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1. Introduction

Around 50 years ago Daniel Quillen gave the following algebraic description of the 
unitary bordism ring.

Theorem 1.1 ([5]). The canonical map

L∗ → MU∗

from the Lazard ring to the coefficient ring of unitary bordism theory is an isomorphism.

Recall that the Lazard ring is the representing ring of the universal one-dimensional 
commutative formal group law [3], and that the unitary bordism ring MU∗ = MU−∗ is 
the representing ring of a one-dimensional formal group law

F (x, y) ∈ MU−∗[[x, y]] = MU−∗(CP∞ × CP∞)

given by the pull back of the universal Chern class in MU2(CP∞) under the classifying 
map CP∞ × CP∞ → CP∞ of the tensor product of the universal line bundles on each 
factor of CP∞ × CP∞.

Today Quillen’s theorem is one of the organizational principles of stable homotopy 
theory. Establishing equivariant analogues of this result is therefore a reasonable goal. 
Tom Dieck [8] defined homotopy theoretic G-equivariant unitary bordism theories MUG

∗
for compact Lie groups G, using arbitrary unitary G-representations as suspension coor-
dinates. Further information on the foundations of equivariant stable homotopy theory 
is contained in [4], for instance.

For compact abelian Lie groups A the notion of A-equivariant formal group laws 
was introduced in [1], and subject to an extensive theoretical investigation in [7]. Simi-
larly to the non-equivariant situation there is a universal one-dimensional commutative 
A-equivariant formal group law, see [1, Cor. 14.3], together with a representing ring LA, 
and a classifying map

λA : LA → MUA
∗ .

An equivariant version of Quillen’s theorem amounts to λA being an isomorphism.
Let A be a finite abelian group. By use of a localization-completion pull back square 

due to tom Dieck (for cyclic A this is [8, Theorem 5.1]), together with the classification 
of Euler-complete and Euler local equivariant formal group laws, one can show that λA

is surjective with each element in the kernel being Euler torsion and infinitely Euler 
divisible, see [2, Theorem 13.1].

Strickland [6] presented an algebraic description of MUZ/2
∗ in terms of generators and 

relations, and stated without proof the existence of a section MUZ/2
∗ → LZ/2 of the 

classifying map λZ/2, establishing MUZ/2
∗ as a retract of LZ/2.
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In spite of these positive results, injectivity of λA has remained elusive for any non-
trivial A. This problem has been raised at several places, see e.g. [2, Questions 16.8]
and [7, Chapter 13]. We remark that there do exist non-additive Z/2-equivariant formal 
group laws with representing rings containing non-zero, infinitely Euler divisible and 
Euler torsion elements, see Example 4.1. Hence injectivity of λA does not follow merely 
from the results mentioned before, but requires some new structural insight concerning 
the ring LA itself. This is what we will achieve in the paper at hand for the simplest 
non-trivial case A = Z/2, providing the first instance of an equivariant Quillen theorem:

Theorem 1.2. The map λZ/2 : LZ/2 → MUZ/2
∗ is an isomorphism.

Our argument starts with the construction of an explicit section μZ/2 of the classifying 
map λZ/2. This allows us to introduce structure constants ρij ∈ LZ/2 in the kernel of 
λZ/2, which measure the deviation from λZ/2 being an isomorphism.

The proof of the vanishing of all ρij rests on two major lines of thought, developed in 
Sections 6 and 7 of our paper. The first one is of a conceptual nature and based on the 
construction of a normalization functor, turning Z/2-equivariant formal group laws into 
ones with Euler classes equal to 1. Applied to the universal Z/2-equivariant formal group 
law we can hence derive efficient upper bounds on the Euler torsion of the elements ρij, 
see Theorem 5.2.

The second one is an explicit computation of a particular Z/2-equivariant formal group 
law, which is obtained from LZ/2 by dividing out the ideal J generated by the images 
under μZ/2 of the positive degree generators of MUZ/2

∗ . It turns out that the resulting 
Z/2-equivariant formal group law is the additive one. In other words (Theorem 5.3): The 
structure constants ρij lie in J .

Combining these two results in a bootstrap like manner forces vanishing of the ρij. 
See Section 5 for more details.

On the one hand we are optimistic that our approach can be generalized to more 
general A, for example cyclic groups of prime order. On the other hand we feel that 
the proof of an equivariant Quillen theorem for all compact abelian A requires some 
additional insight, which, among others, avoids explicit computations of MUA

∗ in terms 
of generators and relations. We leave this topic for future research.

Acknowledgments: We thank the referee for a number of helpful comments. B.H. is grate-
ful to the MPI, Bonn, to the IMPA, Rio de Janeiro, and to the IHES, Bures-sur-Yvette, 
for their hospitality while parts of this research were carried out. This work was supported 
by DFG grants HA3160/6-1, SPP2026-HA3160/11-1 (B.H. and M.W.) and SFB878-TP-
B1 (M.W.).

2. Recollections on equivariant formal group laws

For the notion of equivariant formal group laws, and the basics of the correspond-
ing theory we refer the reader to [1]. Here we only recall some of the most important 
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features and fix some notation. Let A be a compact abelian Lie group. We denote by 
A∗ = Hom(A, S1) the group of irreducible unitary A-representations. The trivial one-
dimensional representation is denoted by ε. An A-equivariant formal group law is given 
by a quintuple (k, R, Δ, θ, y(ε)) with a commutative ring k, a complete commutative 
topological k-algebra R, a continuous comultiplication

Δ : R → R⊗̂R,

an augmentation θ : R → kA
∗ and an orientation y(ε) ∈ R, such that the following 

axioms are satisfied, see [1, Def. 11.1], which we here only recall for finite abelian A.

(1) The comultiplication Δ is a map of k-algebras, co-commutative, co-associative and 
co-unital.

(2) The augmentation θ is a map of k-algebras compatible with the coproduct, so that 
ker θ defines the topology.

(3) y(ε) ∈ R is a regular element in the kernel of θ(ε), and θ(ε) induces an isomorphism 
R/(y(ε)) ∼= k.

We obtain an action l of A∗ on R by the formula

lα(c) = (θ(α−1) ⊗ id)(Δ(c))

for α ∈ A∗ and c ∈ R. Moreover, corresponding to α ∈ A∗ we have coordinates y(α) :=
lα(y(ε)) ∈ R. Finally, we define Euler classes

e(α) := θ(ε)(y(α)) ∈ k.

For explicit computations it is necessary to choose a basis of the topological k-module R. 
Recall [1, Notation 12.1] that a complete flag F = (V 0 ⊂ V 1 ⊂ V 2 ⊂ . . .) is a sequence of 
r-dimensional complex A-representations V r such that V r ⊂ V r+1 and each finite dimen-
sional complex A-representation is isomorphic to a subrepresentation of some V r. Given 
a complete flag (V r)r∈N we obtain a k-basis (y(V r))r∈N of the topological k-module R, 
see [1, Lemma 13.2]. In this basis the coproduct Δ is given by

Δ(y(V r)) =
∑
i,j≥0

β
(r)
i,j · y(V i) ⊗ y(V j)

with structure constants β(r)
i,j ∈ k. Let k′ ⊂ k be the subring generated by the coefficients 

β
(1)
i,j and the Euler classes e(α), α ∈ A∗, and let R′ ⊂ R be the free k′-module with basis 

(y(V r))r∈N. By an argument similar as for the proof of [1, Theorem 16.1] the coproduct 
Δ restricts to a coproduct on R′ and thus we obtain an induced Z/2-equivariant formal 
group law (k′, R′, Δ, θ, y(ε)). We can hence assume without loss of generality that the 
underlying ring k of a formal group law (k, R) is generated by the structure constants 
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β
(1)
i,j ∈ k and the Euler classes e(α). In this case we briefly call k the representing ring

of the A-equivariant formal group law.
It is sometimes important to consider graded A-equivariant formal group laws (k, R). 

This means that k and R are Z-graded rings, where for r ≥ 0 the basis element y(V r)
sits in degree −2r, and the coproduct, the A∗-action and the augmentation are grading 
preserving. In this case the structure constants β(r)

i,j are homogeneous of degree 2(i +j−r)
and the Euler classes have degree −2. The most prominent example is the universal 
A-equivariant formal group law (LA, R). Here we notice that the construction of (LA, R)
in [1, Cor. 14.3] in fact produces a graded A-equivariant formal group law. With this 
grading the classifying map

LA → MUA
∗

of the formal group law associated with A-equivariant unitary bordism theory is grading 
preserving. We remark that this grading structure of LA, which plays an important role 
for our argument, is not present in [1].

3. Coordinate change

Let A = Z/2 and let (k, R, Δ, θ, y(ε)) be an A-equivariant formal group law. We will 
work out some explicit formulas relating expansions of elements in R with respect to 
different complete flags. Let η ∈ A∗ be the unique non-trivial one dimensional unitary 
A-representation and define e := e(η) ∈ k as the corresponding Euler class. For n ≥ 0
we define a complete flag Fn = (V r

n )r≥0 as follows:

• V r
n = εr for r ≤ n,

• V n+2p
n = εn ⊕ (η ⊕ ε)p for p ≥ 0,

• V n+2p+1
n = εn ⊕ (η ⊕ ε)p ⊕ η for p ≥ 0.

In many cases we will work with the so-called alternating flag F1, whose subquotients 
V r+1

1 /V r
1 , r ≥ 0, alternate between ε and η, starting with ε. It has been studied before 

in [1, Appendix C].
We denote by di ∈ k the coefficients of the expansion of y(ε) in the topological basis 

induced by F0,

y(ε) =
∑
i≥0

di · y(V i
0 ).

By applying the action lη to both sides we obtain

y(η) =
∑
i≥0

di · y(V i
1 ).

Note that d0 = e by definition of the Euler class.
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We will now study the coordinate change induced by passing from the flag Fn+1 to 
the flag Fn. For n ≥ 0 a basis element induced by Fn+1 has one of the following forms:

• y(ε), . . . , y(ε)n,
• y(ε)n+1(y(η)y(ε))p with p ≥ 0,
• y(ε)n+1(y(η)y(ε))py(η) with p ≥ 0.

The basis elements of the first and last type are also part of the basis induced by Fn. 
Therefore we only have to express the basis elements of the second type in the basis 
induced by Fn,

y(ε)n+1(y(η)y(ε))p = y(ε)n(y(η)y(ε))p
∑
i

di · y(V i
0 )

= y(ε)n(y(η)y(ε))p
∑
i

(
d2i · (y(ε)y(η))i + d2i+1 · (y(ε)y(η))iy(η)

)
=

∑
i

(
d2i · y(ε)n(y(ε)y(η))i+p + d2i+1 · y(ε)n(y(ε)y(η))i+py(η)

)
.

This implies the following coordinate change formula.

Lemma 3.1. Let n ≥ 0 and∑
i≥0

γn+1
i · y(V i

n+1) =
∑
i≥0

γn
i · y(V i

n) ∈ R,

with coefficients γn+1
i and γn

i in k. Then we have

• γn
i = γn+1

i for i < n,
• γn

n = γn+1
n + eγn+1

n+1 .

Given two flags Fn and Fm, where n, m ≥ 0, we have a topological basis (y(V i
n) ⊗

y(V j
m))i,j≥0 of the complete k-module R⊗̂R. We denote by βn,m

i,j ∈ k the coefficients in 
the expansion of Δ(y(ε)) with respect to this basis,

Δ(y(ε)) =
∑
i,j≥0

βn,m
i,j · y(V i

n) ⊗ y(V j
m). (3.1)

Note that we can study coordinate change formulas separately for the index pairs (n, i)
and (m, j) while fixing the other index pair. Keeping Lemma 3.1 in mind we will now 
introduce some special elements in k:

• For 0 ≤ i < n and 0 ≤ j < m the coefficient βn,m
i,j is independent of n, m and we 

denote this element by αi,j .
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• For 0 ≤ n and 0 ≤ j < m the coefficient βn,m
n,j is independent of m and we denote 

this element by σn,j .
• For 0 ≤ m we set τm = β0,m

0,m .

Lemma 3.2. The elements αi,j, σn,j and τm satisfy the following relations:

a) τ0 = 0, σ0,0 = e, σ1,0 = 1 and σn,0 = 0 for n > 1,
b) σn,j − αn,j = eσn+1,j for all j, n ≥ 0,
c) τm − σ0,m = eτm+1 for all m ≥ 0.

Proof. By the equivariance of the comultiplication with respect to the action l, and using 
l2η = lη2 = id, we have

Δ(y(ε)) =
∑
i,j≥0

β1,1
i,j · lηy(V i

1 ) ⊗ lηy(V j
1 ) =

∑
i,j≥0

β1,1
i,j · y(V i

0 ) ⊗ y(V j
0 ) .

We conclude τ0 = β0,0
0,0 = β1,1

0,0 = 0, the last equation by the co-unitality of the coproduct. 
Also, for n ≥ 0, we have

y(ε) = lε(y(ε)) = (θ(ε) ⊗ Id) ◦ Δ(y(ε))

= (θ(ε) ⊗ Id)
(∑

i,j

βn+1,n
i,j y(V i

n+1) ⊗ y(V j
n )

)
=

∑
j

βn+1,n
0,j y(V j

n ).

Moreover we have σn,0 = βn,n+1
n,0 = βn+1,n

0,n , the first equation by definition, the second 
equation by symmetry of the coproduct. Since for n ≥ 1 we have y(V 1

n ) = y(ε), and 
y(ε) =

∑
i di · y(V i

0 ) with d0 = e by the definition of the Euler class, the remaining parts 
of assertion a) follow.

Assertion b) and c) follow from the second coordinate change formula in Lemma 3.1, 
which implies, for n ≥ 0 and j < m,

αn,j = βn+1,m
n,j = βn,m

n,j − eβn+1,m
n+1,j = σn,j − eσn+1,j ,

and for all m ≥ 0

σ0,m = β0,m+1
0,m = β0,m

0,m − eβ0,m+1
0,m+1 = τm − eτm+1. �

Definition 3.3. The given equivariant formal group law is called tame if di = 0 for all 
i > 1 and d1 = 1, i.e. if

y(η) = y(ε) + e and y(ε) = y(η) + e.



B. Hanke, M. Wiemeler / Advances in Mathematics 340 (2018) 48–75 55
Note that for tame equivariant formal group laws we have 2e = 0. The additive 
equivariant formal group law (cf. [1, Appendix A]) is tame. Another tame group law will 
be described in Example 4.1 below.

Lemma 3.4. For a tame equivariant formal group law the coefficients appearing in 
Lemma 3.1 satisfy the following relations:

γn+1
i =

{
γn
i , if i < n or i �≡ n mod 2 ,

γn
i − e · γn

i+1, if i ≥ n and i ≡ n mod 2 .

Proof. This follows by the calculation preceding Lemma 3.1 together with the fact that 
d0 = e, d1 = 1 and di = 0 for all i > 1 for tame equivariant group laws. �

From this we derive the following coordinate change formula.

Lemma 3.5. Let the given equivariant formal group law be tame. If i ≥ n, then in the 
formula

γn+1
i =

n∑
�=0

xi,n,� · e� · γ1
i+�,

which is implied by Lemma 3.4, the coefficients xi,n,� satisfy the congruence

xi,n,� ≡
(
� + [(n− �)/2]

�

)
mod 2,

if i + � is even. Here [−] denotes the Gauß bracket.

Proof. The assertion is clear for n = 0. In the induction step we assume the assertion 
holds for n = n0. Assume that i ≥ n0 +1, 0 ≤ � ≤ n0 +1 and i +� is even. We distinguish 
the following cases:

• n0 and i (and hence also n0 and �) have the same parity.
• n0 and i (and hence also n0 and �) have different parities.

In the first case we have

γn0+2
i = γn0+1

i

such that by the induction assumption and the fact that n0 and � have the same parity

xi,n0+1,� = xi,n0,� ≡
(
� + [(n0 − �)/2]

)
=

(
� + [((n0 + 1) − �)/2]

)
mod 2,
� �
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completing the induction step. In the second case we first notice that the assertion of 
the lemma is clear for � = 0. In the case � > 0 we have

γn0+2
i = γn0+1

i − eγn0+1
i+1 ≡ γn0+1

i + eγn0+1
i+1 mod 2

such that, again by the induction assumption,

xi,n0+1,� = xi,n0,� + xi+1,n0,�−1

≡
(
� + [(n0 − �)/2]

�

)
+
(
�− 1 + [(n0 − (�− 1))/2]

�− 1

)
mod 2.

Using the fact that n0 and � have different parities the last sum is equal to(
�− 1 + [((n0 + 1) − �)/2]

�

)
+
(
�− 1 + [((n0 + 1) − �)/2]

�− 1

)
=

(
� + [((n0 + 1) − �)/2]

�

)
,

completing the induction step in the second case. �
4. A section of the classifying map λZZZ/2 : LZZZ/2 → MUZZZ/2

∗

Let A = Z/2 and let the coproduct of the universal non-equivariant formal group 
law be given by Δ(z) =

∑
ij aij · zi ⊗ zj , where the elements aij , i, j ≥ 0, generate 

the non-equivariant Lazard ring L [3]. By [6, Section 2] the coefficient ring MUA
∗ of 

A-equivariant unitary bordism is given as an algebra over L by generators snj , n, j ≥ 0, 
and tm, m ≥ 0, and relations

• t0 = 0, s10 = 1 and sn0 = 0 for n > 1,
• snj − anj = esn+1,j ,
• tm − s0m = etm+1.

Here e is an abbreviation for s00, and this element corresponds to the Euler class in 
MUA

−2 associated to the representation η.

Example 4.1. Introducing the additional relations

• aij = 0 for i + j ≥ 2,
• s01 = 1, s0j = 0 for j ≥ 2, snj = 0 for j �= 2 and n ≥ 1,
• t1 = 1, tm = 0 for m ≥ 1,

we obtain a tame Z/2-equivariant formal group law with a representing ring which is 
given as a Z[e]/(2e)-algebra by generators sn2, n ≥ 1, and relations es12 = 0, sn2 =
esn+1,2 for n ≥ 1. When viewed as a graded equivariant formal group law all elements 
of positive degree in this ring are infinitely e-divisible and e-torsion.
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We now combine this description of MUA
∗ with the calculus developed in Section 3.

Proposition 4.2. The assignment

• aij 
→ αij,
• snj 
→ σnj,
• tm 
→ τm

defines a graded ring map μA : MUA
∗ → LA which satisfies λA ◦ μA = id.

Proof. By the relations for the generators for MUA
∗ given by Strickland and by 

Lemma 3.2 above we indeed get a well defined ring map MUA
∗ → LA.

It remains to check that the canonical map λA : LA → MUA
∗ sends the elements αij , 

σnj and τm to the elements aij , snj and tm. Consider the commutative diagram

LA

λA MUA
∗

L̂A

λ̂A ̂MUA
∗

relating the map λA to the induced map of completions at the ideal (e).
The map λ̂A can be identified with the identity L[[e]]/[2](e) → L[[e]]/[2](e), using 

the canonical isomorphism L̂A
∼= L[[e]]/[2](e) from [2, Cor. 6.6], which is induced by 

αij 
→ aij , e 
→ e, and the L-algebra isomorphism ̂MUA
∗
∼= L[[e]]/[2](e) from [6, Section 4].

Furthermore the completion map

MUA
∗ → ̂MUA

∗
∼= L[[e]]/[2](e) = MU−∗(BZ/2)

appearing as the right hand vertical map in the above diagram can be identified with 
a “bundling map” of tom Dieck, which, in the case relevant for us, was shown to be 
injective in [8, Prop. 6.1 and preceding explanations]. Alternatively the injectivity of the 
completion map follows from the results in [6].

We therefore need to show that σnj and snj on the one hand, and τm and tm on the 
other, are mapped to the same elements under the left and right hand vertical maps in 
the above diagram. By the recursive formulas for σnj and τm from Lemma 3.2 and the 
corresponding formulas for snj and tm from [6, Section 4] we arrive at the equation

σnj =
∑
�≥0

an+�,je
� = snj ∈ L[[e]]/[2](e)

and this implies, in a similar way,

τm =
∑
�≥0

σ0,m+�e
� =

∑
�≥0

s0,m+�e
� = tm ∈ L[[e]]/[2](e). �
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5. Proof of the main theorem

In this section we explain the proof of Theorem 1.2. Let us write the coproduct of the 
equivariant formal group law of Z/2-equivariant unitary bordism as

Δ(y(ε)) =
∑
i,j≥0

βij · y(V i) ⊗ y(V j),

with βij ∈ MUZ/2
∗ , where we use the alternating flag (V r) = (V r

1 ). Setting

γij := μZ/2(βij) ∈ LZ/2,

with the map μZ/2 : MUZ/2
∗ → LZ/2 from the previous section, the coproduct of the 

universal Z/2-equivariant formal group law takes the form

Δ(y(ε)) =
∑
i,j

(γij + ρij) · y(V i) ⊗ y(V j) .

This defines new structure constants ρij ∈ LZ/2 measuring the deviation from μZ/2 being 
surjective (and hence from λZ/2 being injective). Note that ρij = 0 for i + j ≤ 1 and 
ρij ∈ kerλZ/2 for all i, j. Hence each ρij is infinitely e-divisible and e-torsion [2]. In 
particular,

ρij · ρpq = 0

for all i, j, p, q ≥ 0.

Lemma 5.1. The kernel of the canonical map λZ/2 : LZ/2 → MUZ/2
∗ is equal to the square 

zero ideal generated by ρpq, p, q ≥ 0.

Proof. It is clear that the given ideal is contained in kerλZ/2. Conversely, note that LZ/2
is generated as an Z[e, γij ]-module by the elements 1 and ρpq. If x ∈ LZ/2 lies in the 
kernel of λZ/2, then the coefficient of 1 in some expansion of x as a linear combination 
of these generators is equal to 0, because each ρpq lies in kerλZ/2 and λZ/2 in injective 
on Z[e, γij ] · 1 ⊂ LZ/2. Hence x lies in the ideal generated by the elements ρpq. �

The proof of Theorem 1.2 is based on the following two results, the first of which 
provides an efficient estimate of the order of the e-power torsion of ρij.

Theorem 5.2. We have

ei+j+1ρij = 0

for all i, j ≥ 0.
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This is proven in Section 6, where we introduce and investigate a normalization func-
tor, which turns any Z/2-equivariant formal group law into a Z/2-equivariant formal 
group law with Euler class equal to 1.

Let aij ∈ L denote the structure constants of the universal non-equivariant formal 
group law, considered as elements in MUZ/2

∗ as in Section 4. Recall aij = aji, a0j = δ1j
and aij carries a grading equal to 2(i +j−1). Next, let J ⊂ MU

Z/2
∗ be the ideal generated 

by aij , snj , and tm, with i + j ≥ 2, n + j ≥ 2, and m ≥ 2. In particular this ideal is 
generated by elements in strictly positive degrees. By the calculations in [6] the remaining 
generators of MUZ/2

∗ , as an algebra over L[e], satisfy the relations t1 = 1 + e(s11 + t2)
and s01 = t1 − et2 = 1 + es11, and hence we get

MUZ/2
∗ /J ∼= Z[e]/(2e).

Let J ⊂ LZ/2 be the ideal generated by μZ/2(J) ⊂ LZ/2, or, in other words, generated 
by αij , σnj , and τm, with i + j ≥ 2, n + j ≥ 2, and m ≥ 2. We obtain an induced 
Z/2-equivariant formal group law with representing ring LZ/2/J . In Section 7 we will 
show by an explicit computation that this is in fact the additive Z/2-equivariant formal 
group law. This implies the following fact.

Theorem 5.3. LZ/2/J ∼= Z[e]/(2e).

After these preparations we are in a position to prove Theorem 1.2. Let some i, j ≥ 0
be given. We claim ρij = 0. This holds for i + j ≤ 1 by the co-unitality of the coproduct 
on LZ/2. We therefore can assume i + j ≥ 2, which implies that the degree of ρij is 
positive.

We abbreviate λZ/2 by λ and μZ/2 by μ. Since the degree of ρij is positive, Theorem 5.3
implies

ρij =
∑
�

γ� · x�

with a finite sum on the right hand side, where each γ� ∈ μ(J) and x� ∈ LZ/2. Let us 
define

δ� := μ ◦ λ(x�) and x′
� := x� − δ� .

Because each x′
� ∈ kerλ we have λ(

∑
γ� · x′

�) = 0 and hence∑
γ� · δ� = (μ ◦ λ)(

∑
γ� · δ�) = (μ ◦ λ)(

∑
γ� · x�) = μ ◦ λ(ρij) = 0.

The first equation holds because 
∑

γ� · δ� ∈ im μ. We conclude

ρij =
∑

γ� · x′
�

�
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where each x′
� is in the ideal kerλ, which is equal to the ideal generated by the elements 

ρpq by Lemma 5.1. Repeating this process several times we conclude that for each N > 0
there is a relation of the form

ρij =
∑
p,q

cpq · γpq · ρpq

where cpq ∈ LZ/2 and γpq ∈ μ(J)N the N -th power of μ(J). Because each generator of J
has degree at least 2 we conclude, by comparing degrees of the right and left hand sides of 
the last equation, that cpq ·γpq must be divisible by ep+q−1+N−(i+j−1). For N = i + j+1
the exponent satisfies

p + q − 1 + N − (i + j − 1) = p + q + 1 .

Hence for N = i + j + 1 we get cpq · γpq · ρpq = 0 for all p, q by Theorem 5.2. We must 
therefore have ρij = 0, as required.

6. Normalization functor

Let (k, R, Δ, θ, y(ε)) be a (graded or ungraded) Z/2-equivariant formal group law. 
As before the Euler class is denoted by e, which sits in degree −2, if (k, R) hap-
pens to be graded. Passing to the quotient ring k/(e − 1) we obtain a new, ungraded 
Z/2-equivariant formal group law with Euler class equal to one. In this section we will 
present a different way to associate to (k, R, Δ, θ, y(ε)) a Z/2-equivariant formal group 
law (k′, R′, Δ′, θ′, y′(ε)) with the following properties:

• k′ is a subring of k/ Ann(e2), where Ann(e2) is the annihilator ideal of the multipli-
cation with e2. If (k, R) is graded, then k′ is concentrated in degree 0.

• The Euler class of (k′, R′) is equal to 1.
• The construction is functorial in (k, R, Δ, θ, y(ε)).
• For the formal group law (k = MUZ/2

∗ , R), associated to Z/2-equivariant unitary 
bordism, the formal group law (k′, R′) is the universal Z/2-equivariant formal group 
law with Euler class equal to 1.

Definition 6.1. We call (k′, R′, Δ′, θ′, y′(ε)) the normalization of (k, R, Δ, θ, y(ε)).

Our construction is based on the description of equivariant formal group laws relative 
to flags, see [1, Section 12]. We work with the alternating flag (V r) = (V r

1 ) throughout. 
Let the coproduct of (k, R) be given by

Δ(y(V r)) =
∑
i,j≥0

f
(r)
i,j · y(V i) ⊗ y(V j).

Furthermore let
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y(η) =
∑
i≥0

diy(V i) = e +
∑
i≥1

diy(V i).

Now consider the free topological k-module T with topological basis (z(V i))i≥0 where 
z(V 0) := 1 and define the elements

z(ε) := z(V 1) and z(η) := 1 +
∑
i≥1

ei−1diz(V i)

of T . We define a k-bilinear multiplication on T as follows. If at least one of r and s is 
even, then we set

z(V r) · z(V s) := z(V r+s).

Furthermore, we set

z(V 1) · z(V 1) := z(V 1) +
∑
i≥1

ei−1diz(V 1+i)

and define

z(V 2p+1) · z(V 2q+1) := z(V 2p+2q)z(V 1)z(V 1).

This determines a continuous, k-bilinear product on all of T . It is easy to check that it 
is commutative and associative, where the last point follows from the equation(

z(V 1) · z(V 1)
)
· z(V 1) = z(V 1) ·

(
z(V 1) · z(V 1)

)
which is implied by commutativity of the product.

We first have to check that the topological ring T satisfies the conditions (Flag) and 
(Ideal) from [1, Section 12]. By definition we have

z(V 2p)z(ε) = z(V 2p)z(V 1) = z(V 2p+1)

which is consistent with (Flag), whereas by definition of z(η)

z(V 1)z(η) = z(V 1)(1 +
∑
i≥1

ei−1diz(V i)).

If this element is equal to z(V 2), then the condition (Flag) is satisfied on T by the 
definition of the product on T .

For this and later calculations we set

z(V r) := erz(V r) ∈ T
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for all r ≥ 0 and consider the map Ψ : R → T of topological k-modules given on basis 
elements by

y(V r) 
→ z(V r).

If the original formal group law (k, R) is graded and we consider all z(V r) ∈ T as sitting 
in degree 0, then the degree of z(V r) is equal to −2r and the map Ψ is grading preserving. 
Moreover the definition of the ring structure on T together with the calculation

Ψ(y(V 1) · y(V 1)) = Ψ
(
ey(V 1) +

∑
i≥1

diy(V 1+i)
)

= ez(V 1) +
∑
i≥1

diz(V 1+i)

= z(V 1) · z(V 1)

shows that the map Ψ is a ring map. Note that the elements z(ε) := ez(ε) and

z(η) := ez(η) =
∑
i≥0

diz(V i)

are the images of y(ε) and y(η) under the map Ψ. After these preparations we can 
calculate

e2 · z(V 1)z(η) = z(V 1)z(η) = Ψ(y(V 1)) · Ψ(y(η)) = Ψ(y(V 1) · y(η)) = Ψ(y(V 2))

= e2 · z(V 2).

The fourth equation follows from the relation (Flag) in R. In other words: The coeffi-
cients of z(V 1)z(η) − z(V 2) ∈ T are in the annihilator ideal Ann(e2) ⊂ k. Hence the 
normalization condition (Flag) is satisfied in T , if we pass from the ring k to the quotient 
ring k/ Ann(e2). In this case also the condition (Ideal) follows immediately.

Next we define an A∗-action on the topological ring T . We set lε := id,

lηz(V 2p) := z(V 2p) ,

and

lηz(V 2p+1) := z(V 2p) · z(η).

This map is extended k-linearly onto T . We need to examine the compatibility of lη with 
the multiplication on T defined before as well as the property l2η = id.

By definition we have

lη(z(V r) · z(V s)) = lηz(V r) · lηz(V s) ,

if either r or s is even. If both r = 2p + 1 and s = 2q + 1 are odd, then, by definition,
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lη(z(V r) · z(V s)) = lη
(
z(V 2p+2q) · z(V 1) · z(V 1)

)
= z(V 2p+2q) · lη

(
z(V 1) · z(V 1)

)
and

lη(z(V r)) · lη(z(V s)) = z(V 2p+2q) · lηz(V 1) · lηz(V 1).

Thus we need to show

lη
(
z(V 1) · z(V 1)) = lη(z(V 1)) · lη(z(V 1)).

For this we calculate

e2 · lη
(
z(V 1) · z(V 1)) = lη

(
z(V 1) · z(V 1)) = lη(z(V 1)) · lη(z(V 1)) = z(η) · z(η)

= e2 · z(η)z(η).

The second equation uses the fact that the above ring map Ψ is compatible with the 
map lη. For this assertion we notice that indeed lη(z(ε)) = elη(z(ε)) = ez(η) = z(η) and

lη(z(η)) = lη(
∑
i≥0

diz(V i)) = e + z(η)(
∑
i≥1

diz(V i−1)) = z(ε),

where the last equation follows from the corresponding relation in R and application of 
the ring map Ψ. In summary we see that lη is a ring map on T after passing to the 
coefficient ring k/ Ann(e2).

The equation lη ◦ lη = id on T holds after passing to the coefficient ring k/ Ann(e2), 
because

e · lηz(η) = lηz(η) = z(ε) = e · z(ε)

and lηz(ε) = z(η), by definition.
Let us turn to the definition of the coproduct on T .

Lemma 6.2. For the structure constants of the coproduct in R we have

f
(2)
0,j = δ2,j and ef

(2)
1,j = 0

for all j ≥ 0.

Proof. Recall

Δ(y(V 2)) =
∑
i,j≥0

f
(2)
i,j · y(V i) ⊗ y(V j).

The first equality of the lemma holds by the co-unitality of Δ. For the second equality 
we use the fact that the coproduct Δ is compatible with lη:
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Δ(y(V 2)) = Δ(lηy(V 2)) =
∑
i,j≥0

f
(2)
i,j · (lηy(V i)) ⊗ y(V j) .

Hence the second equation in the lemma follows from lη(V 1) = e +
∑

i≥1 diy(V i) and 
lηy(V r) ∈ (y(V 1)) (the ideal spanned by y(V 1)) for all r ≥ 2, by comparing coefficients 
and using the first part of the lemma. �

Now we set

Δ(z(ε)) :=
∑
i,j≥0

ei+j−1f
(1)
i,j · z(V i) ⊗ z(V j),

Δ(z(V 2)) :=
∑
i,j≥0

ei+j−2f
(2)
i,j · z(V i) ⊗ z(V j).

Note that on the right hand sides only non-negative exponents occur at e, by the co-
unitality of the coproduct Δ on R, compare the first part of Lemma 6.2. We now define, 
for p ≥ 1,

Δ(z(V 2p)) := Δ(z(V 2))p,

and

Δ(z(V 2p+1)) := Δ(z(V 2p)) · Δ(z(ε)).

It follows from the definition of the multiplication on T and from the second part of 
Lemma 6.2 that this extends to a continuous map

Δ : T → T ⊗̂T

after passing to the coefficient ring k/ Ann(e2). We also notice that this coproduct Δ is 
compatible with the coproduct on R and the ring map Ψ : R → T . By definition

Δ(z(V r) · z(V s)) = Δ(z(V r)) · Δ(z(V s))

if at least one of r and s is even. If r and s are odd, then we only need to check

Δ
(
z(V 1) · z(V 1)

)
= Δ(z(V 1)) · Δ(z(V 1)).

Applying the same reasoning as before we know that this equation holds after multipli-
cation with e2, by using the corresponding relation for the coproduct on R. Hence this 
equation holds after passing to the coefficient ring k/ Ann(e2).

Next we check compatibility of Δ with the left A∗-action on T . Because this action 
is by ring maps, it is enough to check
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• Δ(z(η)) = (lη ⊗ id)(Δ(z(ε))) = (id⊗lη)(Δ(z(ε))),
• Δ(z(ε)) = (lη ⊗ id)(Δ(z(η))) = (id⊗lη)(Δ(z(η))),
• Δ(z(ε)) = (lη ⊗ lη)(Δ(z(ε)),
• Δ(z(η)) = (lη ⊗ lη)(Δ(z(η)).

All of these equations are true after multiplication with e, hence we are fine if we work 
over the coefficient ring k/ Ann(e2). Finally we check co-associativity. Because Δ is 
multiplicative on T , if we work over the coefficient ring k/ Ann(e2), it is enough to 
consider the equations

(Δ ⊗ id) ◦ Δ(z(ε)) = (id⊗Δ) ◦ Δ(z(ε)),

and

(Δ ⊗ id) ◦ Δ(z(V 2)) = (id⊗Δ) ◦ Δ(z(V 2)).

The first equation holds after multiplication with e, and the second equation holds after 
multiplication with e2. Hence both equations hold after passing to the coefficient ring 
k/ Ann(e2).

In summary, using the discussion of [1, Section 12], we have defined a Z/2-equivariant 
formal group law (k/ Ann(e2), T, Δ, θ, z(ε)), where we write T instead of T/ Ann(e2) by 
a slight abuse of notation. The augmentation θ : T → (k/ Ann(e2))A∗ is given by the 
constant term in the expansion relative to the flag (V r

1 ) (resp. relative to the flag (V r
0 )), 

at the representation ε (resp. at the representation η).
By definition this formal group law has Euler class equal to 1. Now we let k′ ⊂

k/ Ann(e2) be the subring generated by the coefficients ei+j−1f
(1)
i,j , i, j ≥ 0, of the co-

product on T (regarded as elements in k/ Ann(e2)) and define R′ as the free topological 
k′-module with basis (z(V r))r≥0. If (k, R) is graded, then k′ is indeed concentrated in de-
gree 0. Regarding R′ as a subset of T we note that the product, coproduct and A∗-action 
on T restrict to corresponding structures on R′, compare [1, Theorem 16.1]. Also the 
augmentation θ restricts to an augmentation θ′ : R′ → (k′)A∗ . Setting y′(ε) := z(ε) this 
concludes the construction of (k′, R′, Δ′, θ′, y′(ε)). The functoriality of this construction 
is clear.

The next result highlights an important example.

Proposition 6.3. The normalized formal group law R′ associated to Z/2-equivariant uni-
tary bordism k = MUZ/2

∗ is the universal Z/2-equivariant formal group law with Euler 
class 1.

Proof. Set k = MUZ/2
∗ and let R be the topological k-algebra of the associated 

Z/2-equivariant formal group law. We work with the notation from [6], repeated in Sec-
tion 4 above. By [6, Cor. 10] the annihilator ideal Ann(e2) ⊂ k is generated by (t1 + 1), 
and in fact equal to the annihilator ideal of the multiplication with e. By Section 4 we 
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can identify the distinguished generators aij, tm and snj of k with certain coefficients of 
the coproduct Δ(y(ε)) in R developed with respect to suitable flags. By our definition of 
the coproduct on R′ the ring k′ is therefore the subring of k/(t1 + 1) generated by the 
elements

aij := ei+j−1aij , snj := en+j−1snj , tm := em−1tm,

with i + j ≥ 1, n + j ≥ 1, and m ≥ 1. These elements are only subject to the relations

tm − s0m = tm+1 , snj − anj = sn+1,j

for all m, j, and n. This implies that k′ is generated as a Z-algebra by the elements aij , 
i + j ≥ 2, and s0m, m ≥ 1, where the generators aij satisfy the same relations as in the 
non-equivariant Lazard ring and s0m are free polynomial generators. Using Strickland’s 
calculation of k we hence conclude, on the one hand, that the quotient map k 
→ k/(e −1)
induces an isomorphism

k′ ∼= k/(e− 1).

On the other hand we observe that LZ/2/(e − 1) is the underlying ring of the universal 
Z/2-equivariant formal group law with Euler class equal to 1. But the classifying map

λZ/2 : LZ/2 → k

is surjective and elements in the kernel are Euler torsion, see [2]. It hence induces an 
isomorphism

LZ/2/(e− 1) ∼= k/(e− 1).

This finishes the proof of Proposition 6.3. �
We are now in a position to prove Theorem 5.2. Consider the classifying map

λ : LZ/2 → k := MUZ/2
∗

of the equivariant formal group law of Z/2-equivariant unitary bordism and the section 
μ of this map constructed in Section 4. Applying the normalization functor we obtain 
induced maps λ′ : L′

Z/2 → k′ and μ′ : k′ → L′
Z/2 satisfying λ′ ◦ μ′ = id, by functoriality. 

Furthermore we have

μ′(ei+j−1βij) = ei+j−1γij

by the definition of βij and γij in Section 5. Proposition 6.3 implies that the equivariant 
formal group law for L′ is classified by a ring map
Z/2
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φ : k′ → L′
Z/2.

Because both λ′ and φ are classifying maps, they are inverse to each other, and because 
λ′ ◦ μ′ = id we in fact have φ = μ′. Since

φ(ei+j−1βij) = ei+j−1(γij + ρij)

this implies

ei+j−1ρij = 0 ∈ L′
Z/2.

Finally, because L′
Z/2 ⊂ LZ/2/ Ann(e2), this implies the equation

ei+j+1ρij = 0

in LZ/2, and hence the assertion of Theorem 5.2.

7. Computation of a particular ZZZ/2-equivariant formal group law

Let (LZ/2, R, Δ, θ, y(ε)) denote the universal Z/2-equivariant formal group law. We 
consider the graded ideal J ⊂ LZ/2 defined in Section 5, spanned by the homogeneous
elements aij , σnj and τm for i +j ≥ 2, n +j ≥ 2, and m ≥ 2. The resulting Z/2-equivariant 
formal group law (LZ/2/J, R/(J), Δ) has the form

Δ(y(V 1
1 )) = y(V 1

1 ) ⊗ 1 + 1 ⊗ y(V 1
1 ) +

∑
i,j≥0

ρij · y(V i
1 ) ⊗ y(V j

1 )

with respect to the alternating flag. By abuse of notation we here denote by ρij ∈ LZ/2/J

the images of the structure constants ρij introduced in Section 5. In particular we have 
ρij = 0 for i + j ≤ 1 and the ρij are all infinitely e-divisible and e-torsion, such that all 
products ρij · ρpq are equal to 0. Also recall that ρij = ρji for all i, j ≥ 0.

The section μZ/2 : MUZ/2
∗ → LZ/2 induces a section MUZ/2

∗ /J → LZ/2/J of the 
canonical map λ : LZ/2/J → MUZ/2

∗ /J . We can hence consider MUZ/2
∗ /J = Z[e]/(2e)

as a subring of LZ/2/J . In particular 2e = 0 in LZ/2/J and therefore

2 · ρij = 0

for all i, j ≥ 1, by the e-divisibility of ρij . This will simplify the following computations 
considerably.

Notice that the kernel of λ : LZ/2/J → MUZ/2
∗ /J is generated by the structure 

constants ρij . In the remainder of this section we will show that all ρij = 0 ∈ LZ/2/J . 
This assertion implies Theorem 5.3.
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The structure constants ρij ∈ LZ/2/J underly the following restrictions:

Restriction (1): The comultiplication Δ is co-associative.
Restriction (2): The elements σn,j ∈ LZ/2, n + j ≥ 2, and τm ∈ LZ/2, m ≥ 2, map 
to 0 in the quotient ring LZ/2/J .

At first we will explore Restriction (1), which results in Proposition 7.1. Then, in Propo-
sitions 7.3, 7.4 and 7.5 we will derive implications from Restriction (2), making use of 
the coordinate change formulas from Section 3. After these preparations the proof of 
ρij = 0 will be completed at the end of this section.

As a shorthand we use the notation zr := y(V r
1 ) ∈ R/(J), r ≥ 0, for the basis 

elements corresponding to the alternating flag. We warn the reader that in the ring 
R/(J) we cannot assume the relation zr1 · zr2 = zr1+r2 for r1, r2 ≥ 1.

The Z/2-equivariant additive formal group law (ka, Ra, Δa, θa, ya(ε)) with represent-
ing ring ka = Z[e]/(2e) defines structure constants f (r)

ij ∈ Z[2]/(2e) for r ≥ 0 by the 
equation

Δa(ya(V r
1 )) =

∑
i,j≥0

f
(r)
ij ya(V i

1 ) ⊗ ya(V j
1 ).

We now define ρ(r)
ij ∈ LZ/2/J by the equation

Δ(zr) =
∑
i,j≥0

(f (r)
ij + ρ

(r)
ij ) · zi ⊗ zj .

In particular ρ(0)
i,j = 0, ρ(1)

i,j = ρij for all i, j, and all ρ(r)
ij are in the kernel of λ : LZ/2/J →

MUZ/2
∗ /J and hence lie in the ideal spanned by ρpq, p, q ≥ 0. In particular 2 · ρ(r)

ij = 0
and ρ(r)

ij · ρ(s)
pq = 0 for all i, j, r and p, q, s.

We obtain

(Δ ⊗ Id) ◦ Δ(z) = (Δ ⊗ Id)(
∑
j,k

(f (1)
j,k + ρ

(1)
j,k) · zj ⊗ zk)

=
∑

l,m,j,k

(f (j)
l,m + ρ

(j)
l,m)(f (1)

j,k + ρ
(1)
j,k) · zl ⊗ zm ⊗ zk

=
∑

l,m,j,k

(f (j)
l,mf

(1)
j,k + ρ

(j)
l,mf

(1)
j,k + f

(j)
l,mρ

(1)
j,k) · zl ⊗ zm ⊗ zk.

Here we use the vanishing of products of ρ’s. Similarly we have

(Id⊗Δ) ◦ Δ(z) =
∑

l,m,j,k

(f (j)
k,mf

(1)
j,l + ρ

(j)
k,mf

(1)
j,l + f

(j)
k,mρ

(1)
j,l ) · zl ⊗ zm ⊗ zk.
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Taking into account that the comultiplication Δa is co-associative, these calculations 
together with the co-associativity of Δ imply that for all k, l, m ≥ 0 we have∑

ν≥0
(ρ(ν)

l,m · f (1)
ν,k + f

(ν)
l,m · ρ(1)

ν,k) =
∑
ν≥0

(ρ(ν)
k,m · f (1)

ν,l + f
(ν)
k,m · ρ(1)

ν,l ) . (7.1)

Observe that this is a finite sum on each side, because the comultiplication Δ is contin-
uous.

Since the equation 2 · ρ(r)
ij = 0 holds for all i, j, r, we need to compute the images of 

the elements f (r)
pq in Z/2[e] when evaluating Equation (7.1). In the following we use the 

shorthand notation xr := ya(V r
1 ), x := x1. In particular x2 = x · (x + e) = x2 + ex, 

x2n = (x2 +ex)n and x2n+1 = x · (x2 +ex)n for all n ≥ 0. We have Δa(x) = x ⊗1 +1 ⊗x

and

Δa(x2) = Δa(x) · Δa(x + e) = (x⊗ 1 + 1 ⊗ x) · (x⊗ 1 + 1 ⊗ x + e · (1 ⊗ 1))

= x2 ⊗ 1 + 1 ⊗ x2 ,

after passing to the representing ring Z/2[e]. Hence (for even and odd r) we obtain

Δa(xr) = (x⊗ 1 + 1 ⊗ x)r =
r∑

s=0

(
r

s

)
xs ⊗ xr−s .

This happens to be the same formula as for the additive non-equivariant formal group 
law with coordinate x. In Z/2[e] we hence obtain the equality

f (r)
p,q =

{(
p+q
p

)
if r = p + q,

0 else.

Recall that 
(
p+q
p

)
is equal to 0 modulo 2, if and only if in the binary expansions of p and 

q the digit 1 occurs at the same position, or, in other words, if the binary addition of p
and q involves carryovers.

We arrive at the following conclusion resulting from Restriction (1).

Proposition 7.1. LZ/2/J is generated over Z[e]/(2e) by the elements ρij, i + j ≥ 2, and 
these elements satisfy the following relations.

a) ρij · ρp,q = 0 and 2ρij = 0.
b) If i, j ≥ 1, if either i or j is not a power of 2, and if the binary addition of i and j

involves carryovers, then

ρij = 0 ∈ LZ/2/J.
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c) If neither i, j ≥ 1 nor p, q ≥ 1 fall in the case b), and if i + j = p + q, then

ρij = ρpq.

Proof. It remains to deal with parts b) and c). Both of them follow from Equation (7.1), 
where we observe that the elements ρ(ν)

l,m and ρ(ν)
k,m can only occur with a factor 1, if 

ν = 1, by our previous computation of f (1)
p,q as elements in Z/2[e].

For part b) we write

i =
∑
�≥0

wi� · 2� and j =
∑
�≥0

wj� · 2�

with wi�, wj� ∈ {0, 1} where i, say, is not a power of 2. We choose �1 with wi�1 = wj�1 = 1. 
Then the assertion follows from Equation (7.1) with k = j, l = i − 2�1 and m = 2�1 .

Now we turn to part c). If i and j are both powers of two, then under the given 
assumptions the same must hold for p and q. We obtain p = i, p = j or p = j, q = i, and 
claim c) follows from the commutativity of the formal group law Δ. It therefore remains 
to deal with the case that i, say, is not a power of two. Let us write

i =
∑
�≥0

wi� · 2� and j =
∑
�≥0

wj� · 2�

with wi�, wj� ∈ {0, 1} and wi� ·wj� = 0 for all �. Choose �1 with wi�1 = 1. Then it follows 
from Equation (7.1) with k = i − 2�1 , m = 2�1 , l = j, that

ρij = ρi−2�1 ,j+2�1 .

In other words, we can shift the binary digit 1 at position �1 from the left to the right 
hand subscript of ρ. From this claim c) in the proposition follows. �

For exploring Restriction (2) we need to work with different flags. Let us write, for 
n, m ≥ 1,

Δ(y(V 1
1 )) = y(V 1

n ) ⊗ 1 + 1 ⊗ y(V 1
m) +

∑
i,j≥0

ρn,mi,j · y(V i
n) ⊗ y(V j

m) .

Note that y(V 1
1 ) = y(V 1

n ) = y(V 1
m) = z1 by our assumption n, m ≥ 1. By the co-unitality 

of Δ we therefore have ρn,mi,0 = ρn,m0,j = 0 for all i, j ≥ 0, and, using the notation introduced 
in Equation (3.1), we have ρn,mi,j = βn,m

i,j for i + j ≥ 2 (notice that ρn,m1,0 = ρn,m0,1 = 0, 
whereas βn,m

1,0 = βn,m
0,1 = 1 for n, m ≥ 1). Also note that ρ1,1

ij = ρij for i, j ≥ 0, and 

all ρn,mi,j are in the kernel of the map LZ/2/J → MUZ/2 /J , and hence lie in the ideal 
generated by the elements ρpq. In particular all ρn,mi,j are 2-torsion and arbitrary products 
of such elements vanish.
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We wish to apply the coordinate change formula in Lemma 3.4. This was originally 
stated for tame group laws. However, for the group law considered in this section the 
coefficients di appearing in the base change formula preceding Lemma 3.1 are equal 
to those of a tame equivariant law, modulo elements in the kernel of λ : LZ/2/J →
MUZ/2

∗ /J , which is equal to the square zero ideal generated by the elements ρpq. Hence 
Lemmas 3.4 and 3.5 remain valid in our case of the (potentially) non-tame group law 
Δ, if we apply it to coordinates of the form γn+1

i := ρn+1,m
i,j or γm+1

j := ρn,m+1
i,j , where 

n, m ≥ 1 and i, j ≥ 1. Hence, for all n, m, j ≥ 1 we have equations

ρn,mn,j =
n−1∑
�=0

yn,� · e� · ρ1,m
n+�,j , (7.2)

where yn,� ∈ Z/2, and for all n, m, i ≥ 1 we have equations

ρn,m+1
i,m =

m∑
ν=0

xm,ν · eν · ρn,1i,m+ν , (7.3)

where each xm,ν ∈ Z/2 is equal to the coefficient xm,m,ν from Lemma 3.5. Notice that

yn,0 = xm,0 = 1

for all n, m ≥ 1, by the recursive formula in Lemma 3.4. Let us compute the coefficients 
xm,ν in some more cases.

Lemma 7.2. For all q ≥ 0 we have

x2q,2q = 1.

Furthermore, if q ≥ 2, then for all 0 < ω < 2q−1 we have

x2q−ω,ω = 0.

Note that x2q−ω,ω is the coefficient appearing in front of eω · ρn,1i,2q , if we develop 

ρn,2
q−ω+1

i,2q−ω according to Equation (7.3). The relation x2q−ω,ω = 0 will be a crucial ingre-
dient for proving Proposition 7.3 below.

Proof of Lemma 7.2. By Lemma 3.5 and the discussion preceding Lemma 7.2 we have

xm,ω = xm,m,ω =
(
ω + [(m− ω)/2]

ω

)
mod 2

if m + ω is even. Evaluating this formula for m = ω = 2q shows the first assertion. We 
now assume q ≥ 2, 0 < ω < 2q−1 and set m = 2q −ω. Then m +ω is even because q ≥ 2
and we obtain
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xm,ω =
(
ω + [(2q − 2ω)/2]

ω

)
=

(
2q−1

ω

)
mod 2.

This vanishes because 0 < ω < 2q−1 by assumption. Hence the lemma is proven. �
We can now explore Restriction (2), saying [σn,j] = [τm] = 0 ∈ LZ/2/J for n + j ≥ 2

and m ≥ 2. Let us start with the relation [σn,j ] = 0.

Proposition 7.3. Let p ≥ 1. If 1 < j < 2p is not a power of 2, then we have

ρ1,1
2p,j = 0.

Proof. Let 1 < j < 2p−1 be not a power of 2 and assume inductively that we have 
proven ρ1,1

2p,j′ = 0 for all j < j′ < 2p where j′ is not a power of 2 (this condition is empty 
for j = 2p − 1). Choose 1 ≤ q ≤ p minimal with 2q > j and write j = 2q − ω where 
0 < ω < 2q−1. Using Equations (7.2) and (7.3) we obtain

0 = [σ2p,2q−ω] = ρ2p,2q−ω+1
2p,2q−ω =

2p−1∑
�=0

2q−ω∑
ν=0

y2p,� · x2q−ω,ν · e�+νρ1,1
2p+�,2q−ω+ν . (7.4)

By part b) of Proposition 7.1 ρ1,1
2p+�,2q−ω+ν �= 0 can only occur in one of the following 

cases:

i) 2p + � and 2q − ω + ν are both powers of 2.
ii) The binary addition of 2p + � and 2q − ω + ν does not involve carryovers.

Case i) is equivalent to � = 0 and ν − ω = 0, and the corresponding summand on the 
right hand side of Equation (7.4) is equal to x2q−ω,ω · eω · ρ1,1

2p,2q (recall that y2p,0 = 1). 
By Lemma 7.2 we have x2q−ω,ω = 0 and hence this summand vanishes.

Let us now assume that we are in case ii), but not in case i). We claim that 2q − ω +
ν + � < 2p. In a first step we prove 2q − ω + ν < 2p. Here we notice 2q − ω + ν < 2p+1, 
because q ≤ p and ν − ω < 2q. Hence the assumption 2q − ω + ν ≥ 2p together with 
0 ≤ � < 2p implies that in the binary expansions of both 2p + � and 2q − ω + ν the digit 
1 occurs at position p (corresponding to 2p), contradicting the assumption of case ii). 
Because � ≤ 2p − 1 and the binary addition of 2p + � and 2q − ω + ν does not involve 
carryovers, the inequality 2q −ω+ ν < 2p in turn implies 2q −ω+ ν + � < 2p, as claimed 
before.

Part c) of Proposition 7.1 now implies

ρ1,1
2p+�,2q−ω+ν = ρ1,1

2p,2q−ω+ν+� .

Since 2q − ω + ν + � is not a power of 2 (by the assumption of case ii) and since we are 
not in case i)) and smaller than 2p (as shown before), the last expression vanishes by our 
induction assumption, if either � > 0 or ν > 0.
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In summary Equation (7.4) simplifies to 0 = ρ1,1
2p,2q−ω, finishing the induction

step. �
Proposition 7.4. If i, j ≥ 1 and either i or j is not a power of 2, then

ρ1,1
i,j = 0.

If i and j are both powers of 2, then we have the relations

ρ1,1
i,j + eiρ1,1

2i,j = 0 and ρ1,1
i,j + ejρ1,1

i,2j = 0.

Proof. The first assertion follows from Proposition 7.3 and the parts (b) and (c) of 
Proposition 7.1. Using the first assertion and Equations (7.2) and (7.3) we have

0 = [σ2p,2q ] =
2p−1∑
�=0

2q∑
ν=0

y2p,� · x2q,ν · e�+νρ1,1
2p+�,2q+ν = ρ1,1

2p,2q + e2q

ρ1,1
2p,2q+1

for all p, q ≥ 0, where we use y2p,0 = x2q,0 = x2q,2q = 1, the last equation by Lemma 7.2. 
Hence we have

ρ1,1
i,j + ejρ1,1

i,2j = 0

if i and j are powers of 2. The remaining claim follows by interchanging i and j. �
Finally we get the following uniform Euler torsion estimate. Here we use the relation 

[τm] = 0 for m ≥ 2.

Proposition 7.5. We have

e · ρ1,1
1,j = 0

for all j ≥ 2.

Proof. The assertion follows from Proposition 7.4, if j is not a power of 2. It hence 
remains to handle the case when j ≥ 2 is a power of 2.

First we need some preparation. Write the coproduct Δ(z) = Δ(y(ε)) as in Equation 
(3.1) in the form

Δ(y(ε)) =
∑
i,j≥0

β0,m
i,j · y(V i

0 ) ⊗ y(V j
m) ,

where we henceforth assume m ≥ 1. For all j ≥ 2 we then have (recalling β1,m
i,j = ρ1,m

i,j

for i + j ≥ 2)
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∑
i≥0

β0,m
i,j · y(V i

0 ) ⊗ y(V j
m) =

∑
i≥0

β1,m
i,j · y(V i

1 ) ⊗ y(V j
m) =

∑
i≥0

ρ1,m
i,j · y(V i

1 ) ⊗ y(V j
m) . (7.5)

According to the base change formula preceding Lemma 3.1 we have

ρ1,m
i,j · y(V i

1 ) ⊗ y(V j
m) =

{
ρ1,m
i,j · y(V i

0 ) ⊗ y(V j
m) for even i

ρ1,m
i,j ·

(
e · y(V i−1

0 ) ⊗ y(V j
m) + y(V i

0 ) ⊗ y(V j
m)

)
for odd i ,

again using the fact that modulo the ideal generated by the elements ρpq we have d0 = e, 
d1 = 1 and di = 0 for i > 1. Comparing coefficients of the left and right hand side in 
Equation (7.5) we obtain

β0,m
0,j = ρ1,m

0,j + eρ1,m
1,j

for all j ≥ 2. We have ρ1,m
0,j = 0 for j ≥ 0 by the co-unitality of the coproduct Δ, hence 

the last equation implies

β0,m
0,j = eρ1,m

1,j

for all j ≥ 2.
After these preparations let j ≥ 2 be a power of 2. Since eρ1,1

1,j′ = 0, if j′ ≥ 3 is not a 
power of 2 (by Proposition 7.4), Equation (7.2) shows

β0,j
0,j = e · ρ1,j

1,j = e ·
j−1∑
�=0

yj,� · e� · ρ1,1
1,j+� = e · ρ1,1

1,j ,

where the first equation follows from the preceding remarks. We therefore get

0 = [τj ] = β0,j
0,j = e · ρ1,1

1,j

as required. This finishes the proof of Proposition 7.5. �
Now let i = 2p, j = 2q, p, q ≥ 0, where we assume p ≤ q without loss of generality. 

Applying Proposition 7.4 several times and using Proposition 7.5 we get

ρ1,1
i,j = ejρ1,1

2p,2j = ej−2p−1
ρ1,1
2p−1,2j = · · · = ej−(2p−1)ρ1,1

1,2j = 0.

This finishes the proof of Theorem 5.3.
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