertices defines a number
βΓ(Y, τ) by RWY,τ (Γ) = βΓ(Y, τ)[τ̄ ]k. J. Sawon has already discussed how
knowledge of these numbers for connected graphs is enough to deduce the
values of all Rozansky-Witten invariants.
For the example series, let us fix holomorphic symplectic forms σ[n], respective
σ[[n]] with

∫

X[n](σ
[n]σ̄[n])n = n! respective

∫

A[[n]](σ
[[n]]σ̄[[n]])n = n!. J. Sawon

conjectured the following:

The functions βΓ(X [n], σ[n]) and βΓ(X [[n]], σ[[n]]) are linear in
n for Γ being a connected graph.

The main result of this work is the proof of this conjecture for the class of
connected graphs lying in C (see Theorem 3). We further show how one can
calculate these linear functions from the knowledge of the Chern numbers and
thus how to calculate all Rozansky-Witten invariants for graphs in C.
We should note that we don’t make any use of the IHX relation in our deriva-
tions, and so we could equally have worked on the level of Jacobi diagrams.
Let us finally give a short description of each section. In section 2 we collect
some definitions and results which will be used later on. The next section is
concerned with defining the algebra of graph homology and certain operations
on this space. We define connected polywheels and show how they are related
with the usual closed polywheels in graph homology. We further exhibit a
natural sl2-action on an extended graph homology space. In section 4, we
first look at general holomorphic symplectic manifolds. Then we study the
two example series more deeply. Section 5 defines Rozansky-Witten invariants
while the last section is dedicated to the proof of our main theorem and explicit
calculations.

2. Preliminaries

2.1. Some multilinear algebra. Let T be a tensor category (commutative
and with unit). For any object V in T , we denote by SkV the coinvariants of
V ⊗k with respect to the natural action of the symmetric group and by ΛkV
the coinvariants with respect to the alternating action. Further, let us denote
by SkV and ΛkV the invariants of both actions.

Proposition 1. Let I be a cyclicly ordered set of three elements. Let V be an
object in T . Then there exists a unique map Λ3V → V ⊗I such that for every
bijection φ : {1, 2, 3} → I respecting the canonical cyclic ordering of {1, 2, 3}
and the given cyclic ordering of I the following diagram

Λ3V Λ3V


y



y

V ⊗3 −−−−→
φ∗

V ⊗I

(1)

commutes, where the map φ∗ is the canonical one induced by φ.
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Proof. Let φ, φ′ : {1, 2, 3} → I be two bijections respecting the cyclic ordering.
Then there exist an even permutation α ∈ A3 such that the lower square of the
following diagram commutes:

Λ3V Λ3V


y



y

V ⊗3 −−−−→
α∗

V ⊗3

φ



y



yφ′

V ⊗I V ⊗I .

We have to show that the outer rectangle commutes. For this it suffices to
show that the upper square commutes. In fact, since α is an even permutation,
every element of Λ3V is by definition invariant under α∗. ¤

2.2. Partitions. A partition λ of a non-negative integer n ∈ N0 is a sequence
λ1, λ2, . . . of non-negative integers such that

‖λ‖ :=

∞∑

i=1

iλi = n.(2)

Therefore almost all λi have to vanish. In the literature, λ is often notated by
1λ12λ2 . . . . The set of all partitions of n is denoted by P(n). The union of all
P(n) is denoted by P :=

⋃∞
n=0 P(n). For every partition λ ∈ P, we set

|λ| :=

∞∑

i=1

λi(3)

and

λ! :=

∞∏

i=1

λi!.(4)

Let a1, a2, . . . be any sequence of elements of a commutative unitary ring. We
set

aλ :=

∞∏

i=1

aλi

i(5)

for any partition λ ∈ P.
With these definitions, we can formulate the following proposition in a nice
way:

Proposition 2. In Q[[a1, a2, . . . ]] we have

exp

(
∞∑

i=1

ai

)

=
∑

λ∈P

aλ

λ!
.(6)
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Proof. We calculate

exp

(
∞∑

i=1

ai

)

=

∞∑

n=0

1

n!

(
∞∑

i=1

ai

)n

=

∞∑

n=0

1

n!

∑

λ∈P,|λ|=n

n!

∞∏

i=1

aλi

i

λi!
=

∑

λ∈P

aλ

λ!
.(7)

¤

If we set

∂

∂aλ

:=
∞∏

i=1

∂λi

∂aλi

i

∣
∣
∣
∣
∣
ai=0

,(8)

we have due to Proposition 2:

Proposition 3. In Q[[s1, s2, . . . ]][a1, a2, . . . ] we have

∂

∂aλ

exp

(
∞∑

i=1

aisi

)

= sλ.(9)

2.3. A lemma from umbral calculus.

Lemma 1. Let R be any Q-algebra (commutative and with unit) and A(t) ∈
R[[t]] and B(t) ∈ tR[[t]] be two power series. Let the polynomial sequences
(pn(x)) and (sn(x)) be defined by

∞∑

k=0

pk(x)
tk

k!
= exp(xB(t))(10)

and

∞∑

k=0

sk(x)
tk

k!
= A(t) exp(xB(t)).(11)

Let WB(t) ∈ tR[[t]] be defined by WB(t exp(B(t))) = t. Then we have
∞∑

k=0

xpk(x − k)

(x − k)

tk

k!
= exp(xB(WB(t)))(12)

and

∞∑

k=0

sk(x − k)

k!
tk =

A(WB(t))

1 + WB(t)B′(WB(t))
exp(xB(WB(t))).(13)

Proof. It suffices to prove the result for the field R = Q(a0, a1, . . . , b1, b2, . . . )
and A(t) =

∑∞
k=0 aktk and B(t) =

∑∞
k=1 bktk.

So let us assume this special case for the rest of the proof. Let us denote by f(t)
the compositional inverse of B(t), i.e. f(B(t)) = t. We set g(t) := A−1(f(t)).
For the following we will make use of the terminology and the statements in [14].
Using this terminology, (10) states that (pn(x)) is the associated sequence to
f(t) and (11) states that (sn(x)) is the Sheffer sequence to the pair (g(t), f(t))
(see Theorem 2.3.4 in [14]).
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Theorem 3.8.3 in [14] tells us that (sn(x − n)) is the Sheffer sequence to the

pair (g̃(t), f̃(t)) with

g̃(t) = g(t)(1 + f(t)/f ′(t))

and

f̃(t) = f(t) exp(t).

The compositional inverse of f̃(t) is given by B̃(t) := B(WB(t)):

B(WB(f̃(t))) = B(WB(f(t) exp(t))) = B(WB(f(t) exp(B(f(t))))) = B(f(t)) = t.

Further, we have

Ã(t) := g̃−1(B̃(t))

= (g(B(t))(1 + f(B(t))/f ′(B(t))))−1 ◦ WB(t) =
A(t)

1 + tB′(t)
◦ WB(t),

which proves (13) again due to Theorem 2.3.4 in [14].

It remains to prove (12), i.e. that (xpn(x)
x−n

) is the associated sequence to

f̃(t). We already know that (pn(x − n)) is the Sheffer sequence to the pair

(1 + f(t)/f ′(t), f̃(t)). By Theorem 2.3.6 of [14] it follows that the associated

sequence to f̃(t) is given by (1+f(d/dx)/f ′(d/dx))pn(x−n). By Theorem 2.3.7
and Corollary 3.6.6 in [14], we have

(

1 +
f(d/dx)

f ′(d/dx)

)

pn(x − n) = pn(x − n) +
1

f ′(d/dx)
npn−1(x − n)

= pn(x − n) +
npn(x − n)

x − n
=

xpn(x − n)

x − n
,

which proves the rest of the lemma. ¤

3. Graph homology

This section is concerned with the space of graph homology classes of unitriva-
lent graphs. A very detailed discussion of this space and other graph homology
spaces can be found in [1]. Further aspects of graph homology can be found
in [17], and, with respect to Rozansky-Witten invariant, in [7].

3.1. The graph homology space. In this article, graph means a collection
of vertices connected by edges, i.e. every edge connects two vertices. We want
to call a half-edge (i.e. an edge together with an adjacent vertex) of a graph
a flag. So, every edge consists of exactly two flags. Every flag belongs to
exactly one vertex of the graph. On the other hand, a vertex is given by the
set of its flags. It is called univalent if there is only one flag belonging to it,
and it is called trivalent if there are exactly three flags belonging to it. We
shall identify edges and vertices with the set of their flags. We shall also call
univalent vertices legs. A graph is called vertex-oriented if, for every vertex, a
cyclic ordering of its flags is fixed.
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e

v3 v4

v1 v2

u1 u2

Figure 1. This Jacobi diagram has four trivalent vertices
v1, . . . , v4, and two univalent vertices u1 and u2, and e is one
of its 7 edges.

Definition 1. A Jacobi diagram is a vertex-oriented graph with only uni- and
trivalent vertices. A connected Jacobi diagram is a Jacobi diagram which is
connected as a graph. A trivalent Jacobi diagram is a Jacobi diagram with no
univalent vertices.
We define the degree of a Jacobi diagram to be the number of its vertices. It
is always an even number.
We identify two graphs if they are isomorphic as vertex-oriented graphs in the
obvious sense.

Example 1. The empty graph is a Jacobi diagram, denoted by 1. The unique
Jacobi diagram consisting of two univalent vertices (which are connected by an
edge) is denoted by `.

u1

u2

Figure 2. The Jacobi diagram ` with its two univalent ver-
tices u1 and u2.

Remark 1. There are different names in the literature for what we call a “Ja-
cobi diagram”, e.g. unitrivalent graphs, chord diagrams, Chinese characters,
Feynman diagrams. The name chosen here is also used by D. Thurston in [17].
The name comes from the fact that the IHX relation in graph homology defined
later is essentially the well-known Jacobi identity for Lie algebras.
With our definition of the degree of a Jacobi diagram, the algebra of graph
homology defined later will be commutative in the graded sense. Further, the
map RW that will associate to each Jacobi diagram a Rozansky-Witten class
will respect this grading. But note that often the degree is defined to be half
of the number of vertices, which still is an integer.

We can always draw a Jacobi diagram in a planar drawing so that it looks like
a planar graph with vertices of valence 1, 3 or 4. Each 4-valent vertex has to
be interpreted as a crossing of two non-connected edges of the drawn graph
and not as one of its vertices. Further, we want the counter-clockwise ordering
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of the flags at each trivalent vertex in the drawing to be the same as the given
cyclic ordering.

Figure 3. These two graphs depict the same one.

In drawn Jacobi diagrams, we also use a notation like · · ·
n
− · · · for a part of a

graph which looks like a long line with n univalent vertices (“legs”) attached to
it, for example . . .⊥⊥⊥ . . . for n = 3. The position of n indicates the placement
of the legs relative to the “long line”.

Definition 2. Let T be any tensor category (commutative and with unit).
Every Jacobi diagram Γ with k trivalent and l univalent vertices induces a
natural transformation ΨΓ between the functors

T → T ,V 7→ SkΛ3V ⊗ SlV(14)

and

T → T ,V 7→ SeS2V,(15)

where e := 3k+l
2 which is given by

(16) ΨΓ : SkΛ3V ⊗ SlV
(1)
→

⊗

t∈T

Λ3V ⊗
⊗

f∈U

V
(2)
→

⊗

t∈T

⊗

f∈t

V ⊗
⊗

f∈U

V

(3)
→

⊗

f∈F

V
(4)
→

⊗

e∈E

⊗

f∈e

V
(5)
→ SeS2V,

where T is the set of the trivalent vertices, U the set of the univalent vertices,
F the set of flags, and E the set of edges of Γ. Further,

(1) is given by the natural inclusions of the invariants in the tensor prod-
ucts,

(2) is given by the canonical maps (see Proposition 1 and recall that the
sets t are cyclicly ordered),

(3) is given by the associativity of the tensor product,
(4) is given again by the associativity of the tensor product, and finally
(5) is given by the canonical projections onto the coinvariants.

Definition 3. We define B to be the Q-vector space spanned by all Jacobi
diagrams modulo the IHX relation
�

=�−�(17)
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and the anti-symmetry (AS) relation
�

+�= 0,(18)

which can be applied anywhere within a diagram. (For this definition see
also [1] and [17].) Two Jacobi diagrams are said to be homologous if they are
in the same class modulo the IHX and AS relation.
Furthermore, let B′ be the subspace of B spanned by all Jacobi diagrams not
containing ` as a component, and let tB be the subspace of B′ spanned by
all trivalent Jacobi diagrams. All these are graded and double-graded. The
grading is induced by the degree of Jacobi diagrams, the double-grading by the
number of univalent and trivalent vertices.
The completion of B (resp. B′, resp. tB) with respect to the grading will be

denoted by B̂ (resp. B̂′, resp. tB̂).

We define Bk,l to be the subspace of B̂ generated by graphs with k trivalent
and l univalent vertices. B′

k,l and tBk := tBk,0 are defined similarly.

All these spaces are called graph homology spaces and their elements are called
graph homology classes or graphs for short.

Remark 2. The subspaces Bk of B̂ spanned by the Jacobi diagrams of degree
k are always of finite dimension. The subspace B0 is one-dimensional and
spanned by the graph homology class 1 of the empty diagram 1.

Remark 3. We have B̂ =
∏

k,l≥0 Bk,l. In view of the following Definition 4, B̂′

and B̂ are naturally Q-algebras. As Q-algebras, we have B̂ = B̂′[[`]]. Due to the

AS relation, the spaces B′
k,l are zero for l > k. Therefore, B̂′ =

∏∞
k=0

⊕k
l=0 B

′
k,l.

Example 2. If γ is a graph which has a part looking like · · ·
n
−· · · , it will become

(−1)nγ if we substitute the part · · ·
n
−· · · by · · ·−

n
· · · due to the anti-symmetry

relation.

3.2. Operations with graphs.

Definition 4. Disjoint union of Jacobi diagrams induces a bilinear map

B̂ × B̂ → B̂, (γ, γ′) 7→ γ ∪ γ′.(19)

By mapping 1 ∈ Q to 1 ∈ B̂, the space B̂ becomes a graded Q-algebra, which
has no components in odd degrees. Often, we omit the product sign “∪”. B,
B′, tB, and so on are subalgebras.

Definition 5. Let k ∈ N. We call the graph homology class of the Jacobi

diagram
2k

© the 2k-wheel w2k, i.e. w2 =�, w4 =�, and so on. It has 2k
univalent and 2k trivalent vertices. The expression w0 will be given a meaning
later, see section 3.3.

Remark 4. The wheels wk with k odd vanish in B̂ due to the AS relation.
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Let Γ be a Jacobi diagram and u, u′ be two different univalent vertices of Γ.
These two should not be the two vertices of a component ` of Γ. Let v (resp.
v′) be the vertex u (resp. u′) is attached to. The process of gluing the vertices
u and u′ means to remove u and u′ together with the edges connecting them
to v resp. v′ and to add a new edge between v and v′. Thus, we arrive at a new
graph Γ/(u, u′), whose number of trivalent vertices is the number of trivalent
vertices of Γ and whose number of univalent vertices is the number of univalent
vertices of Γ minus two. To make it a Jacobi diagram we define the cyclic
orientation of the flags at v (resp. v′) to be the cyclic orientation of the flags at
v (resp. v′) in Γ with the flag belonging to the edge connecting v (resp. v′) with
u (resp. u′) replaced by the flag belonging to the added edge. For example,

u u′

Figure 4. Gluing the two univalent vertices u and u′ of the
left graph produces the right one, denoted by�2.

gluing the two univalent vertices of w2 leads to the graph�.
If π = {{u1, u

′
1} , . . . , {uk, u′

k}} is a set of two-element sets of legs that are
pairwise disjoint and such that each pair uk, u′

k fulfills the assumptions of the
previous construction, we set

Γ/π := Γ/(u1, u
′
1)/ . . . /(uk, u′

k).(20)

Of course, the process of gluing two univalent vertices given above does not
work if u and u′ are the two univalent vertices of `, thus our assumption on Γ.

Definition 6. Let Γ,Γ′ be two Jacobi diagrams, at least one of them without
` as a component and U = {u1, . . . , un} resp. U ′ the sets of their univalent
vertices. We define

Γ̂(Γ′) :=
∑

f :U↪→U ′

injective

(Γ ∪ Γ′)/(u1, f(u1))/ . . . /(un, f(un)),(21)

viewed as an element in B̂.
This induces for every γ ∈ B̂ a tB̂-linear map

γ̂ : B̂′ → B̂′, γ′ 7→ γ̂(γ′).(22)

Example 3. Set ∂ := 1
2
ˆ̀. It is is an endomorphism of B̂′ of degree −2. For

example, ∂�=�. By setting

∂(γ, γ′) := ∂(γ ∪ γ′) − ∂(γ) ∪ γ′ − γ ∪ ∂(γ′)(23)

Documenta Mathematica 8 (2003) 591–623



602 Marc A. Nieper-Wißkirchen

for γ, γ′ ∈ B̂′, we have the following formula for all γ ∈ B̂′:

∂(γn) =

(
n

1

)

∂(γ)γn−1 +

(
n

2

)

∂(γ, γ)γn−2.(24)

This shows that ∂ is a differential operator of order two acting on B̂′.
Acting by ∂ on a Jacobi diagram means to glue two of its univalent vertices
in all possible ways, acting by ∂(·, ·) on two Jacobi diagrams means to connect
them by gluing a univalent vertex of the first with a univalent vertex of the
second in all possible ways.

Definition 7. Let Γ,Γ′ be two Jacobi diagrams, at least one of them without
` as a component, and U = {u1, . . . , un} resp. U ′ the sets of their univalent
vertices. We define

〈Γ,Γ′〉 :=
∑

f :U→U ′

bijective

(Γ ∪ Γ′)/(u1, f(u1))/ . . . /(un, f(un)),(25)

viewed as an element in tB̂.
This induces a tB̂-bilinear map

〈·, ·〉 : B̂′ × B̂ → tB̂,(26)

which is symmetric on B̂′ × B̂′.

Note that 〈Γ,Γ′〉 is zero unless Γ and Γ′ have equal numbers of univalent
vertices. In this case, the expression is the sum over all possibilities to glue the
univalent vertices of Γ with univalent vertices of Γ′.
Note that 〈Γ,Γ′〉 is zero unless Γ and Γ′ have equal numbers of univalent
vertices. In this case, the expression is the sum over all possibilities to glue the
univalent vertices of Γ with univalent vertices of Γ′.

Proposition 4. The map 〈1, ·〉 : B̂ → tB̂ is the canonical projection map, i.e.

it removes all non-trivalent components from a graph. Furthermore, for γ ∈ B̂′

and γ′ ∈ B̂, we have
〈

γ,
`

2
γ′

〉

= 〈∂γ, γ′〉 .(27)

For γ, γ′ ∈ B̂′, we have the following (combinatorial) formula:

(28) 〈exp(∂)(γγ′), 1〉 = 〈exp(∂)γ, exp(∂)γ′〉 .

Proof. The formula (27) should be clear from the definitions.
Let us investigate (28) a bit more. We can assume that γ and γ′ are Jacobi
diagrams with l resp. l′ univalent vertices and l + l′ = 2n with n ∈ N0. So we
have to prove

∂n

n!
(γγ′) =

∞∑

m,m′=0
l−2m=l′−2m′

〈

∂m

m!
γ,

∂m′

m′!
γ′

〉

,
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since 〈·, 1〉 : B̂ → tB̂ means to remove the components with at least one univa-
lent vertex. Recalling the meaning of 〈·, ·〉, it should be clear that (28) follows

from the fact that applying ∂k

k! on a Jacobi diagram means to glue all subsets
of 2k of its univalent vertices to k pairs in all possible ways. ¤

3.3. An sl2-action on the space of graph homology. In this short sec-
tion we want to extend the space of graph homology slightly. This is mainly due
to two reasons: When we defined the expression Γ̂(Γ) for two Jacobi diagrams
Γ and Γ′, we restricted ourselves to the case that Γ or Γ′ does not contain a
component with an `. Secondly, we have not given the zero-wheel w0 a meaning
yet.
We do this by adding an element © to the various spaces of graph homology.

Definition 8. The extended space of graph homology is the space B̂[[©]].
Further, we set w0 := ©, which, at least pictorially, is in accordance with the
definition of wk for k > 0.

Note that this element is not depicting a Jacobi diagram as we have defined
it. Nevertheless, we want to use the notion that © has no univalent and no
trivalent vertices, i.e. the homogeneous component of degree zero of B̂[[©]] is
Q[[©]].
When defining Γ/(u, u′) for a Jacobi diagram Γ with two univalent vertices u
and u′, i.e. gluing u to u′, we assumed that u and u′ are not the vertices of one
component ` of Γ. Now we extend this definition by defining Γ/(u, u′) to be
the extended graph homology class we get by replacing ` with ©, whenever u
and u′ are the two univalent vertices of a component ` of Γ.
Doing so, we can give the expression γ̂(γ′) ∈ B̂[[©]] a meaning with no restric-

tions on the two graph homology classes γ, γ′ ∈ B̂, i.e. every γ ∈ B̂[[©]] defines

a tB̂[[©]]-linear map

(29) γ̂ : B̂[[©]] → B̂[[©]].

Example 4. We have

(30) ∂` = ©.

Remark 5. We can similarly extend 〈·, ·〉 : B̂′ × B̂ → tB̂ to a tB̂[[©]]-bilinear
form

(31) 〈·, ·〉 : B̂[[©]] × B̂[[©]] → tB̂[[©]].

Both `/2 and ∂ are two operators acting on the extended space of graph homol-
ogy, the first one just multiplication with `/2. By calculating their commutator,

we show that they induce a natural structure of an sl2-module on B̂[[©]].

Proposition 5. Let H : B̂[[©]] → B̂[[©]] be the linear operator which acts on

γ ∈ B̂k,l[[©]] by

(32) Hγ =

(
1

2
© +l

)

γ.
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We have the following commutator relations in End B̂[[©]]:

[`/2, ∂] = −H,(33)

[H, `/2] = 2 · `/2,(34)

and

[H, ∂] = −2∂,(35)

i.e. the triple (`/2,−∂,H) defines a sl2-operation on B̂[[©]].

Proof. Equations (34) and (35) follow from the fact that multiplying by ©
commutes with `/2 and ∂, and from the fact that `/2 is an operator of degree 2
with respect to the grading given by the number of univalent vertices, whereas
∂ is an operator of degree −2 with respect to the same grading.
It remains to look at (33). For γ ∈ B̂k,l[[©]], we calculate

[`, ∂]γ = `∂(γ) − ∂(`γ) = `∂(γ) − ∂(`)γ − `∂(γ) − ∂(`, γ) = −© γ − 2lγ = −2Hγ.

(36)

¤

Remark 6. Since B̂[[©]] is infinite-dimensional, we have unfortunately difficul-
ties to apply the standard theory of sl2-representations to this sl2-module. For
example, there are no eigenvectors for the operator H.

3.4. Closed and connected graphs, the closure of a graph. As the
number of connected components of a Jacobi diagram is preserved by the IHX-
and AS-relations each graph homology space inherits a grading by the number
of connected components. For any k ∈ N0 we define Bk to be the subspace
of B spanned by all Jacobi diagrams with exactly k connected components.
Similarly, we define tBk, B̂k, tB̂k.
We have B =

⊕∞
k=0 B

k with B0 = Q · 1. Analogous results hold for tB, B̂, tB̂.

Definition 9. A graph homology class γ is called closed if γ ∈ tB̂. The class
γ is called connected if γ ∈ B̂1. The connected component of γ is defined to be
pr1(γ) where pr1 : B̂ =

∏∞
i=0 B̂

i → B̂1 is the canonical projection. The closure
〈γ〉 of γ is defined by 〈γ〉 := 〈γ, exp(`/2)〉. The connected closure 〈〈γ〉〉 of γ is
defined to be the connected component of the closure 〈γ〉 of γ.

For every finite set L, we define P2(L) to be the set of partitions of L into
subsets of two elements. With this definition, we can express the closure of a
Jacobi diagram Γ as

〈Γ〉 =
∑

π∈P2(L)

Γ/π.(37)

Example 5. We have 〈w2〉 =�, 〈〈w2〉〉 =�,
〈
w2

2

〉
= 2�2 +�2,

〈〈
w2

2

〉〉
= 2�2.

Let L1, . . . , Ln be finite and pairwise disjoint sets. We set L :=
⊔n

i=1 Li. Let
π ∈ P2(L) be a partition of L in 2-element-subsets. We say that a pair l, l′ ∈ L
is linked by π if there is an i ∈ {1, . . . n} such that l, l′ ∈ Li or {l, l′} ∈ π. We
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say that π connects the sets L1, . . . , Ln if and only if for each pair l, l′ ∈ L there
is a chain of elements l1, . . . , lk such that l is linked to l1, li is linked to li+1

for i ∈ {1, . . . , k − 1} and lk is linked to l′. The subset of P2(L) of partitions π
connecting L1, . . . , Ln is denoted by P2({L1, . . . , Ln}). We have

P2(L) =
⊔

⊔
I={1,...,n}

{
⊔

I∈I

πI : πI ∈ P2({Li : i ∈ I})

}

.(38)

Here,
⊔

I = {1, . . . , n} means that I is a partition of {1, . . . , n} in disjoint
subsets.
Let Γ1, . . . ,Γn be connected Jacobi diagrams. We denote by Γ :=

∏n
i=1 Γi the

product over all these Jacobi diagrams. Let Li be the set of legs of Γi and
denote by L :=

⊔n
i=1 Li the set of all legs of Γ.

For every partition π ∈ P2(L) the graph Γ/π is connected if and only if π ∈
P2({L1, . . . , Ln}).
Using (38) we have

(39) 〈Γ〉 =
∑

π∈P2(L)

Γ/π =
∑

⊔
I={1,...,n}

∏

I∈I

∑

π∈P2({Li:i∈I})

(
∏

i∈I

Γi

)

/π

=
∑

⊔
I={1,...,n}

∏

I∈I

〈〈
∏

i∈I

Γi

〉〉

.

With this result we can prove the following Proposition:

Proposition 6. For any connected graph homology class γ we have

exp 〈〈exp γ〉〉 = 〈exp γ〉 .(40)

Note that both sides are well-defined in B̂ since γ and 〈〈· · · 〉〉 as connected
graphs have no component in degree zero.

Proof. Let Γ be any connected Jacobi diagram. By (39) we have

〈Γn〉 =
∑

⊔
I={1,...,n}

∏

I∈I

〈〈
Γ#I

〉〉
=

∑

λ∈P(n)

n!
∞∏

i=1

1

λi!

(〈〈
Γi

〉〉
/i!

)λi

.

By linearity this result holds also if we substitute Γ by the connected graph
homology class γ.
Using this,

〈exp γ〉 =

∞∑

n=0

1

n!
〈γn〉 =

∞∑

n=0

1

n!

∑

λ∈P(n)

n!

∞∏

i=1

1

λi!

(〈〈
γi

〉〉
/i!

)λi

=
∞∏

i=1

∞∑

λ=0

1

λ!

(〈〈
γi

〉〉
/i!

)λ
=

∞∏

i=1

exp
(〈〈

γi
〉〉

/i!
)

= exp 〈〈exp γ〉〉 .

¤
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3.5. Polywheels.

Definition 10. For each n ∈ N0 we set w̃2n := −w2n. Let λ be a partition of
n. We set

w̃2λ :=

∞∏

i=1

w̃λi

2i .(41)

The closure 〈w̃2λ〉 of w̃2λ is called a polywheel. The subspace in tB spanned
by all polywheels is denoted by W and called the polywheel subspace. The
subalgebra in tB spanned by all polywheels is denoted by C and called the
algebra of polywheels.
The connected closure 〈〈w̃2λ〉〉 of w̃2λ is called a connected polywheel.

Remark 7. As discussed by J. Sawon in his thesis [16], W is proper graded
subspace of tB. From degree eight on, tBk is considerably larger than Wk. On
the other hand it is unknown (at least to the author) if the inclusion C ⊆ tB is
proper.

Remark 8. The subalgebra C′ in tB spanned by all connected polywheels equals
C. This is since we can use (40) to express every polywheel as a polynomial of
connected polywheels and vice versa.

Example 6. Using Proposition 6 we calculated the following expansions of the
connected polywheels in terms of wheels:

〈〈w̃2〉〉 = 〈w̃2〉

〈〈
w̃2

2

〉〉
=

〈
w̃2

2

〉
− 〈w̃2〉

2

〈〈w̃4〉〉 = 〈w̃4〉

〈〈
w̃3

2

〉〉
=

〈
w̃3

2

〉
− 3 〈w̃2〉

〈
w̃2

2

〉
+ 2 〈w̃2〉

3

〈〈w̃2w̃4〉〉 = 〈w̃2w̃4〉 − 〈w̃2〉 〈w̃4〉

〈〈w̃6〉〉 = 〈w̃6〉

〈〈
w̃4

2

〉〉
=

〈
w̃4

2

〉
− 4 〈w̃2〉

〈
w̃3

2

〉
− 3

〈
w̃2

2

〉2
+ 12 〈w̃2〉

2
− 6 〈w̃2〉

4

〈〈
w̃2

2w̃4

〉〉
=

〈
w̃2

2w̃4

〉
− 2 〈w̃2〉 〈w̃2w̃4〉 −

〈
w̃2

2

〉
〈w̃4〉 + 2 〈w̃2〉

2
〈w̃4〉

〈〈w̃2w̃6〉〉 = 〈w̃2w̃6〉 − 〈w̃2〉 〈w̃6〉
〈〈

w̃2
4

〉〉
=

〈
w̃2

4

〉
− 〈w̃4〉

2

〈〈w̃8〉〉 = 〈w̃8〉 .

(42)

4. Holomorphic symplectic manifolds

4.1. Definition and general properties.

Definition 11. A holomorphic symplectic manifold (X,σ) is a compact com-
plex manifold X together with an everywhere non-degenerate holomorphic two-
form σ ∈ H0(X,Ω2

X). Here, we call σ everywhere non-degenerate if σ induces
an isomorphism TX → ΩX .
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The holomorphic symplectic manifold (X,σ) is called irreducible if it is simply-
connected and H0(X,Ω2

X) is one-dimensional, i.e. spanned by σ.

It follows immediately that every holomorphic symplectic manifold X has triv-
ial canonical bundle whose sections are multiples of σn, and, therefore, vanish-
ing first Chern class. In fact, all odd Chern classes vanish:

Proposition 7. Let X be a complex manifold and E a complex vector bundle
on X. If E admits a symplectic two-form, i.e. there exists a section σ ∈
H0(X,Λ2E∗) such that the induced morphism E → E∗ is an isomorphism, all
odd Chern classes of E vanish.

Remark 9. That the odd Chern classes of E vanish up to two-torsion follows
immediately from the fact c2k+1(E) = −c2k+1(E

∗) for k ∈ N0.

The following proof using the splitting principle has been suggested to me by
Manfred Lehn.

Proof. We prove the proposition by induction over the rank of E. For rkE = 0,
the claim is obvious.
By the splitting principle (see e.g. [5]), we can assume that E has a subbundle
L of rank one. Let L⊥ be the σ-orthogonal subbundle to L of E. Since σ is
symplectic, L⊥ is of rank n − 1 and L is a subbundle of L⊥. We have the
following short exact sequences of bundles on X:

0 −−−−→ L −−−−→ E −−−−→ E/L −−−−→ 0

and

0 −−−−→ L⊥/L −−−−→ E/L −−−−→ E/L⊥ −−−−→ 0.

Since σ induces a symplectic form on L⊥/L, by induction, all odd Chern classes
of this bundle of rank rkE − 2 vanish. Furthermore, note that σ induces an
isomorphism between L and (E/L⊥)∗, so all odd Chern classes of L ⊕ E/L⊥

vanish.
Now, the two exact sequences give us c(E) = c(L⊕E/L⊥)·c(L⊥/L). Therefore,
we can conclude that all odd Chern classes of E vanish. ¤

Proposition 8. For any irreducible holomorphic symplectic manifold (X,σ)
of dimension 2n and k ∈ 0, . . . , n the space H2k(X,OX) is one-dimensional
and spanned by the cohomology class [σ̄]k.

Proof. See [2]. ¤

4.2. A pairing on the cohomology of a holomorphic symplectic
manifold. Let (X,σ) be a holomorphic symplectic manifold. There is a nat-
ural pairing of coherent sheafs

Λ∗TX ⊗ Λ∗ΩX → OX .(43)

Documenta Mathematica 8 (2003) 591–623



608 Marc A. Nieper-Wißkirchen

As the natural morphism from Λ∗TX to Λ∗TX is an isomorphism and Λ∗TX

can be identified with Λ∗ΩX by means of the symplectic form, we therefore
have a natural map

Λ∗Ω ⊗ Λ∗ΩX → OX .(44)

We write

〈·, ·〉 : Hp(X,Ω∗) ⊗ Hq(X,Ω∗) → Hp+q(X,OX), (α, β) 7→ 〈α, β〉(45)

for the induced map for any p, q ∈ N0.
In [10] we proved the following proposition:

Proposition 9. For any α ∈ H∗(X,Ω∗) we have
∫

X

α exp σ =

∫

X

〈α, exp σ〉 expσ.(46)

4.3. Example series. There are two main series of examples of irreducible
holomorphic symplectic manifolds. Both of them are based on the Hilbert
schemes of points on a surface:
Let X be any smooth projective surface over C and n ∈ N0. By X [n] we
denote the Hilbert scheme of zero-dimensional subschemes of length n of X.
By a result of Fogarty ([4]), X [n] is a smooth projective variety of dimension
2n. The Hilbert scheme can be viewed as a resolution ρ : X [n] → X(n) of the
n-fold symmetric product X(n) := Xn/Sn. The morphism ρ, sending closed
points, i.e. subspaces of X, to their support counting multiplicities, is called
the Hilbert-Chow morphism.
Let α ∈ H2(X, C) be any class. The class

∑n
i=1 pr∗i α ∈ H2(Xn, C) is invariant

under the action of Sn, where pri : Xn → X denotes the projection on the
ith factor. Therefore, there exists a class α(n) ∈ H2(X(n), C) with π∗α(n) =
∑n

i=1 pr∗i α, where π : Xn → X(n) is the canonical projection. Using ρ this

induces a class α[n] in H2(X [n], C).
If X is a K3 surface or an abelian surface, there exists a holomorphic symplectic
form σ ∈ H2,0(X) ⊆ H2(X, C). It was shown by Beauville in [2] that σ[n] is
again symplectic, so (X [n], σ[n]) is a holomorphic symplectic manifold.

Example 7. For any K3 surface X and holomorphic symplectic form σ ∈
H2,0(X), the pair (X [n], σ[n]) is in fact an irreducible holomorphic symplec-
tic manifold.

This has also been proven by Beauville. In the case of an abelian surface A,
we have to work a little bit more as A[n] is not irreducible in this case:
Let A be an abelian surface and let us denote by s : A[n] → A the composition
of the summation morphism A(n) → A with the Hilbert-Chow morphism ρ :
A[n] → A(n).

Definition 12. For any n ∈ N, the nth generalised Kummer variety A[[n]] is
the fibre of s over 0 ∈ A. For any class α ∈ H2(A, C), we set α[[n]] := α[n]|A[[n]] .

Remark 10. For n = 2 the generalised Kummer variety coincides with the
Kummer model of a K3 surface (therefore the name).
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Example 8. For every abelian surface A and holomorphic symplectic form
σ ∈ H2,0(A), the pair (A[[n]], σ[[n]]) is an irreducible holomorphic symplectic
manifold of dimension 2n − 2.

The proof can also be found in [2].

4.4. About α[n] and α[[n]]. Let X be any smooth projective surface and n ∈
N0.
Let X [n,n+1] denote the incidence variety of all pairs (ξ, ξ′) ∈ X [n]×X [n+1] with
ξ ⊆ ξ′ (see [3]). We denote by ψ : X [n,n+1] → X [n+1] and by φ : X [n,n+1] →
X [n] the canonical maps. There is a third canonical map χ : X [n,n+1] → X
mapping (ξ, ξ′) 7→ x if ξ′ is obtained by extending ξ at the closed point x ∈ X.

Proposition 10. For any α ∈ H2(X, C) we have

ψ∗α[n+1] = φ∗α[n] + χ∗α.(47)

Proof. Let p : X(n) × X → X(n) and q : X(n) × X → X denote the canonical
projections. Let τ : X(n) × X → X(n+1) the obvious symmetrising map. The
following diagram

X [n,n+1] X [n,n+1]

(φ,χ)



y



yψ

X [n] × X X [n+1]

ρ×idX



y



yρ′

X(n) × X
τ

−−−−→ X(n+1)

π×idX

x



x

π′

Xn+1 Xn+1

is commutative. (Note that we have primed some maps to avoid name clashes.)
We claim that τ∗α(n+1) = p∗α(n) + q∗α. In fact, since

(π × idX)∗τ∗α(n+1) = π′∗α(n+1) =

n+1∑

i=1

pr∗i α,

this follows from the definition of α(n). Finally, we can read off the diagram
that

ψ∗α[n+1] = ψ∗ρ′∗α(n+1) = (φ, χ)∗(ρ × idX)∗τ∗α(n+1)

= (φ, χ)∗(ρ × idX)∗(p∗α(n) + q∗α) = φ∗α[n] + χ∗α.

¤
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Proposition 11. Let X = X1 t X2 be the disjoint union of two projective
smooth surfaces X1 and X2. We then have

X [n] =
⊔

n1+n2=n

X
[n1]
1 × X

[n2]
2 .(48)

If α ∈ H2(X, C) decomposes as α|X1
= α1 and α|X2

= α2, then α[n] decomposes
as

α[n]|
X

[n1]

! ×X
[n2]
2

= pr∗1 α
[n1]
1 + pr∗2 α

[n2]
2 .(49)

Proof. The splitting of X [n] follows from the universal property of the Hilbert
scheme and is a well-known fact. The statement on α[n] is easy to prove and

so we shall only give a sketch: Let us denote by i : X
[n1]
1 × X

[n2]
2 → X [n] the

natural inclusion. Furthermore let j : X
(n1)
1 ×X

(n2)
2 → X(n) denote the natural

symmetrising map. The following diagram is commutative:

X
[n1]
1 × X

[n2]
2

i
−−−−→ X [n]

ρ1×ρ2



y



yρ

X
(n1)
1 × X

(n2)
2 −−−−→

j
X(n),

(50)

where the ρi : X
[ni]
i → X

(ni)
i are the Hilbert-Chow morphisms. Since j∗α(n) =

pr∗1 α
(n1)
1 + pr∗2 α

(n2)
2 , the commutativity of the diagram proves the statement

on α[n]. ¤

Let A be again an abelian surface and n ∈ N. Since A acts on itself by
translation, there is also an induced operation of A on the Hilbert scheme
A[n]. Let us denote the restriction of this operation to the generalised Kummer
variety A[[n]] by ν : A×A[[n]] → A[n]. It fits into the following cartesian square:

A × A[[n]] ν
−−−−→ A[n]

pr1



y



ys

A −−−−→
n

A,

(51)

where s is the summation map as having been defined above and n : A →
A, a 7→ na is the (multiplication-by-n)-morphism. Since n is a Galois cover of
degree n4, the same holds true for ν.

Proposition 12. For any α ∈ H2(A, C), we have

ν∗α[n] = npr∗1 α + pr∗2 α[[n]].(52)

Proof. By the Künneth decomposition theorem, we know that ν∗α[n] splits:

ν∗α[n] = pr∗1 α1 + pr∗2 α2.
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Set ι1 : A → A×A[[n]], a 7→ (a, ξ0) and ι2 : A[[n]] → A×A[[n]], ξ 7→ (0, ξ), where
ξ0 is any subscheme of length n concentrated in 0. We have

α1 = ι∗1ν
∗α[n] = (ρ ◦ ν ◦ ι1)

∗α(n) = (a 7→ (a, . . . a
︸ ︷︷ ︸

n

))∗α(n) = nα(53)

and

α2 = ι∗2ν
∗α[n] = i∗α[n] = α[[n]],(54)

where i : A[[n]] → A[n] is the natural inclusion map, thus proving the proposi-
tion. ¤

4.5. Complex genera of Hilbert schemes of points on surfaces. The
following theorem is an adaption of Theorem 4.1 of [3] to our context.

Theorem 1. Let P be a polynomial in the variables c1, c2, . . . and α over
Q. There exists a polynomial P̃ ∈ Q[z1, z2, z3, z4] such that for every smooth
projective surface X, α ∈ H2(X, Q) and n ∈ N0 we have:

∫

X[n]

P (c∗(X
[n]), α[n]) = P̃

(∫

X

α2/2,

∫

X

c1(X)α,

∫

X

c1(X)2/2,

∫

X

c2(X)

)

.

(55)

Proof. The proof goes along the very same lines as the proof of Proposition 0.5
in [3] (see there). The only new thing we need is Proposition 10 of this paper
to be used in the induction step of the adapted proof of Proposition 3.1 of [3]
to our situation. ¤

Let R be any Q-algebra (commutative and with unit) and let φ ∈ R[[c1, c2, . . . ]]
be a non-vanishing power series in the universal Chern classes such that φ is
multiplicative with respect to the Whitney sum of vector bundles, i.e.

φ(E ⊕ F ) = φ(E)φ(F )(56)

for all complex manifolds and complex vector bundles E and F on X. Any
φ with this property induces a complex genus, also denoted by φ, by setting
φ(X) :=

∫

X
φ(TX) for X a compact complex manifold. Let us call such a φ

multiplicative.

Remark 11. By Hirzebruch’s theory of multiplicative sequences and complex
genera ([6]), we know that

(1) each complex genus is induced by a unique multiplicative φ, and
(2) the multiplicative elements in R[[c1, c2, . . . ]] are exactly those of the

form exp(
∑∞

k=1 aksk) with ak ∈ R.

More or less formally the following theorem follows from Theorem 1.

Theorem 2. For each multiplicative φ ∈ R[[c1, c2, . . . ]], there exist unique
power series Aφ(p), Bφ(p), Cφ(p),Dφ(p) ∈ pR[[p]] with vanishing constant co-
efficient such that for all smooth projective surfaces X and α ∈ H2(X, C) we
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have:

(57)

∞∑

n=0

(∫

X[n]

φ(X [n]) exp(α[n])

)

pn

= exp

(

Aφ(p)

∫

X

α2/2 + Bφ(p)

∫

X

c1(X)α

+ Cφ(p)

∫

X

c2
1(X)/2 + Dφ(p)

∫

X

c2(X)

)

.

The first terms of Aφ(p), Bφ(p), Cφ(p),Dφ(p) are given by

(58)

Aφ(p) = p + O(p2), Bφ(p) = φ1p + O(p2), Cφ(p) = φ11p + O(p2), and

Dφ(p) = φ2p + O(p2),

where φ1 is the coefficient of c1 in φ, φ11 the coefficient of c2
1/2 and φ2 the

coefficient of c2.

Proof. This theorem is again an adaption of a theorem (Theorem 4.2) of [3] to
our context. Nevertheless, let us give the proof here:
Set K :=

{
(X,α) : X is a smooth projective surface and α ∈ H2(X, C)

}
and

let γ : K → Q4 be the map (X,α) 7→ (α2/2, c1(X)α, c1(X)2/2, c2(X)). Here,
we have supressed the integral signs

∫

X
and interpret the expressions α2, etc.

as intersection numbers on X. The image of K spans the whole Q4 (for explicit
generators, we refer to [3]).
Now let us assume that a (X,α) ∈ K decomposes as (X,α) = (X1, α1) t
(X2, α2). By the multiplicative behaviour of φ and exp we see that

∫

X[n]

φ(c∗(X
[n])) exp(α[n])

=
∑

n1+n2=n

(
∫

X
[n1]
1

φ(c∗(X
[n1])) exp(α

[n1]
2 )

) (
∫

X
[n2]
2

φ(c∗(X
[n2])) exp(α

[n2]
2 )

)

,

whereas Hφ(p)(X,α) :=
∑∞

n=0

(∫

X[n] φ(X [n]) exp(α[n])
)
pn fulfills

Hφ(p)(X,α) = Hφ(p)(X1, α1)Hφ(p)(X2, α2).(∗)

Since Hφ(p) : K → Q4 factors through γ and a map h : Q4 → R[[p]] by
Theorem 1 and as the image of γ is Zariski dense in Q4, we conclude from (∗)
that log h is a linear function which proves the first part of the theorem.
To get the first terms of the power series, we expand both sides of (57). The
left hand side expands as

1 + (α2/2 + φ1c1(X)α +
φ11

2
c2
1(X) + φ2c2(X))p + O(p2),(59)

while the right hand side expands as

1 + (A1α
2/2 + B1c1(X)α + C1c1(X)2 + D1c2(X))p + O(p2),(60)
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where A1, B1, C1,D1 are the linear coefficients of Aφ, Bφ, Cφ, and Dφ, which
can therefore be read off by comparing the expansions. ¤

Corollary 1. Let X be any smooth projective surface, α ∈ H2(X, C), and
n ∈ N0. Then

∫

X[n]

exp(α[n] + ᾱ[n]) =
1

n!

(∫

X

αᾱ

)n

.(61)

For X = A an abelian surface and n ∈ N, we get

∫

A[[n]]

exp(α[[n]] + ᾱ[[n]]) =
n

(n − 1)!

(∫

X

αᾱ

)n−1

.(62)

Proof. By Theorem 2, in C[[q]]:

∞∑

n=0

(∫

X[n]

exp(q
1
2 (α[n] + ᾱ[n]))

)

pn = exp(pq

∫

X

αᾱ + O(p2)),(63)

which proves the first part of the corollary by comparing coefficients of q.
For the Kummer case, we calculate

∫

A[[n]]

exp(α[[n]] + ᾱ[[n]]) =

∫

A[[n]] exp(α[[n]] + ᾱ[[n]])
∫

A
exp(nα + nᾱ)

∫

A
exp(nα + nᾱ)

= n2

∫

A[n] exp(α[n] + ᾱ[n])
∫

A
exp(α + ᾱ)

,

which proves the rest of the corollary. ¤

Let ch be the universal Chern character. By sk = (2k)!ch2k we denote its
components. They span the whole algebra of characteristic classes, i.e. we have
Q[s1, s2, . . . ] = Q[c1, c2, . . . ].
Let us fix the power series

φ := exp(
∞∑

k=1

a2ks2ktk) ∈ Q[a2, a4, . . . ][t][[c1, c2, . . . ]].

This multiplicative series gives rise to four power series

Aφ(p), Bφ(p), Cφ(p),Dφ(p) ∈ pR[[p]]

according to the previous Theorem 2. We shall set for the rest of this article

A(t) := Aφ(1), and D(t) := Dφ(1)(64)

The constant terms of these power series in t are given by

A(t) = 1 + O(t), and D(t) = O(t).(65)
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5. Rozansky-Witten classes and invariants

The idea to associate to every graph Γ and every hyperkähler manifold X a
cohomology class RWX(Γ) is due to L. Rozansky and E. Witten (c.f. [15]).
M. Kapranov showed in [8] that the metric structure of a hyperkähler man-
ifold is not nessessary to define these classes. It was his idea to build the
whole theory upon the Atiyah class and the symplectic structure of an irre-
ducible holomorphic symplectic manifold. We will make use of his definition
of Rozansky-Witten classes in this section. A very detailed text on defining
Rozansky-Witten invariants is the thesis by J. Sawon [16].

5.1. Definition. Let (X,σ) be a holomorphic symplectic manifold. Let us
work in the category of complexes of coherent sheaves on X. In this category,
we have for every n ∈ Z a functor V 7→ V [n] that shifts a complex V by n to
the left. Due to the Koszul sign rule (i.e. the natural map (V [m]) ⊗ (W [n]) →
(W [n]) ⊗ (V [m]) for sheaves V and W and integers n and m incorporates a
sign (−1)mn), we have Sn(V [1]) = (ΛnV )[n] and Sn(V [1]) = (ΛnV )[n].
Every Jacobi diagram Γ with k trivalent and l univalent vertices defines in the
category of complexes of coherent sheaves on X a morphism

ΦΓ : SkΛ3(TX [−1]) ⊗ Sl(TX [−1]) → SeS2(TX [−1]),(66)

where TX [−1] is the tangent sheaf of X shifted by one and 2e = 3k + l. By the
sign rule above, this is equivalent to being given a map:

(ΛkS3TX ⊗ ΛlTX)[−3k − l] → (SeΛ2TX)[−2e],(67)

which is induced by a map

ΛkS3TX ⊗ ΛlTX → SeΛ2TX(68)

in the category of coherent sheaves on X. This gives rise to a map

ΨΓ : ΛkS3TX ⊗ SeΛ2ΩX → ΛlΩX .(69)

Let α̃ ∈ H1(X,Ω ⊗ End TX) be the Atiyah class of X, i.e. α̃ represents the
extension class of the sequence

0 −−−−→ ΩX ⊗ TX −−−−→ J1TX −−−−→ TX −−−−→ 0(70)

in Ext1X(TX ,ΩX ⊗ TX) = H1(X,ΩX ⊗ End TX). Here, J1TX is the bundle of
one-jets of sections of TX (for more on this, see [8]). The Atiyah class can also
be viewed as the obstruction for a global holomorphic connection to exist on
TX . We set α := i/(2π)α̃.
We use σ to identify the tangent bundle TX of X with its cotangent bundle
ΩX . Doing this, α can be viewed as an element of H1(X, T ⊗3

X ). Now the point
is that α is not any such element. The following proposition was proven by
Kapranov in [8]:

Proposition 13.

α ∈ H1(X,S3TX) ⊆ H1(X, T ⊗3
X ).(71)
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Therefore, α∪k ∪ σ∪l ∈ Hk(X,ΛkS3TX ⊗ SlΛ2ΩX). Applying the map ΨΓ on
the level of cohomology eventually leads to an element

RWX,σ(Γ) := ΨΓ
∗ (α∪k ∪ σ∪l) ∈ Hk(X,Ωl

X).(72)

We call RWX,σ(Γ) the Rozansky-Witten class of (X,σ) associated to Γ.
For a C-linear combination γ of Jacobi diagrams, RWX,σ(γ) is defined by linear
extension.
In [8], Kapranov also showed the following proposition, which is crucial for the
next definition. It follows from a Bianchi-identity for the Atiyah class.

Proposition 14. If γ is a Q-linear combination of Jacobi diagrams that is
zero modulo the anti-symmetry and IHX relations, then RWX,σ(γ) = 0.

Definition 13. We define a double-graded linear map

RWX,σ : B̂ → H∗(X,Ω∗
X),(73)

which maps Bk,l into Hk(X,Ωl
X) by mapping a homology class of a Jacobi

diagram Γ to RWX,σ(Γ).

Definition 14. Let γ ∈ B̂ be any graph. The integral

bγ(X,σ) :=

∫

X

RWX,σ(γ) exp(σ + σ̄)(74)

is called the Rozansky-Witten invariant of (X,σ) associated to γ.

5.2. Examples and properties of Rozansky-Witten classes. We sum-
marise in this subsection the properties of the Rozansky-Witten classes that
will be of use for us. For proofs take a look at [10], please.
Let (X,σ) again be a holomorphic symplectic manifold.

Proposition 15. The map RWX,σ : B̂ → H∗,∗(X) is a morphism of graded
algebras.

Proposition 16. For all γ ∈ B̂′ and γ′ ∈ B̂ we have

RWX,σ(〈γ, γ′〉) = 〈RWX,σ(γ),RWX,σ(γ′)〉 .(75)

Example 9. The cohomology class [σ] ∈ H2,0(X) is a Rozansky-Witten class;
more precisely, we have

RWX,σ(`) = 2[σ].(76)

Example 10. The components of the Chern charakter are Rozansky-Witten
invariants:

−RWX,σ(w2k) = RWX,σ(w̃2k) = s2k.(77)

The next two proposition actually aren’t stated in [10], so we shall give ideas
of their proofs here.

Proposition 17. Let ν : (X, ν∗σ) → (Y, σ) be a Galois cover of holomorphic

symplectic manifolds. For every graph homology class γ ∈ B̂,

RWX,ν∗σ(γ) = ν∗ RWY,σ(γ).(78)
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Proof. As ν is a Galois cover, we can identify TX with ν∗TY and so α̃X with
ν∗α̃Y where α̃X and α̃Y are the Atiyah classes of X and Y . By definition of
the Rozansky-Witten classes, (78) follows. ¤

Lemma 2. Let (X,σ) and (Y, τ) be two holomorphic symplectic manifolds. If
the tangent bundle of Y is trivial,

RWX×Y,p∗σ+q∗τ (γ) = p∗ RWX,σ(γ)(79)

for all graphs γ ∈ B̂′. Here p : X × Y → X and q : X × Y → Y denote the
canonical projections.

Proof. This lemma is a special case of the more general proposition in [16]
that relates the coproduct in graph homology with the product of holomorphic
symplectic manifolds. Since all Rozansky-Witten classes for graphs with at
least one trivalent vertex vanish on Y , our lemma follows easily from J. Sawon’s
statement. ¤

5.3. Rozansky-Witten classes of closed graphs. Let γ be a homoge-
neous closed graph of degree 2k. For every compact holomorphic symplectic
manifold (X,σ), we have RWX,σ(γ) ∈ H0,2k(X). If X is irreducible, we there-
fore have RWX,σ(γ) = βγ · [σ̄]k for a certain βγ ∈ C. We can express βγ

as

βγ =

∫

X
RWX,σ(γ)σ̄n−kσn

∫

X
(σσ̄)n

=
(n − k)!

n!

∫

X
RWX,σ(γ) exp(σ + σ̄)

∫

X
exp(σ + σ̄)

(80)

where 2n is the dimension of X.
This formula makes also sense for non-irreducible X, which leads us to the
following definition:

Definition 15. Let (X,σ) be a compact holomorphic symplectic manifold
(X,σ) of dimension 2n. For any homogeneous closed graph homology class γ
of degree 2k with k ≤ n we set

βγ(X,σ) :=
(n − k)!

n!

∫

X
RWX,σ(γ) exp(σ + σ̄)

∫

X
exp(σ + σ̄)

(81)

By linear extension, we can define βγ(X,σ) also for non-homogeneous closed
graph homology classes γ.

Remark 12. The map tB̂ → C, γ 7→ βγ(X,σ) is linear. If X is irreducible, it is
also a homomorphism of rings.

For polywheels w̃2λ, we can express β〈w̃2λ〉 in terms of characteristic classes:

Proposition 18. Let (X,σ) be a compact holomorphic symplectic manifold of
dimension 2n and k ∈ {1, . . . , n}. Let λ ∈ P (k) be any partition of k. Then

∫

X

RWX,σ(〈w̃2λ〉) exp(σ + σ̄) =

∫

X

s2λ(X) exp(σ + σ̄).(82)
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Proof. We calculate

(83)

∫

X

RWX,σ(〈w̃2λ〉) exp(σ + σ̄) =

∫

X

RWX,σ(〈w̃2λ, exp(`/2)〉) exp(σ + σ̄)

=

∫

X

〈s2λ, exp σ〉 exp(σ + σ̄) =

∫

X

s2λ exp(σ + σ̄).

¤

6. Calculation for the example series

6.1. Proof of the main theorem. Let X be a smooth projective surface
that admits a holomorphic symplectic form (e.g. a K3 surface or an abelian
surface). Let us fix a holomorphic symplectic form σ ∈ H2,0(X) that is nor-
malised such that

∫

X
σσ̄ = 1. It is known ([9]) that X [n] for all n ∈ N0 is a

compact holomorphic symplectic manifold.
For every homogeneous closed graph homology class γ of degree 2k and every
n ∈ N0, we set

hX
γ (n) := βγ(X [k+n], σ[k+n]).(84)

By linear extension, we define hX
γ (n) for non-homogeneous closed graph ho-

mology classes γ.

Proposition 19. For all closed graph homology classes γ, we have

∞∑

n=0

qn

n!
hX

γ (n) =

∞∑

l=0

∫

X[l]

RWX[l],σ[l](γ) exp(q
1
2 (σ[l] + σ̄[l]))(85)

in C[[q]].

Proof. Let us assume that γ is homogeneous of degree 2k. Then

hX
γ (n) = βγ(X [k+n], σ[k+n]) =

n!

(n + k)!

∫

X[k+n] RWX[k+n],σ[k+n](γ) exp(σ[k+n] + σ̄[k+n])
∫

X[k+n] exp(σ[k+n] + σ̄[k+n])

= n!

∫

X[k+n]

RWX[k+n],σ[k+n](γ) exp(σ + σ̄).

In the last equation we have used Corollary 1. Summing up and introducing
the counting parameter q yields the claim. ¤

Proposition 20. Let a2, a4, . . . be formal parameters. We set

ω(t) :=

∞∑

k=1

a2ktkw̃2k ∈ B̂1[a2, a4, . . . ][t](86)
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and call ω the universal wheel. Further, we set W (t) := exp(ω(t)) and W :=
W (1). The Rozansky-Witten classes of the universal wheel are encoded by

∞∑

n=0

qn

n!
hX
〈W (t)〉(n) = exp(qA(t)) exp(c2(X)D(t)).(87)

Proof. Using Proposition 19 and Proposition 18 yields:

∞∑

n=0

qn

n!
hX
〈W (t)〉(n) =

∞∑

l=0

∫

X[l]

RWX[l],σ[l](〈W (t)〉) exp(q
1
2 (σ[l] + σ̄[l]))

=

∞∑

l=0

∫

X[l]

exp

(
∞∑

k=1

a2ks2k(X [l])tk

)

exp(q
1
2 (σ[l] + σ̄[l]))

= exp(qA(t)) exp(c2(X)D(t)).

¤

Corollary 2. For every n ∈ N0 we have

hX
〈W (t)〉(n) = exp(c2(X)D(t)) exp(n log A(t))(88)

Proof. Comparision of coefficients in (87) gives

hX
〈W (t)〉(n) = A(t)n exp(c2(X)D(t)).

Lastly, note that A is a power series in t that has constant coefficient one. ¤

Remark 13. By equation (88) we shall extend the definition of hX
〈W (t)〉(n) to

all n ∈ Z.

Proposition 21. Let A be an abelian surface. Let us fix a holomorphic sym-
plectic form σ ∈ H2,0(A) that is normalised such that

∫

A
σσ̄ = 1.

Let γ be a homogeneous connected closed graph of degree 2k. Then we have

βγ(A[[n]], σ[[n]]) =
n

n − k
βγ(A[n], σ[n])(89)

for any n > k.

Proof. The proof is a straight-forward calculation:

βγ(A[[n]], σ[[n]]) =
(n − 1 − k)!

(n − 1)!

∫

A[[n]] RWA[[n]],σ[[n]](γ) exp(σ[[n]] + σ̄[[n]])
∫

A[[n]] exp(σ[[n]] + σ̄[[n]])

=
(n − 1 − k)!

(n − 1)!

∫

A[[n]] RWA[[n]],σ[[n]](γ) exp(σ[[n]] + σ̄[[n]])
∫

A[[n]] exp(σ[[n]] + σ̄[[n]]

∫

A
exp(nσ + nσ̄)

∫

A
exp(nσ + nσ̄)

=
(n − 1 − k)!

(n − 1)!

∫

A[n] RWA[n],σ[n](γ) exp(σ[n] + σ̄[n])
∫

A[n] exp(σ[n] + σ̄[n])
=

n

n − k
βγ(A[n], σ[n]),

where we have used Proposition 12, Proposition 17 and Lemma 2. ¤
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Theorem 3. For any homogenous connected closed graph of degree 2k lying in
the algebra C of polywheels there exist two rational numbers aγ , cγ such that for
each K3 surface X together with a symplectic form σ ∈ H2,0(X) with

∫

X
σσ̄ = 1

and n ≥ k we have

βγ(X [n], σ[n]) = aγn + cγ(90)

and that for each abelian surface A together with a symplectic form σ ∈ H2,0(X)
with

∫

X
σσ̄ = 1 and n > k we have

βγ(A[[n]], σ[[n]]) = aγn.(91)

Proof. Let (X,σ) be a K3 surface or an abelian surface together with a sym-
plectic form with

∫

X
σσ̄ = 1. Let W2k be the homogeneous component of

degree 2k of W (1). Then W (t) =
∑∞

k=0 W2ktk. Thus we have by (88):

hX
〈W (t)〉(n) =

∞∑

k=0

hX
〈W2k〉

(n)tk = Uc2(X)(t) exp(nV (t))(92)

with Uc2(X)(t) := exp(c2(X)D(t)) and V (t) := log A(t).
Let us consider the case of a K3 surface X first. Note that c2(X) = 24. By
definition of hX

γ (n) we have

β〈W2k〉(X
[n], σ[n]) = hX

〈W2k〉
(n − k)(93)

for all n ≥ k. For n < k we take this equation as a definition for its
left hand side. Let the power series T (t) ∈ Q[a2, a4, . . . ][[t]] be defined by

T (t exp(V (t))) = t, and set Ṽ (t) := V (T (t)) and Ũ := U24(T (t))
1+T (t)V ′(T (t)) . By

Lemma 1, we have

β〈W (t)〉(X
[n], σ[n]) =

∞∑

k=0

hX
〈W2k〉

(n − k)tk = Ũ(t) exp(nṼ (t)).

Note that W (t) is of the form exp(γ) where γ is a connected graph. By Propo-
sition 6 and Remark 12 we therefore have

β〈〈W (t)〉〉(X
[n], σ[n]) = βlog 〈W (t)〉(X

[n], σ[n]) = log β〈W (t)〉 = nṼ (t) + log U(t).

Finally, let λ be any partition. Setting

∂2λ :=

(
∞∏

i=1

∂λi

∂aλi

i

∣
∣
∣
∣
∣
ai=0

)∣
∣
∣
∣
∣
t=0

.

It is

β〈〈w̃2λ〉〉 = ∂2λβ〈〈W (t)〉〉 = n∂2λṼ (t) + ∂2λ log Ũ(t),

so the theorem is proven for K3 surfaces and all connected graph homology
classes of the form 〈〈w̃2λ〉〉 and thus for all connected graph homology classes
in C.
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Let us now turn to the case of a generalised Kummer variety, i.e. let X = A
be an abelian surface and n ≥ 1. Note that c2(A) = 0. Here, we have due to
Proposition 21:

β〈W2k〉(A
[[n]], σ[[n]]) =

n

n − k
hA
〈W2k〉

(n − k)

for n > k. For n ≤ k we take this equation as a definition for its left hand side.
As U0(t) = 1, Lemma 1 yields in this case that

β〈W (t)〉(A
[[n]], σ[[n]]) =

∞∑

k=0

n

n − k
hX
〈W2k〉

(n − k)tk = expnṼ (t).

We can then proceed as in the case of the Hilbert scheme of a K3 surface to
finally get

β〈〈w̃2λ〉〉 = n∂2λ(Ṽ (t)).

¤

6.2. Some explicit calculations. Now, we’d like to calculate the constants
aγ and cγ for any homogeneous connected closed graph homology class γ of
degree 2k lying in C. By the previous theorem, we can do this by calculating
βγ on (X,σ) for (X,σ) being the 2k-dimensional Hilbert scheme of points on
a K3 surface and the 2k-dimensional generalised Kummer variety.
We can do this by recursion over k: Let the calculation having been done for
homogeneous connected closed graph homology classes γ of degree less than 2k
in C and both example series.
Let λ be any partition of k. We can express 〈〈w̃2λ〉〉 as

〈〈w̃2λ〉〉 = 〈w̃2λ〉 + P,(94)

where P is a polynomial in homogeneous connected closed graph homology
classes γ of degree less than 2k in C (for this see Proposition 6). Therefore,
β〈〈w̃2λ〉〉(X,σ) is given by

β〈〈w̃2λ〉〉(X,σ) = β〈w̃2λ〉(X,σ) + P ′,(95)

where P ′ is a polynomial in terms like βγ′(X,σ) with γ′ ∈ C and deg γ′ <
2k. However, these terms have been calculated in previous recursion steps.
Therefore, the only thing new we have to calculate in this recursion step is
β〈w̃2λ〉(X,σ). We have:

β〈w̃2λ〉(X,σ) =
1

k!

∫

X
RWX,σ(w̃2λ) exp(σ + σ̄)

∫

X
exp(σ + σ̄)

=

∫

X
s2λ(X)

∫

X
exp (σ + σ̄)

.(96)

As all the Chern numbers of X can be computed with the help of Bott’s residue
formula (see [3] for the case of the Hilbert scheme and [11] for the case of the
generalised Kummer variety), we therefore are able to calculate β〈w̃2λ〉(X,σ).
This ends the recursion step as we have given an algorithm to compute aγ and
cγ for any homogeneous connected closed graph homology class γ of degree 2k
in C.
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We worked through the recursion for k = 1, 2, 3. Firstly, we have

〈〈w̃2〉〉 = 〈w̃2〉

〈〈
w̃2

2

〉〉
= 〈w̃4〉 − 〈〈w̃2〉〉

2

〈〈w̃4〉〉 = 〈w̃4〉

〈〈
w̃3

2

〉〉
=

〈
w̃3

2

〉
− 3 〈〈w̃2〉〉

〈〈
w̃2

2

〉〉
− 〈〈w̃2〉〉

3

〈〈w̃2w̃4〉〉 = 〈w̃2w̃4〉 − 〈〈w̃2〉〉 〈〈w̃4〉〉

〈〈w̃6〉〉 = 〈w̃6〉 .

(97)

Not let X be a K3 surface and A an abelian surface. Let us denote by σ
either a holomorphic symplectic two-form on X with

∫

X
σσ̄ = 1 or on A with

∫

A
σσ̄ = 1. We use the following table of Chern numbers for the Hilbert scheme

of points on a K3 surface:

k s s[X [k]] s[A[[k+1]]]

1 s2 -48 -48
2 s2

2 3312 3024
s4 360 1080

3 s3
2 -294400 -241664

s2s4 -29440 -66560
s6 -4480 -22400

Going through the recursion, we arrive at the following table:

k γ βγ(A[[k+1]]) βγ(X [k]) aγ cγ

1 〈〈w̃2〉〉 -24 -48 12 -36
2

〈〈
w̃2

2

〉〉
-288 -288 -96 -96

〈〈w̃4〉〉 360 360 120 120

3
〈〈

w̃3
2

〉〉
-5120 -4096 -1280 -256

〈〈w̃2w̃4〉〉 6400 5120 1600 320
〈〈w̃6〉〉 -5600 -4480 -1400 -280

Now, we would like to turn to Rozansky-Witten invariants: Let γ be any
homogeneous closed graph homology class of degree 2k. For any holomorphic
symplectic manifold (X,σ) of dimension 2n, the associated Rozansky-Witten
invariant is given by

(98) bγ(X,σ) =

∫

X

RWX,σ(γ) exp(σ + σ̄) =
1

n!(n − k)!
βγ(X,σ)

∫

X

(σσ̄)n

=
n!

(n − k)!
βγ(X,σ)

∫

X

exp(σ + σ̄).

To know the Rozansky-Witten invariant associated to closed graph homology
classes, we therefore have just to calculate the value of βγ . On an irreducible
holomorphic symplectic manifold, γ 7→ βγ is multiplicative with respect to
the disjoint union of graphs, so it is enough to calculate βγ for connected
closed graph homology classes. However, we have just done this for the Hilbert
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schemes of points on a K3 surface and the generalised Kummer varieties — as
long as γ is spanned by the connected polywheels.
By the procedure outlined above, Theorem 3 therefore enables us to compute
all Rozansky-Witten invariants of the two example series associated to closed
graph homology classes lying in C.
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