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Abstract. The well-known binomial and trinomial tree models for option pricing are examined from the point
of view of numerical efficiency. Common lattices use a large part of time resources for calculations which are
almost irrelevant for the solution. To avoid this waste of resources, the tree is reduced to a “lean” form which
yields the same order of convergence, but with a reduction of numerical effort. In numerical tests it is shown that
the proposed method leads to a significant improvement in real calculation time without loss of accuracy for a
broad class of derivatives.
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Lattice models are in widespread use for the valuation of American-type and exotic op-
tions for which no closed-form solutions exist. Their history dates back to the introduction
of binomial trees by Cox, Ross, and Rubinstein (1979). Since then, several extensions and
improvements on this fundamental approach have been worked out, of which only a small
selection can be mentioned here. Boyle (1986, 1988) extended the binomial lattice to a
trinomial one, gaining more flexibility for the choice of the parameters and also a better
performance. Hull and White (1988) improved the accuracy by transferring control variate
techniques from the Monte-Carlo method to the tree framework. Richardson extrapolation
was suggested by Geske and Johnson (1984) and also used by Breen (1991), who de-
veloped the accelerated binomial model. Broadie and Detemple (1996) introduced several
further improvements, particularly for the American put, and analyzed them in comparison
to existing methods concerning accuracy and calculation time. Leisen and Reimer (1996)
proved an order of convergence for some existing binomial lattices and constructed a new
one using a slightly different choice of parameters with doubled order of convergence. Be-
sides these and other works aiming to improve the lattice model itself, many papers have
been published dealing with the numerical valuation of special derivatives, e.g., barrier or
lookback options, with multivariate trees and with extensions of the framework such as the
consideration of varying volatilities for instance.

* Corresponding author.
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Furthermore, research has been carried out to modify the structure of the tree. Curran
(1995) suggested a method of pruning the tree to avoid unnecessary calculations for Amer-
ican options. Chen and Yang (1999) constructed a universal trinomial lattice in which the
parameters vary in time to handle almost arbitrary diffusion processes. Recently, Figlewski
and Gao (1999) have proposed a further generalization of lattice methods called the Adap-
tive Mesh Model, which has the powerful property that the density of the tree is variable.
Starting with a relatively coarse mesh, their basic idea is to insert regions with higher reso-
lution into the tree where the behavior of the underlying is crucial. In this paper their new
approach is employed, but the other way round: the proposed method starts with an already
fine mesh, thinning it out or even cutting it off at regions which have a lesser importance.
As these regions most often coincide with stock prices far from the initial value (and other
critical values such as the strike price), we suggest concentrating on those nodes of the
tree which belong to a range of stock prices around the mean value (the “main body” of
the tree). The overall goal is to develop a numerical procedure which can be applied for
a wide range of derivatives without the necessity for particular adaptations and which re-
duces the complexity of numerical calculations with negligible loss of accuracy. It will be
shown that the proposed Lean Tree Model satisfies both of these objectives.

In Section 1.1 we present a method of pruning binomial and trinomial trees to avoid
vast calculations with little impact. As simple pruning may lead to some inaccuracy, we
concentrate on the trinomial lattice in Section 1.2, which is developed into the Lean Tree
Model with a coarse mesh in the outer parts. Section 1.3 deals with the asymptotic behavior
of the model. It is shown that the same order of convergence can be achieved as in a
complete tree with calculation effort reduced from Omn* to O (n/nlogn).

In Section 2, numerical results are presented in the form of an analysis of the trade-off
between computational speed and accuracy in comparison with the conventional model.
The approach is first applied to American put options. Afterwards we consider other types
of derivatives, particular barrier options, max options and power options. In all cases a
significant enhancement of the calculation time can be achieved.

Section 3 is the conclusion.

1. Lean Trees
1.1. Pruning Binomial and Trinomial Trees

We make the common assumptions of an ideal market with continuous trading of the un-
derlying and a constant and flat interest rate structure.! Let f; denote the value of an
American-style non-path-dependent derivative on a single stock at time ¢, let 7 be its time
to maturity from the time of evaluation #p := 0. The underlying stock price S; is assumed
to follow a geometric Brownian motion with variance rate o>. Under risk neutrality, the
drift of this process equals r — g, where r denotes the risk-free continuously compounded
annualized interest rate and ¢ the continuous dividend yield. Thus S; follows the equa-
tion
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dSi = —q)S;dt +0S; dz, (1)

where dz represents a standard Wiener process.

In a lattice model this continuous process is discretized in such a way that the time to
expiry 7 is divided into n equidistant” time steps of length At = T/n. For each of these
steps the price of the underlying jumps to one out of two (in a binomial lattice) or three
(in a trinomial lattice) possible values at the next time step. Let u (for up), d (for down)
and s (for straight) denote the factors by which the jumps occur, and p,, pg and p; the
corresponding risk-neutral probabilities. Since the assumed distribution of the underlying
is lognormal, the lattice is usually based on the logarithm of S;, so the parameters are cho-
sen in a way that the first central moments of the assumed continuous normal distribution
coincide with the modelled discrete binomial or trinomial distributions of log(Sa;/So).
Therefore, several possible (and reasonable) choices exist—see (Leisen and Reimer, 1996)
for an overview concerning the binomial case.

The expected value of the random variable log(Sa;/So) equals (r —¢ —o? /2)At, soif the
factors u and d are chosen to fulfill ud = €20 —4 —0?/2)At , it is ensured that this expected
value at each (even) time step coincides with the stock price at the middle node in the
corresponding column of the tree. For the same reason, s is chosentobe s = ' —q=0?/2)At
in the trinomial case. Matching of the first central moments yields

u = e(r—q—oz/Z)Ar—l-a\/E, d—= e(r—q—az/Z)Ar—U\/E’ (2)

and p, = pq = 1/2 for the binomial lattice (see (Jarrow and Rudd, 1983)),

u = e(r'—q—02/2)AI+a«/3AI’ d = e(r—q—o*z/2)At—a«/3Al’ 3)

and p, = pg = 1/6, ps = 2/3 for the trinomial lattice (see (Figlewski and Gao, 1999)).

To introduce index notation, let f;; be the value of the derivative in the ith node at time
step j, which corresponds to the stock price Sou'd/~" in the binomial case and Sps'd’/™"
(j = i)or Sos?>~'u'=J (j < i) in the trinomial case. The valuation procedure of working
backwards through the tree is well known: starting at expiry, at each time step the buyer
has the choice between prematurely exercising and holding the derivative to the next time
step. Thus the value at a single node is the maximum of the payoff from an immediate
exercise and the continuation value. The latter is calculated as the risk-neutral expected
value in the next time step, discounted by the risk-free rate, that is,

fii =2 (pufittist + pafi+ri) 4

or

fii = €A (pufisriva + Ps fistic1 + Pafis1.), ©)

respectively (the tilde indicates the pure continuation value).

During this procedure, a total number of (n 4+ 1)(n + 2)/2 nodes in the binomial tree or
(n + 1)% nodes in the trinomial tree has to be visited and evaluated. Looking closer at the
associated stock prices, it becomes evident that except those positioned in a certain range
around the middle nodes (the “main body”), they are extremely unlikely to be reached by
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the supposed process for S;. For a quantitative statement notice that the standard deviation
of the binomial distribution at the jth time step equals /p, pa j, so for larger values of j
more than 99 percent of the mass lies between the inner 34/j nodes. But this also means
that for each time step j a number of about j — 3./ nodes, being by far the major part for
larger values of j, is reached with a probability less than 1 percent. For the trinomial tree
a similar estimation holds.

Within this observation lies the key for an acceleration of the method. Why should the
lion’s share of the pricing effort be wasted on calculations which have little influence on
the solution? To avoid this waste, we suggest concentrating on the main body of the tree
by simply cutting the tails off to make the tree “lean.” In the binomial tree the difference
log Sji+1 — log S;; equals 20+/At = 20/T/n, so in the final column the number of
J/n/2 nodes covers one standard deviation of the log stock price, which is o+/7. For
the trinomial tree this number is /z/~/3. Thus we define the main body as the inner c/n
nodes, where c is a constant which depends on the type of the tree and the desired accuracy.

However, applying such brute force to the model cannot go without a snag, which is
illustrated in Figure 1 for the binomial case: when the main body is detached, for an
evaluation of the marked critical nodes (black circle) the option values in the succeeding
time step are needed, but the outer ones of these (white circle) have not been calculated
in the step before, since they are out of the main body. So if we want to proceed with

Figure 1. Binomial tree and its reduction to a lean form: The main body consists of the inner nodes. To obtain
the continuation value in the marked critical nodes (black circle), estimates for the nodes with white circles have
to be carried out.
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our method, estimates for the option values in the white nodes must be extracted from the
information the tree gives thus far. For this estimation several approaches are feasible.

A solution which suggests itself is an extrapolation method. Conceivable for instance is
a linear extrapolation: f;; ~ 2f;;_1 — fj.i—2 (for the upper critical nodes). If a closed-
form solution exists for the equivalent European-style derivative, besides more advanced
extrapolation schemes as quadratic extrapolation, a conceptionally different approach is
applicable: borrowing the idea of control variate techniques (see (Hull and White, 1988)),
an estimator for f;; is fj; ~ fji—1 + f ]‘ P f;i_l, where the superscript ¢ stands for
European-style. Clearly, the necessity to calculate a Black—Scholes-value for each time
step also increases the total calculation time. In Section 2, the question of whether the
enhanced accuracy is worth this effort is examined.

1.2. Coarsening the Mesh of Trinomial Trees

Pruning binomial and trinomial trees leads to passable results in certain cases, but is not re-
ally satisfying, as the information of the outer parts of the tree is totally neglected. It would
be more appropriate to have a procedure which builds a mesh whose density decreases in
the outer parts. However, the binomial model leaves no degree of freedom to build such a
thin mesh, as with the choice of one of the factors u or d, the requirement to match the first
two moments of the normal distribution fixes the other factor.

Thus we concentrate on the trinomial version of the model in this subsection, since it has
the desired flexibility to build a coarse mesh for the tails of the distribution. The procedure
we suggest is the following (see also Figure 2): The main body ends with the row of critical
nodes (k = 1). In the two rows directly above and below the main body (k = 2) the number
of time steps is halved. The successors of the critical nodes at time ¢ then are found at time
t + At or t 4+ 2At, depending on which time step is engaged with a node in the outer row.
In the next rows outside the main body this process is iterated, i.e., for each outer row the
number of time steps is halved and their length is doubled.

As the number of time steps increases, the factors for an up-move and down-move also
have to be adjusted, since otherwise it cannot be guaranteed that the trinomial distribution
still matches the first central moments of the normal distribution. Let uy, sk, di denote
the factors in the upper tail of the tree, p, «, Ps.k, Pda.k the corresponding risk-neutral
probabilities. We focus on the upper tail; the lower tail is completely analogous. From the
suggested iteration it follows that the number of time steps to the next node equals either
| =21orl =2k

It can be shown that a recursive definition of the form uy. | = V2u ¢ leads to a consistent
mesh where the probabilities are independent of k (see Appendix A). The factors turn out
to be

2
Uy :exp<<r —q— %)lAt + 282 3At>, (6)

o2
Sk =exp<<r —q - 7>1At>, 7
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k=4

Figure 2. Lean trinomial tree: In the outer parts of the tree the length of the time steps as well as the distance
between two nodes is enlarged to build a coarse mesh. (See the text for further explanation.)

2
dy =exp<<r —q— %)lAt —2k=D724 3At>, (8)

the risk-neutral probabilities

Pak =~2puk, Psk =1 — puk — pak, ©)

where p,, x is one of the values

1
_ (1) _ o1 Ak—1
e =pD = ——— ifp =2k (10)
P “ T 302 442)
2
_ 0 _ se1 Ak
puk=p0 = —=  if] =2k, (11)
‘ “3024+42)

In Figure 2 the procedure is demonstrated for n = 12 time steps. The tree does not
appear very “lean;” this desired property only becomes evident for larger values of n. In
Figure 3 a lean tree with n = 40 is portrayed, where the attribute “lean” is much more
obvious.
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Figure 3.

Lean trinomial tree with 40 time steps.
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1.3. Asymptotic Behavior

In this subsection a theoretical result concerning the convergence of the option value f n
obtained by a lean tree with n time steps against the true value f is presented. It is well
known that the option value obtained with a conventional Cox—Ross—Rubinstein tree fn
converges to f with order 1, that is, there exists a positive constant a so that (see (Leisen,
1998))

|f — fu| <an™l. (12)

As shown in Appendix B, with a choice of ¢ in dependence on n so that ¢ ~ logn, any
desired order of convergence of the lean tree value against the complete tree value can be
achieved, particularly the order of convergence of the latter against the true option value.
So there exists a further constant a’ with

o= Ful <a'n”!, (13)

which yields by using the triangle inequality also

|f—?n| <(a+a)nt, (14)

that is convergence of order 1 of the lean tree value against the true value. In summary it
can be emphasized that with the right choice of ¢, the same order of convergence of the
lean tree value can be achieved as that of the complete tree value.

This has to be compared with the savings in computational speed, which can be mea-
sured by the number of nodes which have to be visited and evaluated. The number of nodes
in the main body of the tree is clearly bounded by ¢ n+/n. In the coarse mesh of the outer
parts, a number of additional nodes exists, which can be bounded by

[log, n]
2 Z 2k < ollowanl+2 — o (p), (15)
k=0

so the total number of nodes equals O(cn/n + n) = O(cn/n). To achieve the desired
convergence results, ¢ has to be chosen proportional to logn. Thus the overall costs are
O(n./nlogn), which has to be compared with the costs of On?) for a conventional tree.
It can be stressed that the Lean Tree Model makes an asymptotic improvement on the
performance behavior without losing or worsening the convergence property.

Note that the asymptotical convergence is independent of the particular structure of the
lean tree; the argumentation remains true if the value in all critical nodes is set to zero.
This is because convergence is not achieved by better estimates in the critical nodes, but by
a growing share of the main body and thus by a decreasing probability that a critical node
is reached. However, good estimates as obtained by the structure of the lean tree still make
a great deal of sense, as for practical considerations not only the asymptotic behavior, but
the actual errors for usual values of n are of main interest, and these are fairly small as we
will demonstrate in the next section.
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2. Numerical Results
2.1. American Plain-Vanilla Options

General Sample 1In this section the behavior of the binomial as well as the trinomial ver-
sion of the model with regard to computational speed and accuracy is analyzed and com-
pared with the conventional approach. We follow in large parts the method of measuring
performance of numerical models proposed by Broadie and Detemple (1996). Therefore,
a sample of 2500 sets of random parameters for an American put option has been gener-
ated, according to the following restrictions:

e Strike price: fix at 100;

o Initial stock price: uniformly distributed between 70 and 130;

e Time to maturity: with probability 0.75 uniform between 0.1 and 1.0 years; with proba-
bility 0.25 uniform between 1 and 5 years;

e Volatility: uniform between 10% and 60%;

e Riskless interest rate: uniform between 0% and 10%.

As error measures we consider the maximum relative error (MRE) as well as the root
mean squared relative error (RMSE), defined as

N A
RMSE — N;(T) (16)

where f; denotes the ith “true” (obtained with a 20000-step trinomial tree) and fl the ith
estimated option value. To make the relative error meaningful, those sets of parameters
which lead to a (true) option value lower than 0.5 have been removed, leaving a number of
N = 2326 options.

In Table 1 the error measures together with the speed for different versions of the model
with n = 1000 time steps are given. Speed is measured in option prices per second. It be-
comes evident that the Lean Tree Model saves a factor 5-10 in calculation time. The choice
Table 1. Performance of Several Conventional and Lean Trees with n = 1000 Time Steps for American Put

Options. Speed Is Measured in Option Prices per Second. The Error Values Refer to the Sample Described in the
Text

Model Subtype c Speed RMSE MRE
Binomial 0.503 2.71-10~* 3.62-1073
Lean Binomial Lin. extrapolation 2.0 4.16 2621074 423.1073
Lean Binomial Lin. extrapolation 25 3.34 4.00-10~4 3.62-1073
Lean Binomial Control-variate 2.0 257 6.71-1074 14.1-1073
Lean Binomial Control-variate 25 224 2711074 3.62.1073
Trinomial 0.235 2.01-10~* 3.86-1073
Lean Trinomial Lin. extrapolation 2.0 2.84 11.4.1074 14.2.1073
Lean Trinomial Lin. extrapolation 25 225 2.81-107%4 3.86-1073
Lean Trinomial Coarse mesh 2.0 2.65 2.89.10~% 3.86-1073
Lean Trinomial Coarse mesh 25 2.16 201-107%4 3.86-1073
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Figure 4. Trade-off between speed and accuracy for the conventional and the lean trinomial model with coarse
mesh and ¢ = 2.5 for plain vanilla options. Speed is measured in option prices per second. The root mean squared
error refers to the sample described in the text. Marks are set for n = 20, 40, 80, 150, 300, 500, 1000 and 2000
time steps.

of ¢ = 2.0 leads, in the binomial case, to an unacceptable growth in the error, whereas with
¢ = 2.5 almost the same error measures can be achieved as in the conventional model. The
control-variate-technique seems to be superior to the extrapolation method, although the
necessity to calculate Black—Scholes-values in each time step has a significant impact on
the calculation time. The reason is that linear extrapolation may lead to negative option
values in some nodes. Comparing the two fundamental approaches, the trinomial model
outperforms the binomial one. All in all the best model is the trinomial lattice with the
coarse mesh.

Concerning the error measure, MRE is the same as in the respective complete model for
all versions of the lean tree with ¢ = 2.5. This guarantees that the average error behavior is
a good indicator for the performance of the model, so we will concentrate on the measure
RMSE in the following.

Figure 4 shows the trade-off between speed and accuracy in a log-log-scale for the con-
ventional and the lean trinomial model with ¢ = 2.5. It becomes clear that the prices
calculated with the Lean Tree Model have almost the same quality as those with the com-
plete model, but are obtained in much less time. The slope of the lean model curve is
significantly smaller than that of the other, which asymptotically equals 2. This means that
the order of convergence in terms of calculation time rather than number of time steps is
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Table 2.  Performance of the Lean Trinomial Model with Coarse Mesh and Different c-Values for Deep-Out-of-
the-Money Options (n = 1000): To Achieve a Satisfying Accuracy, ¢ Has to Be Enlarged to 4.0

Model c Speed RMSE
Trinomial 0.235 7.97-1074
Lean Trinomial 2.5 2.16 207-107*
Lean Trinomial 3.0 1.93 81.5-10~4
Lean Trinomial 3.5 1.67 21.6-107%
Lean Trinomial 4.0 1.48 8.34.10~%

enhanced. Nothing else could have been expected according to the analysis of the preced-
ing section; theoretically, the slope should asymptotically be equal 1.5.3

Options with Strike Prices Close to the Boundary According to the last subsection, the
lean trinomial model with ¢ = 2.5 works well in the general case. However, problems
might occur when the strike price is close to the boundary of the main body of the tree.
In these cases an error behavior which is significantly worse can be expected. To enhance
the accuracy one should use larger values for c, that is, a larger part of the main body.
Since this adaption also increases the calculation time, a closer look at the performance is
necessary.

For this reason a second sample of 2500 options has been created. The parameters are
the same as in the preceding subsection, with the exception that the initial stock prices has
been chosen so that the strike price (X = 100) lies near the lower boundary of the main
body with ¢ = 2.5. Thus the regarded options are deep out of the money.*

The results are shown in Table 2. It becomes evident that the relative errors of the
complete tree are larger than in the general sample, which is a consequence of the small
absolute values of options which are deep out of the money (the average option value in
the sample is as small as 0.20). The errors of the lean tree with ¢ = 2.5 are not satisfying.
To achieve better results, the parameter ¢ has to be increased to a value of about ¢ = 4.0.
Clearly this also increases the calculation time, so the time-saving factor is reduced from
10.9 to 6.3. As a conclusion, ¢ should be chosen larger than 2.5 for options which are deep
out of the money. With a choice of

A7)

] X
¢ =max{2.5;2.0+ 0g(So/ )}

oNT

the higher speed with ¢ = 2.5 is achieved in normal cases, whereas in critical cases (option
deep out of the money) the required accuracy is preserved.

2.2. Path-Dependent Options

One strength of the model is its generality, which allows the pricing of other than plain-
vanilla options. In this section we will show the performance for path-dependent deriv-
atives, particularly American-style barrier options. As an example we choose the down-
and-out call.
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Pricing barrier option with lattices is a non-trivial task, since the approximated barrier
in the tree does not fit the true barrier correctly (see (Boyle and Lau, 1994) for a discussion
of this problem). Thus, depending on the number of time steps, the true barrier sometimes
lies a little bit above the nearest row of nodes and sometimes a little bit below, which yields
a very slow convergence. The option price as a function of the number of time steps has a
typical jagged shape (see, e.g., (Boyle and Lau, 1994)).

Several approaches have been carried out to deal with this problem. Boyle and Lau
(1994) suggest using only a restricted set of integers for the number of time steps. They
calculate a sequence of reasonable values for n so that the approximated barrier is as near
as possible to the true barrier. The problem of this sequence is that the smallest value
can be quite large if the barrier is close to the strike price. Ritchken (1995) adjusts the
parameters of the tree by introducing a stretch parameter so that one row of nodes always
coincides with the true barrier H. A similar yet slightly different approach is to adjust
only the first time step, whereas in all succeeding steps the values u = ¢”V32 s = 1.0,
and d = 1/u are applied. In the first step these parameters are multiplied with a constant
factor b = H /Sou' with ig = [log(So/H)/log(u) + 0.5] SIn general, the corresponding
risk-neutral probabilities which match the first central moments of log Sa; are given by

(02At +5'd)(s' — d)

= , 18
Pu M'Z(S/ —d’) +d’2(u/ _ S/) _ S!Z(u/ _ d/) ( )
s/ + p (’/l/ _ s/)
L e T (19)
ps=1—=pu—pa, (20
where
2
, o
u =10gu—(r—q—7>At, (21)
02
/
s =10gs—<r—q—7>Al‘, (22)
02
d' =logd — (r —q— 7>At. (23)

It should be noticed that in contrast to the parameters in Section 1 the middle row of the tree
no longer coincides with the expected value of log(S;a/So). Thus it might be necessary
to enlarge the main body by choosing a larger value of c.

Barrier option pricing is particularly critical when the initial stock price is close to the
barrier. In these cases also the suggested procedure may lead to poor results, except for
large values of n. The reason is that ip becomes zero for small values of n, which means that
the central row of the tree coincides with the barrier. However, this pitfall can be avoided
if ip is bounded below by 1. As a consequence, in the first time step only a down-step
can lead to a knock-out, which improves the performance enormously. The advantage over
Ritchken’s approach is that no minimum number of 7 is required. Nevertheless, a relatively
large number of time steps might still be needed to achieve a certain accuracy. Here the
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Table 3.  Pricing a Down-and-Out Call with a Barrier Close to the Initial Stock Price: The Approximate Number
of Time Steps to Achieve a Relative Error of 0.1% or 0.01% Is Given in the Respective Column. The Speed
in Option Prices per Second for the Full Trinomial Tree and the Lean Trinomial Tree with Coarse Mesh and
¢ = 2.5 Are Compared. The Option Parameters Are Strike Price = 100, Barrier = 90, Volatility = 0.3,
Risk — Free Rate = 0.05, Maturity = 1

Accuracy 0.1% Accuracy 0.01%
Speed Speed
Stock Price Option Value n Full Tree Lean Tree n Full Tree Lean Tree

95 4.79 50 280 289 300 8.92 26.3
92 1.94 100 78.5 118 400 5.03 17.1
91 0.977 300 8.92 26.3 600 2.24 9.79
90.5 0.490 600 2.24 9.79 1500 0.360 3.05
90.2 0.196 1500 0.360 3.05 5000 0.0322 0.446
90.1 0.0983 2500 0.129 1.25 10000 0.00689 0.164

Lean Tree Model can display its power of moderate increasing calculation time, as Table 3
shows.

2.3.  Multivariate Options

The convergence analysis in Section 1.3 shows that the Lean Tree Model saves an exponent
0.5 concerning the asymptotic behavior with respect to 7, the number of time steps. If the
concept of the model is generalized to a multivariate setting, the definition of the main
body allows the saving of this exponent 0.5 in each space dimension. Unfortunately the
suggested method of coarsening the mesh of the tree cannot be adapted for the multivariate
case in a straightforward way.® Thus it is more appropriate to use the method of pruning
for multidimensional problems.

To demonstrate the behavior in the bivariate case, we have examined the performance of
the model for max options.” A max call option is a derivative with two underlyings S!, S2,
which is equivalent to a call on the most valuable of both underlyings. For European-style
max options closed-form solutions are given by Stulz (1982). We have chosen to price
European-style max options with the conventional and the lean trinomial tree to have this
analytic formula as a benchmark. (See (Boyle, 1988; Cho and Lee, 1995) on how to build
multivariate trinomial lattices.)

To analyze the behavior, another sample has been generated according to the same pa-
rameters as in Section 2.1. The initial stock price of the second underlying Sg is identical
to S}, whereas its volatility is independent. Furthermore, the correlation is uniformly dis-
tributed between 0 and 1.

The results are shown in Figure 5. Obviously, the slope of the line for the lean tree equals
only half the slope of the line for the complete tree. This doubled order of convergence in
terms of calculation time could have been expected according to the theoretical analysis.
Even for a small number of time steps the savings are significant, and for n = 500 the Lean
Tree Model outperforms the conventional model by a factor close to 100.
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Figure 5. Trade-off between speed and accuracy for the conventional and the lean trinomial model with pruning
for max options. Speed is measured in option prices per second. The root mean squared error refers to the sample
described in the text. Marks are set for n = 20, 40, 80, 150, 300 and 500 time steps.

2.4. Other Exotic Options

The Lean Tree Model can be used to price a wide range of exotic derivatives. As an
example we will demonstrate its application to American-style capped power options. The
payoff of a capped power option is given by

min{(Sy — X)*1(s;>x), (Cap — X)*}. (24)

Since the maximum possible payoff is (Cap — X)?, the option should clearly be exercised
if the underlying reaches the cap level.® If no dividend payments have to be considered,
it is also clear that it should otherwise never be exercised early. Thus the cap level plays
the same critical role as the barrier for knock-out options.” Indeed, if a power option is
priced with a naive Cox—Ross—Rubinstein tree, a similar jagged curve can be observed (see
Figure 6).

If we apply our suggested adaptation, that is, multiply the parameters u, s, d in the
first time step with the factor b = H/Sou~" where iy = |log(H /So)/log(u) + 0.5], the
convergence behavior can be smoothed dramatically. Using a lean tree preserves this high
accuracy, but again leads to a significant reduction in calculation time.
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Figure 6. Option price as a function of n for a capped power option with a naive trinomial tree (jagged curve)
and the adaption described in the text.

3. Summary and Conclusions

Numerical methods have to be applied for option pricing whenever a closed-form solution
fails to exist, which is the case for a large share of American-type and exotic options.
One fundamental approach is the lattice model, which was originally developed in the
context of plain-vanilla options, but can easily be adapted for more complex derivatives.
In the present paper, this conventional tree model has been developed into the Lean Tree
Model, which achieves the same accuracy in a calculation time decreased from Om) to
O(n+/nlogn).

The convergence property is independent of the particular structure of the lean tree, but
the suggested coarse mesh yields the best numerical results. For common values of the
number of time steps, the calculation time can be reduced by a factor 10. This factor
reduces but is still larger than 5 when options are considered which are deep out of the
money.

One strength of the model is its generality, since it can be applied to a wide range of
derivatives. With a simple modification of known methods for barrier options, very good
results can be obtained even if the initial stock price is close to the barrier. The same
modification allows the efficient pricing of capped power options. Furthermore, the use of
lean trees ameliorates the exploding calculation time in multivariate settings, since it saves
an exponent 0.5 in asymptotic convergence behavior for each space dimension.
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Appendix A. Derivation of the Parameters for the Coarse Mesh

In this Appendix the parameters (6)—(11) are derived. We consider the variable

o2
X; :=log($;) — (r —q— 7)1 (A.1)
since its expected value equals X for every . Let 7; and dj denote the (additive) values
for an up-move and down-move of X, in the kth upper row of the lean trinomial tree (see
Figure 2), p, x and py  the corresponding risk-neutral probabilities (for the straight-move
5k = 0 holds). Let ! be the number of time steps to the next node. From the structure of
the coarse mesh it follows that there are two constellations with different parameter sets:
I = 2k with either t = 1 or ¢ = 0. We use the existing degree of freedom to pose the
condition that in each constellation the probabilities are constant (independent of k), that
1S pukx = p,(j) = const and py y = p((;) = const.
To ensure moment matching, it has to be guaranteed that

ElXiiar — X1 = pPe + pdx = 0 (A.2)
and
— =2 _
E[(Xisiar — X2 = pT; + pyd, = 27 Ato?. (A3)

A necessary condition for recombining is, furthermore,

di1 = —Tig. (A4)
Our goal is a recursive procedure for iy of the form:

Up+1 = Aty (A.5)

with some A > 1. Combining (A.4) and (A.5) with (A.2) and (A.3) (with k + 1 instead of
k) yields

PN — YT = 0 (A.6)
and
pOAE} + piut = 21 Ao, (A7)
As (A.3) is also valid for k + 2 instead of &, furthermore,
pOATEE + pi 3%k = 22 Are? (A.8)
holds. From (A.6) it follows

i’ =, (A9)
leaving
piaEr 4+ pPas =241 AL, (A.10)

p A3 + pP A% =22 Ao 2, (A.11)
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It follows
20+ D =23+ = 1=v2 (A.12)
Since uy = +/3Ato, the recursion (A.5) yields

i, = 2523 Ato, (A.13)
dy = —2%D2/3A10. (A.14)

The probabilities can be calculated using (A.2) und (A.3):

2k—z 21—L
© = = , (A.15)
32k + /221y 3024+ /2)
22k—L 21—L 2
Py = V2 — = V2 (A.16)
32k + /221y 3024+ /2)
Back to the process for S;, the factors are
o2
Ui :exp((r - 7>1Az + 2K 3At>, (A.17)
o2
skzexp((r— 7>1At>, (A.18)
o2
di = exp<<r - 7>1At — k=724 3At>. (A.19)

Appendix B. Convergence of Lean Tree Option Values

Let (j,i) be the index pair of the ith node at time step j, which corresponds to the

stock price S;; = Sou'd’~! in the binomial case and Sps‘d’/~ (j =zi)or Sos2i—iyi=i
(j < 1) in the trinomial case. We consider an American-style option with payoff func-
tion . Lete;; = |f;; — f},i| denote the absolute difference between the option values in

the complete and the lean tree at node (j, i), ¢;,; the risk-neutral probability that the stock
price reaches one of the critical nodes at the boundary of the main body from that node.
The aim of the error analysis presented here is a bound for € o in dependence on n, that is
€0.0 < const-n~% with some o > 0, which is usually referred to as convergence of order «
(of the lean tree value to the complete tree value). Suppose the main body of the tree cov-
ers ¢ standard deviations of log(S7/Sp) and denote the critical nodes at the boundary with
(j, j ™) and (j, j7), respectively. Define

€ := max {e},-,_,‘+’€j.,.i_} .
J

as the largest error in a critical node. Then by induction it can be shown that€;; < ¢ ;€
forall j < n, j~ <i < j*: thisis trivial for j = n. For some j < n, itis clear fori = j*
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andi = j~, and by induction hypothesis €;11; < gj+1€ for (j + 17 <i < (j + DY,
it follows also for j~ <i < j*:
eji=|fri = fiil

= |max{e™" Y E[ fj111S;.:]: 7(S;.)} — max{e™ M E[ fj11S.:]: (S0}

<|E[fi+11874]) = E[fr11854]|

=|pu(fivivt — Frevivt) + A= p)(Firri — i)

S Pu€j+1,i+1 + (1 — pu)€jti,i

< pugjrrivie + (= pgjsiie

=4qj,i€ (B.2)

in the binomial case and analogously:

€j,i K Pu€j+1,i+2 T Ds€j+1,i+1 + Pd€j+1.i
< Puqj+1,i+2€ + Psqj+1,i+1€ + Paqj+1,i€ = qj i€ (B.3)

in the trinomial case.

Thus go o has to be evaluated. It is the risk-neutral probability that the stock price reaches
one of the critical nodes, which can be asymptotically bounded by twice the probability that
a standardized Wiener process reaches a barrier ¢/2 in the interval [0, T']. This probability
can be calculated using the reflection principle (see, e.g., (Karatzas and Shreve, 1991)) as
2N(—c/2). Applying the approximation formula for the normal integral (see (Abramowitz
and Segun, 1964):

1 2
N(=x) < e (x >22), (B.4)
xN2m
the error is bounded by
4
€0.0 < e 1. (B.5)
2rc

If ¢ is now chosen to satisfy ¢> = 8« logn with a constant & > 0, and € is bounded
independently of n (which could very roughly be realized with the strike price in the case
of a put), it follows

€

€0.0 < ———n" 7, B.6

00 Jralogn (B-6)

that is convergence of order «. Note that even if € depends linearly or polynomially on 7,
this can be overcompensated by an adequate choice of c.

Notes

1. As shown by several authors, these assumptions can be generalized. The restriction to the root framework is
made in this paper, because it aims at numerical treatment rather than a most universal setting. The principles
developed here can easily be applied to more general situations.
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2. The equidistance is not necessary. In Section 1.2 we will partially use different time steps.

3. The error € is bounded by € < const - n~! and the calculation time T by T < const - n3/2 logn. As the
logarithm grows slower than every power, for every g > 0 it follows that the speed in terms of 1/7 is bounded
below by 1/t > const - n—3/2-8 > const - €3/2+8 for large values of n.

4. An analogous sample with put options deep in the money is meaningless, since they would be exercised
immediately.

5. The approach is very similar to (Hull, 2003, p. 486 f).

6. If the main body is defined for each dimension separately, difficulties occur for nodes which are in the main
body for one dimension, but out of it for a different dimension. Similar problems arise when a node is defined
as belonging to the main body if it is within the inner nodes for all dimensions.

7. A study of quanto options has led to very similar results.

. For simple capped calls this has already been stressed by Broadie and Detemple (1995).

9. See also (Boyle and Lau, 1994) for pricing simple capped call options with a binomial tree.

oo
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