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Abstract

In industrial production processes, materials and different forms of energy are provided, transformed respectively
converted, stored and transported. With this process joint products in different states of aggregation are emitted.
Environmental impacts can be identified at any stage of the energy and material flow process. Due to the fact that
production units and processes are interconnected with energy and material flows, it is of special interest to develop
production control mechanisms which control the energy and material streams in a way that utilizes available
resources most efficiently and reduces emissions and by-products caused by the production process. These
production control strategies have to consider variations in the input and output flows of succeeding and preceding
production units.

The development of production control strategies depends especially on the structure of integrated production
systems, If it is possible to influence the energy and material flows by the selection of special production processes
and an adequate allocation of jobs and aggregates, the construction of production control strategies can be reduced
to a combined scheduling and technology selection problem.

Methodical production control strategies can be based on optimal algorithms {e.g. dynamic programming)
heuristics (e.g. rule-based approaches) and methods of machine learning (e.g. neural networks). Due to the
complexity of real production systems, it is advisable to use rule-based approaches or neural networks depending on
the structure of the available production knowledge.
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1. Analysis of the production system under inves- pert systems, neural networks and neuro-fuzzy
tigation approaches, the described methods are verified
by an exemplary production system from the tex-

To analyse the behaviour of different produc- tile industry (Fig. 1). The production system un-
tion control mechanisms e.g. based on fuzzy ex- der investigation consists of a dye-house, a

boiler-house, a hydropower plant and a flue gas
neutralisation facility. The dye-house covers two
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duction require steam/hot water and electric
power, which are supplied by the preceding power
plants. The flue gas of the boiler-house is used to
neutralise the mainly alkaline waste water of the
dye-house at the flue gas neutralisation facility.
The storage of steam/hot water as well as the
capacity of the waste water reservoir are limited.
The capacities of all preceding and succeeding
production units are variable. Variations can be
caused by external factors (e.g. smog, variations
of the water level of the inlet of the hydropower
plant).

For the investigation of different production
scenarios (e.g. different operating modi of the
power plants, smog events, machinery distur-
bances) the production system is modelled with a
simulation tool (SLAM). A comprehensive de-
scription of SLAM is given in Pritsker (1986). The
physical structure of the production system (e.g.
aggregates, potential energy and material flows
between the aggregates), available resources and
system functions (e.g. queues, the allocation of
aggregates) are modelled graphically. Process-
and job-specific data (e.g. process parameters,
recipe formulations, energy-demand functions)
are modelled in a C-database. Certain production
rules (e.g. for the resetting of the equipment) and
interfaces to intelligent systems (e.g. fuzzy expert
systems and neural networks) are programmed in
FORTRAN and C.

A system analysis of the investigated produc-
tion system shows that
- emission-oriented goals, such as an increase of

the efficiency of the flue gas neutralisation
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facility, reduction of CO, emissions, reduction
of supplementary chemicals (HCI, H,SO,) for
the neutralisation process in cases of a waste
water excess and a reduction of waste heat
losses as well as

- economic goals, such as an increase of the
utilization of the equipment, a shortage of the
average waiting time

correlate with the harmonising of energy and

material flows, which can be influenced by the

selection of certain dyeing processes and an ade-

quate allocation of dye batches and dye vats.

2. Emission-oriented production control strate-
gies based on fuzzy expert systems

Owing to the structure of the decision problem
(number of serial and parallel production pro-
cesses, multi-criteria goal function, dynamic be-
haviour of the energy and material flows, fuzzi-
ness of the production knowledge), fuzzy expert
systems are implemented to perform the planning
decisions described. In any planning situation the
corresponding fuzzy expert system is evoked and
calculates a priority number for every potential
combination of a dye batch and an applicable
dyeing process. This number is relatively high if
the energy demand (steam/hot water, electric
power) and the characteristics of the waste water
implied by a certain job correlate with the current
state of the system (pH-value in waste water
reservoir, energy supply). Fig. 2 shows a typical
structure of a fuzzy expert controller with rule
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Fig. 1. Structure of an interconnected production system.
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Fig. 2. Structure of a fuzzy expert system for controlling energy and material flows.

blocks for the harmonisation of the demand and
supply of energy, and material streams (e.g.,
NaOH, CH,00H, CO,, SO,) for the neutralisa-
tion process. The rule blocks consist of 27 to 81
individual rules (Tuma, 1994).

The development of fuzzy expert systems re-
quires the definition of membership functions,
selection of aggregation operators, assignment of
a degree of sensibleness for each rule and the
selection of a defuzzification method. A compre-
hensive description of fuzzy expert systems is
given in Zimmermann (1991). Fig. 3 shows exem-
plary membership functions and rules of a fuzzy
expert controller. An investigation of different
membership functions, aggregation operators and

strategies for the assignment of the degrees of
sensibleness shows that the most critical point
seems to be the assignment of a degree of sensi-
bleness for each rule (Fig. 4). This determines the
influence of individual rules and represents the
inference structure of the fuzzy expert controller.
To adjust the degree of sensibleness, it is impor-
tant to have a consistent theory regarding a proper
model of the controlling task. The system repre-
sented by bars 11 and 12 in Fig. 4, for example, is
based on the idea that the pH-value of the waste
water reservoir is the key parameter for control-
ling the material flows for the neutralisation pro-
cess. The adjustment of the degrees of sensible-
ness of the system represented by bars 9 and 10 is

pH-vaiue of the waste water reservoir
1
0.8

flue gas volumetric rate

high
0.2
o pH-value 1400 1500 m3h

waste water characteristic of a if pH-value of the waste water reservoir = high 0.8
certain dye batch and flue gas volumetric rate = low 0,7

and pH-value of the job specific waste water = low 08

o:s then priority number ‘waste water” of the job = high 1,0 0.7
| ign if pH-value of the waste water reservoir = medium 0,2

ow

03 and flue gas volumetric rate = medium 0.4
and pH-value of the job specific waste water = medium 0.3
s 1 pH-value then priority number "waste water® of the job = medium 0,75" 0,15

Fig. 3. Exemplary membership functions and rules.
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Fig. 4. A comparison of different FECs (Fuzzy Expert Con-
trollers) for the controlling of material and energy flows.

more oriented at the flue gas volumetric rate.
The reason for the relative weak influence of the
application of different aggregation operators is a
restrictive preselection of available operators in
order to apply compensatory operators with a
quite good empirical fit. The system represented
by bars 5 and 6 in Fig. 4 uses y-operators, the
system represented by bars 7 and 8 uses “fuzzy-
and” operators to model the aggregation of the
energy- and environmental-orientated goals (Fig.
2). An analysis of the real system showed that the
economic and environmental-orientated goals are

not exclusive (Tuma, 1994). A detailed descrip-
tion of the mentioned aggregation operators is
given in Zimmermann (1991).

In contrast to the efficiency of the neutralisa-
tion facility, up to now it has not been possible to
set up a fuzzy expert system which fulfils the
economic goals. Therefore, it is important to note
that the dependencies of the parameters and the
corresponding inference structure concerning the
achievement of the mentioned economic goals,
which are correlated in a certain way with the
harmonising of energy demand and supply, are
much more complicated compared to the emis-
sion-oriented goals.

3. Emission-oriented production control strate-
gies based on neural networks

If it is not possible to construct a consistent
model, i.e. to formulate explicit rules, implicit
knowledge can be used. Implicit planning knowl-
edge is for example included in representative
production examples. One way to operationalize
implicit knowledge is to use neural networks. The
construction of production control strategies
based on neural networks requires the formula-
tion of the controlling task in a manner which can
be processed by an adequate network architec-
ture, acquisition of representative training exam-
ples, selection, teaching and testing of adequate
network architectures.
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Fig. 5. Structure of a neural network for

controlling energy and material flows.



The described scheduling and technology se-
fection problem can be formulated as a forecast-
ing problem. At any time, when a job has to be
scheduled, the corresponding neural networks are
evoked. For every possible combination of a dye
batch and an applicable dyeing process, the ex-
pected processing and waiting time and the ex-
pected variation of the pH-value of the waste
water reservoir are predicted (Tuma, 1994).

The acquisition of representative production
examples is based on the analysis of different
simulation scenarios. Two-hundred scenarios (dif-
ferent operating modi of the power plants, distur-
bances of preceding and succeeding production
units) are chosen at random from a set of 6912
possible scenarios. For each scenario 8 to 12
break points, representing certain states (pH-
value of the waste water reservoir, flue gas volu-
metric rate, available power of the power plants),
are chosen at random. At these break points,
different planning alternatives are scheduled. The
most critical point in this context is the selection
of evaluation parameters and the determination
of the time, when the influence of the different
alternatives should be evaluated. If for example
the chosen evaluation time for the single alterna-
tives is too late, the influence of a certain deci-
sion could be covered by succeeding decisions.

Due to the requirements of the forecasting
problem, a backpropagation network with three
layers is selected (Fig. 5). The input function is
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the weighted summation, the transfer function is
the sigmoid function or the tangens hyperbolicus,
the output function is the direct output. A de-
tailed description of the backpropagation algo-
rithm is given in Rumelhart and McClelland
(1986).

As a y*-test shows, it is possible to control the
mentioned economic goals using neural networks.
On the other hand, up to now it was not possible
to control the efficiency of the flue gas neutralisa-
tion facility as successfully as with fuzzy expert
systems. This implies that in fields where a con-
sistent theory can be constructed, it is advisable
to use rule-based systems such as fuzzy expert
systems. If, however, this is not possible due to
the complexity of the controlling task, neural
networks should be applied.

4. Emission-oriented production contrel strate-
gies based on neuro-fuzzy approaches

In order to combine the advantages of fuzzy
expert systems dealing with explicit knowledge
and neural networks dealing with implicit knowl-
edge, a neuro-fuzzy approach is developed to
control energy and material flows (see Fig. 6). In
principle, the rule structure of a fuzzy expert
system is applied. The assignment of the degrees
of sensibleness for certain rule blocks is achieved
by machine learning algorithms. Under certain
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Fig. 6. Structure of a neuro-fuzzy system to control energy and material flows.
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Fig. 7. Comparison of different controlling methods.

conditions (e.g. the weighted summation as input
function of the neural network and the average
operator as composition operator of the corre-
sponding fuzzy expert system), fuzzy expert sys-
tems can be interpreted as backpropagation net-
works and vice versa (Berenji, 1990; Tuma, 1994).

The adjustment of the system covers two steps.
In a first step the degrees of sensibleness are set
from the production examples (Fig. 7, bars 5 and
6). In a second step the interpretable weights

(degrees of sensibleness) of these rule blocks, for
which a consistent theory exists (e.g. the control-
ling of the flue gas neutralisation facility) are
adjusted manually (Fig. 7, bars 7 and 8). This
procedure combines the capabilities of machine
learning, evaluating implicit knowledge, and the
human capabilities for constructing a consistent
theory of a closed problem with respect to the
advantages of fuzzy expert systems and neural
networks. This is of special interest in fields of
ambiguous knowledge, such as the controlling of
energy and material flows, taking into considera-
tion emission-oriented and economic goals.
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