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Abstract—In the era of deep learning, research into the
classification of various components of the acoustic environment,
especially in-the-wild recordings, is gaining in popularity. This
is due in part to the increasing computational capacities and
the expanding amount of real-world data available on social
multimedia. However, the noisy nature of this data can add
an additional complexity to the already complex deep learning
systems. Herein, we tackle this issue by quantising deep feature
representations of various in-the-wild audio data sets. The aim of
this paper is twofold: 1) to assess the feasibility of the proposed
feature quantisation task, and 2) to compare the efficacy of
various feature spaces extracted from different fully connected
deep neural networks to classify six real-world audio corpora. For
the classification, we extract two feature sets: i) DEEP SPECTRUM
features which are derived from forwarding the visual represen-
tations of the audio instances, in particular mel-spectrograms
through very deep task-independent pre-trained Convolutional
Neural Networks (CNNs), and ii) Bag-of-Deep-Features (BODF)
which is the quantisation of the DEEP SPECTRUM features.
Using BODF, we show the suitability of quantising the deep
representations for noisy in-the-wild audio data. Finally, we
analyse the effect of early and late fusion of the CNN features
and models on the classification results.

[. INTRODUCTION

Within the field of machine understanding, unsupervised
representation learning is gaining widespread interest as a
highly effective alternative to using conventional ‘hand-crafted’
feature sets [1]-[4]. In computer audition, the understanding
of audio and soundscapes by machines, and unsupervised
representation learning based on deep learning techniques have
been used for a diverse range of tasks, including environmental
audio tagging [5], acoustic scene classification [6], and urban
sound classification [7]. One particular challenging aspect of
computer audition is soundscape perception and classification of
audio recorded in real-world environments. Such audio samples
typically contain a variety of confounding effects such as non-
stationary noise and less than ideal microphone placements.
Despite the wide use of unsupervised feature representation,
their advantages have yet to be fully realised in such adverse
conditions. In this regard, this paper explores if a bag-of-audio-
words approach [8] can be used to improve the robustness of
the state-of-the-art DEEP SPECTRUM feature representation [9]—
[11]. To help ensure authenticity, we use various data sets
which have been sourced entirely from YouTube with our

Cost-efficient Audio-visual Acquisition via Social-media Small-
world Targeting (CAS2T) toolkit for efficient large-scale big
data collection [12].

Our proposed feature representation, herein referred to as
Bag-of-Deep-Features (BODF), are generated via quantising
(bagging) DEEP SPECTRUM features. DEEP SPECTRUM fea-
tures are generated by forwarding audio spectra through pre-
trained image Convolutional Neural Networks (CNNs) such as
AlexNet [13], VGG16 and VGG19 [14], and GoogLeNet [15].
Despite not being trained for audio, the deep convolutional
operations of these networks extract salient audio features from
spectrograms. The versatility of DEEP SPECTRUM [eatures has
been shown in a range of audio classification tasks, including
autism severity detection [16], snore sound recognition [10],
[17], audio-based sentiment analysis [9], and speech-based
emotion detection [11].

The aim of extending DEEP SPECTRUM features into BODF
representations is to further increase robustness to noise related
adverse and confounding effects. BOAW have also been shown
to be a useful feature representation [18]-[20]. BOAW is a
histogram representation of the original feature space generated
by first assigning features to their ‘nearest’ representations
in a predetermined dictionary and then counting the final
number of assignment to each dictionary element [8]. This
quantisation step can be considered to be quasi-filtering against
small amounts of noise present in the original feature space.
We therefore hypothesise that bagging will help increase the
robustness of a DEEP SPECTRUM feature space.

The rest of this paper is laid out as follows. Section II
introduces our databases. Section III outlines our machine
learning methods for extracting the deep representations from
the audio files. The classification experiments and the evaluation
metrics are outlined in Section IV. The obtained results are
given in Section V, before concluding the paper in Section VI.

II. DATABASES

For our classification experiments, we choose 6 unique audio
databases containing different human speech and vocalisation
types [12]:

1) Freezing: 785 recordings picked from videos in which

the speech is produced by an individual shivering with
cold.



TABLE I: Specifications of each data set. lyoq;: the total length of the data set; L, and lyq.: the minimum and maximum
lengths of the audio recording; o: standard deviation; #n: the number of all audio recordings in each set. #s : the number of
0.5 s segments, i. e. the number of frames of input mel-spectrograms, denoted in parentheses. Crqti0: the class ratio for each

data set (target class: ‘normal speech’).

Train Evaluation
Tasks ltotal Imin/lmaz a #n (#s) Cratio ltotal Imin/lmaz a #n (#s) Cratio
Freezing 75.9m  2.0s/29.4s 5.8s 614 (8813) 2:1 | 224m 2.0s/286s 59s 171 (2595) 1.1:1
Intoxication | 139.7m  2.0s/29.9s 6.5s 1069 (16200) 0.9:1 | 16.7m 2.0s/24.8s 5.3s 152 (1930) 1.8:1
Screaming 53.6m 2.08/29.9s 7.6s 375(6192) 1.2:1 | 220m 2.1s/299s 5.5s 189 (2505) 1.4:1
Threatening | 106.6m  2.0s/29.8s 7.4s 652 (12 360) 6:1 | 45.8m 2.0s/29.2s 52s 441 (5271) 06:1
Coughing 94.3m 0.58/28.8s 3.5s 2088 (10336) 2.9:1 | 63.9m 05s/23.2s 2.7s 1571 (6935) 2.2:1
Sneezing 6.7m 0.5s/8.0s 1.3s 238 (691) 09:1 9.2m 0.55/9.3s 1l4s 291 (967) 1:1
by 476.8m - — 5036 (54592) —— 180m - — 2815 (19933) ——

2) Intoxication: 1221 language independent recordings
picked from videos in which the speech is produced
under the influence of drugs.

Screaming: 564 recordings picked from videos in which
people are screaming when they are scared.
Threatening: 1093 language independent recordings
picked from videos in which the speech is perceived
by our annotators to be of a threatening manner.
Coughing: 3 659 recordings picked from videos in which
people are coughing during a conversation or a talk.
Sneezing: 529 recordings picked from videos in which
people are sneezing during a conversation or a talk.

4)

5)
6)

These datasets are based on the concept of acoustic surveil-
lance [21]. The first four topics are related to audio-based
surveillance for security purposes in noisy public places. The
latter two topics, related to the monitoring of everyday activity
—1in terms of, e. g. personal health — in common, relatively quiet
environments such as home or office [21]. All corpora offer a
two-class classification problem, i.e. they have a target class,
e. g. freezing or intoxication and a ‘normal speech’ class which
contains audio samples that are not affected by the target class.
All audio data has a sample rate of 44.1 kHz and the audio
channel is mono. For full details on the construction of theses
datasets the interested reader is referred to [12]. For details on
the data see Table 1.

III. DEEP FEATURE REPRESENTATIONS

Before starting to classify the databases, we first create mel-
spectrograms from chunked audio recordings (cf. Section III-A).
We then send these visual representations through various
image classification CNNs (cf. Section III-B) to extract the
DEEP SPECTRUM features (cf. Section III-C). Afterwards, we
create Bag-of-Deep-Features (BODF) by quantising the DEEP
SPECTRUM features in order to cope with the amount of noise
in the audio recordings (cf. Section III-D).

A. Mel-Spectrograms

The mel-Spectrograms are computed with a window size
of 2048 and an overlap of 1024 from the log-magnitude
spectrum by dimensionality reduction using a mel-filter. We

TABLE II: Overview of the architectural similarities and
differences between the three of the CNNs used for the
extraction of DEEP SPECTRUM features, AlexNet, VGGI16,
and VGG19. conv denotes convolutional layers and ch stands
for channels. The table is adapted from [10].

AlexNet | VGG16 | VGG19
input: RGB image
1xconv 2Xconv
size: 11; ch: 96; stride: 4 size: 3; ch: 64; stride: 1
maxpooling
1xconv 2Xconv
size: 5; ch: 256 size: 3; ch: 128
maxpooling
1xconv 3xconv 4xconv
size: 3; ch: 384 size: 3; ch: 256 | size: 3; ch: 256
maxpooling
1xconv 3Xxconv 4x conv
size: 3; ch: 384 size: 3; ch: 512 | size: 3; ch: 512
maxpooling
1Xxconv 3Xconv 4xconv
size: 3; ch: 256 size: 3; ch: 512 | size: 3; ch: 512
maxpooling

fully connected fc6, 4096 neurons
fully connected fc7, 4096 neurons
fully connected, 1000 neurons
output: soft-max of probabilities for 1000 object classes

apply 128 filter banks equally spaced on the mel-scale defined
in Equation (1):

f

2595 - log 700

1+ ()

The mel-scale is based on the frequency response of the human
ear that has better resolution at lower [requencies. We also
display the mel-spectrogram on this scale. A sample mel-
spectrogram plot for a member of the sneezing class can be
seen in Figure 1. For the mel-spectrogram plots, we use two
different colour mappings: viridis, and magma. It is during
testing (cf. Section V) that we identify the optimal colour map
for the spectral feature spaces. In Figure 4, we highlight the
audio similarities and differences that potentially exist between
different classes in our corpora by showing an example mel-
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Fig. 1: A mel-spectrogram plot of an audio-sample from the
sneezing class with the colour map magma. The colour bar to
the right shows the colour changes associated with increasing
spectral energy.
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Fig. 2: An inception module used in the GoogleNet archi-
tecture. Small 1 x 1 convolutions reduce the dimensionality,
and filters of different patch sizes arc concatenated to combine
information found at different scales.

spectrogram from each target class and from a ‘normal speech’
which was not affected by the target classes.

B. Deep Feature Extractors

We use four different architectures of image CNNs to extract
deep representations from the mel-spectrograms described
in Section III-A. All four networks have been trained for the
task of object categorisation on the large ImageNet [22] corpus
which provides more than 1 million images labelled with 1 000
object classes. The architectural differences and similarities
of AlexNet, VGG16, and VGGI19 are given in Table II. The
GoogLeNet’s architecture is depicted in Figure 2.

1) AlexNet: AlexNet’s architecture consists of 5 convo-
lutional layers followed by 3 fully connected layers [13].
Overlapping maxpooling is used between the first, second, and
third convolutional layer, and a rectified linear unit (ReLU) non-
linearity is applied to improve generalisation capabilities. We
use the 4 096 activations of AlexNet’s seventh layer (commonly
denoted as fc7) as features.

2) VGGI16/VGG19: In contrast to AlexNet, both VGG16
and VGG19 utilise small 3 x 3 receptive fields in all of
their convolutional layers [14]. Both architectures include 2

additional maxpooling layers and are deeper than AlexNet
at 16 and 19 layers. Similar to AlexNet, ReLUs are applied
for response normalisation. For both networks, the activations
of the second fully connected layer are considered as feature
vectors of size 4 096.

3) GoogLeNet: The fourth and one of the strongest image
CNN models we applied as a feature extractor in our exper-
iments is GoogLeNet [15] which bases its architecture on
the so-called inception modules (cf. Figure 2). These modules
aggregate information extracted at different scales by combining
the activations of convolutional filters of different size. In the
overall network, pooling layers are applied after these inception
modules and a fully connected layer is used for the actual
ImageNet classification task. We consider the activations of
the last pooling layer as features for our classification tasks.

C. DEEP SPECTRUM Features

We use a state-of-the-art system based on the introduced
CNN image descriptors (cf. Section III-B). The basic system
architecture (before quantisation) is shown in the left part of
Figure 3. We extract the DEEP SPECTRUM features as follows.
First, mel-spectrograms are created from the chunked (each
0.5s) audio recordings using the audio and music analysis
library librosa [23]. We choose mel-spectrograms since they
have been successfully applied for a wide range of audio
recognition tasks [7], [24]-[26]. The mel-spectrograms are
then transformed to images by creating colour mapped plots.
The second step consists of feeding the created plots to the pre-
trained CNNs and extracting the activations of a specific layer
from each CNN as large feature vectors. These features are a
high-level representation of the plots generated from low-level
audio features. Initial experiments indicated that the viridis
spectrograms worked better for AlexNet and for the other
CNNGs, the magma spectrograms led to better performance.

D. Bag-of-Deep-Features

The last important component of our system is the feature
quantisation block (cf. Figure 3). In this stage, we bag (quantise)
the extracted DEEP SPECTRUM features which we described
in Section III-C to analyse the denoising effect of the deep
feature quantisation. In order to achieve this, we generate a fixed
length histogram representation of each audio recording. This is
done by first identifying a set of ‘deep audio words’ from some
given training data, and then quantising the original feature
space, with respect to the generated codebook, to form the
histogram representation. The histogram shows the frequency
of each identified deep audio word in a given audio instance [8],
[18], [19].

We normalise the features to [0, 1] and random sample a
codebook with fixed size from the training partition. After-
wards, each input feature vector (from training and evaluation
partitions) is applied a fixed number of its closest vectors
from the codebook. We then use logarithmic term-frequency
weighting to the generated histograms.

The size of the codebook
of assigned codebook words

number
optimised

the
are

and
(ew)
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Fig. 3: Mel-spectrograms are generated from the chunked audio files. They are then used as input for the image CNN networks
and the activations of a specific layer are extracted as DEEP SPECTRUM features. This results in a large feature vector for each
chunk of an audio clip. Finally, for each clip, the extracted chunk-level vectors are bagged to form a single BODF vector. For
the last component, we use openXBOW, our open-source toolkit for the generation of bag-of-words representations [8].

(a) Freezing (b) Intoxication (c) Screaming

(d) Threatening

(e) Coughing (f) Sneezing  (g) ‘normal speech’

Fig. 4: Example mel-spectrograms (a — f) extracted from the target classes contained in the six different corpora. The last
example mel-spectrogram is from an audio sample considered to be a ‘normal speech’ utterance which was not affected by the
target classes. The range of the horizontal (time) and vertical (frequency) axes are [0 - 0.45]s and [0 - 4096 ] Hz (cf. Figure 1).
We observe relatively high fO of the Screaming class, wide band spectra for Coughing and Sneezing classes, narrow band
spectra for the Freezing and Threatening classes, and for the Intoxication class we see that the lower frequencies are more

dense (have higher amplitude).

with  size € {10, 20, 50, 100, 200,500, 1 000},
cw € {1,10,25,50,100,200,500} and evaluated on the
evaluation partition using a the linear SVM classifier. For this
purpose, the classifier’s complexity parameter is optimised on
a logarithmic scale between 10™% and 10° with a step size
of 10'. The best performing codebook is then applied for
evaluation on the test set.

IV. CLASSIFIER AND EVALUATION METRICS

In order to predict the class labels for the audio instances
in each of the six corpora, we train a linear Support Vector
Machine (SVM) classifier. The evaluation metric is unweighted
average recall (UAR) as this measure gives equal weight to
all classes and is accordingly more suitable than a weighted
metric (e. g. accuracy) for our datasets which have imbalanced
class distribution (cf. Table I).

For our classifier we use the open-source lincar SVM
implementation provided in the scikit-learn machine learning
library [27]. For the extracted DEEP SPECTRUM features
(cf. section III) we do not apply standardisation, i.e. sub-
tracting the mean and dividing by the standard deviation and
normalisation as they have been found to negatively impact
classifier performance. Moreover, we preferred to apply SVM
over Deep Neural Network (DNN) as the classifier for two
reasons: first, the data sets are too small for a DNN, and second,
BODF is a sparse feature representation and SVM are effective
at handling sparse data.

V. RESULTS

An extensive series of experiments has been conducted
to evaluate the performance of the extracted deep feature
representations (cf. Section III) using the proposed classifier
(cf. Section IV). First, we obtain the classification results for the
non-quantised DEEP SPECTRUM features (cf. Section V-A). We
then evaluate the robustness and the performance of quantising
the representations (BODF) for all four CNN-descriptors
(cf. Section V-B). Finally, we perform early (feature) and late
(model) fusion for various combinations of the CNN-descriptors
(cf. Section V-C).

A. DEEP SPECTRUM Features (non-quantised)

For the non-bagged DEEP SPECTRUM features extracted
from the mel-spectrograms of two colour maps using four
different pre-trained CNNs, we applied majority voting to
obtain the prediction for a whole audio recording from its
chunk-level results. We observe that the results — despite being
strong — are behind the best baseline (cf. column 1, and 2
in Table IIT) and almost all BODF results. This is mainly due
to the existing amount of noise in the feature set. We handled
this issue by generating BODF.

B. Bag-of-Deep-Features

We generated the BODF representations for all databases
and optimised the BODF parameters codebook size and number
of assigned codebook words cw (cf. Section III-D). The results



TABLE III: Classification results of each paralinguistic task from the baseline paper [12] by Support Vector Machine (SVM;
linear kernel), BOAW, and Convolutional Neural Network (CNN) compared with our results from the DEEP SPECTRUM features
by SVM and Bag-of-Deep-Features (BODF). For the non-quantised DEEP SPECTRUM features we used majority voting to
obtain the prediction for a whole audio recording from its chunk-level results. The best result for each corpus is highlighted
with a light grey shading. The chance level for each task is 50.0 % UAR.

% UAR 1S09-emotion (Ref. [12]) | MFCCs (Ref. [12]) AlexNet VGGI6 VGGI19 GoogLeNet
SVM  BOAW CNN | BOAW CNN | SVM  BoDF | SVM  BoDF | SVM  BoDF | SVM  BoDF
Freezing 70.2 67.5 56.9 65.6 51.0 | 625 704 | 713 729 | 679 69.1 | 673 71.6
Intoxication | 64.7 72.6 66.8 66.7 67.5 | 60.3 61.9 | 582 64.7 | 554 71.3 | 63.1 73.6
Screaming 89.2 97.0 89.2 94.0 87.3 | 949 98.5 | 96.8 96.7 | 94.7 982 | 898 94.3
Threatening | 73.8 66.3 71.9 67.0 703 | 722 76.4 | 70.7 73.9 | 70.6 703 | 70.5 71.3
Coughing 95.4 96.7 95.4 97.6 93.6 | 943 953 | 945 953 | 94.2 952 | 91.0 92.0
Sneezing 79.3 76.4  85.2 79.8 80.2 | 74.0 746 | 71.8 749 | 76.8 794 | 64.0 71.8

TABLE 1V: Performance of early and late fusion strategies for the CNN-descriptors using linear SVM classifiers on our corpora.
UAR is used as the measure. For early fusion, the linear SVM classifier’s complexity parameter is optimised on a logarithmic
scale between 107° and 10° with a step size of 10'. For late fusion, we employ a majority vote on the test set using the
best individual models obtained during previous experiments. We denote AlexNet as A., VGG16 as V16, VGGI19 as V19, and
GoogLeNet as G. The fusion results for each corpus which are better than the results given in Table III are highlighted with a

light grey shading. The chance level for each task is 50.0 % UAR.

% UAR Early fusion Late fusion

A+VI6  A+VI9  A+G. VI6+G.  VI9+G. All | A+VI6+VI9  A+VI6+G.  A+VI9+G.  VI6+VI9+G. All
Freezing 69.2 71.3 68.4 74.1 704 712 70.4 76.3 70.4 712 685
Intoxication 65.7 73.0 67.1 68.4 67.8 1738 68.3 67.7 68.8 639 609
Screaming 98.5 99.1 97.8 97.1 99.1 982 98.0 98.0 98.2 982 989
Threatening 74.8 72.8 76.0 732 723 731 73.1 76.3 75.2 722 689
Coughing 96.0 95.5 95.4 95.6 953 965 96.3 96.3 95.2 952 953
Sneezing 76.3 71.7 76.3 75.6 78.0 79.8 71.0 71.7 79.1 79.8  74.1

in Table IIT show that quantisation improves the results for
all CNN-descriptors. Our results also demonstrate the strength
of the BODF outperforming the best baseline results for the
acoustic surveillance tasks Freezing, Intoxication, Threatening,
and Screaming corpora. We observed that BODF worked best
on the longer audio chunks as opposed to the short ones from
the Coughing and Sneezing data sets. We assume this is due
to the the lack of discriminating information in the shorter
chunk spectrograms leading to weaker DEEP SPECTRUM
representations. It is worth noting that for both Coughing and
Sneezing, BODF consistently outperforms DEEP SPECTRUM
features adding evidence to that quantisation improving system
robustness.

C. Fusion Experiments

We apply both early and late fusion schemes to our Bag-of-
Deep-Feature systems (cf. Section III) in order to investigate
their complementarity. For early (feature-level) fusion, we
combine DEEP SPECTRUM features extracted using different
CNN-architectures from the chunked (0.5s) audio recordings.

Here, for each CNN-descriptor (AlexNet, VGG16, VGGI19,
and GoogleNet), we use the same plots and colourmaps as
in our non fusion experiments, i.e. for AlexNet viridis mel-
spectrograms and for the other three networks magma mel-
spectrograms build the basis for feature extraction. Afterwards,
we build BODF representations of those features analogous
to the non-fusion systems outlined in Section III. We again
optimise the BODF parameters on the evaluation partition.
As before, a linear SVM is used for the classification task,
and its cost parameter is optimised on a logarithmic scale
between 1079 and 10° with a step size of 10'. Our late
fusion scheme on the other hand, combines the predictions of
the best BODF models for each dataset obtained in previous
experiments in a majority vote. The results achieved by different
configurations of these two fusion schemes on all six databases
are displayed in Table IV. For Sneezing and Coughing, results
are slightly improved over non-fusion systems but still do
not reach the baseline performance in Table III. We further
denote small performance boosts of the early fusion models
over non-fusion systems for the Infoxication and Screaming



datasets and a larger increase in UAR for the Freezing datasct
using a late fusion system of BODF systems based on AlexNet,
VGG16, and GoogleNet DEEP SPECTRUM features. However,
as there is no consistent pattern, it is difficult to interpret the
differences between the early and late fusion results of the CNN
models. We observe that the early fusion of all features for all
tasks, except for Screaming, lead to stronger performance than
combining all models by late fusion. Based on these finding
we assume that fusing high-level shift-invariant CNN features
can lead to stronger performance than fusing the predictions
of the trained models.

VI. CONCLUSIONS AND FUTURE WORK

Despite representation learning with deep neural networks
having shown superior performance over expert-designed
feature sets in a range of machine learning recognition tasks,
such approaches have not been widely explored within the
domain of noisy, in-the-wild, audio classification. In this regard,
our results indicate that state-of-the-art image classification
CNNs are capable of providing strong feature sets on real-
world audio recognition. Further, we demonstrated the strength
of bagging the DEEP SPECTRUM features as a means to cope
with the amount of noise available in the corpora. We showed
that using BODF, it is possible to improve upon almost all
results obtained from non-quantised DEEP SPECTRUM features.
These results give strong evidence that the quantising step when
bagging features can be viewed as a quasi-filtering process
which, in general, improves system robustness. Finally, we
showed that both early and late fusion can still increase the
BODF classification results. These findings imply that features
and models obtained from the applied CNN-descriptors are in
most cases complementary.

In the future work, we will be testing the BODF with very
deep residual networks such as ResNet [28]. We also want
to explore the benefits of fine-tuning the pre-trained networks
on larger in-the-wild databases like AudioSet [29] or data sets
for Acoustic Scene Classification and Sound Event Detection
challenges [6], [30], [31].
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