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Abstract
We address the problem of speech enhancement generalisa-
tion to unseen environments by performing two manipulations.
First, we embed an additional recording from the environment
alone, and use this embedding to alter activations in the main
enhancement subnetwork. Second, we scale the number of
noise environments present at training time to 16,784 different
environments. Experiment results show that both manipulations
reduce word error rates of a pretrained speech recognition sys-
tem and improve enhancement quality according to a number of
performance measures. Specifically, our best model reduces the
word error rate from 34.04% on noisy speech to 15.46% on the
enhanced speech.

1. Introduction
Speech processing in everyday life presents the challenge of ob-
taining good model performance across a large variety of en-
vironments. In fact, the variety of real-world environments is
large enough to assume that a speech processing model would
be required to perform well in unseen environments that do
not closely resemble the ones present during its training stage.
While many existing approaches to speech enhancement focus
on a small number of environments or environments that are
similar to each other [1, 2, 3], in contrast, in this work we aim
at designing a speech enhancement model that performs well
across a large variety of environments, many of which could be
considerably different from the ones seen at training time.

To this end, we explore two methods we expect to con-
tribute to speech enhancement generalisation to unseen envi-
ronments. First, inspired by one-shot learning models [4], we
do not think of the noise environments used in this work as dis-
tinct unrelated categories, but rather as samples from a large
space that contains all noise environments. In this setting, good
speech enhancement in an unseen noise environment would
amount to generalising to an unseen point in the noise envi-
ronments space. Therefore, to facilitate good generalisation in
this space, we scale up the training set size to include noises
from 16,784 different environments, mixed with 360 hours of
clean speech and different Signal-to-Noise Ratios (SNRs). As
the number of environments seen during training is large, we
expect those environments to share some properties with the
unseen test environments, that may assist in the enhancement
process.

Moreover, we hypothesise that providing the network with
an additional recording of the same environment may assist the
network in identifying which frequency components need to be
removed and which need to be enhanced. Specifically, we con-
dition our model on an additional recording that contains no
speech, from the same environment as the noisy speech seg-
ment. A dedicated subnetwork processes this additional record-
ing to create a noise embedding, that is in turn injected to all

layers of the main enhancement subnetwork. This is a plausible
scenario, as enhancement devices may record an environment
noise sample just before recording the noisy speech.

In experiments, we show that both manipulations result in
better speech enhancement compared to baseline methods, as
measured by the Word Error Rate (WER) of a pretrained speech
recognition system, as well as a number of objective evaluation
metrics. Specifically, while WER on noisy speech with SNR of
0-25 dB was 34.04%, using our enhancement model with as lit-
tle as 200 training noise environments and no noise embeddings
reduced WER for unseen noise environments to 21.51%. Scal-
ing up the the number of training noise environments to 16,784
managed to reduce WER to 16.78%. Finally, using the noise
embeddings computed from additional environment recordings
reduced WER to 15.46%.

2. Data generation
As motivated above, we aim to improve audio enhancement
generalisation to unseen environments by training an enhance-
ment model with a large number of environment noises. To this
end, we mix clean speech utterances from the Librispeech cor-
pus [5] with different noise recordings from the recently pub-
lished Audio Set [6].

The Audio Set corpus contains 2,100,000 audio segments
of 10 seconds extracted from YouTube videos, manually anno-
tated in a multi-label manner for a hierarchical ontology of 632
audio categories, covering a wide range of human and animal
sounds, musical instruments and genres, and common every-
day environmental sounds. Audio Set contains recordings of
a large number noises with great diversity over noise sources
and recording conditions, therefore is challenging and may be
a good approximation of the set of noises coming from natu-
ral everyday environments. We use noises from all categories
in Audio Set’s ontology, excluding noises that are labelled as
‘Human sounds’ or ‘Music’ (as those may contain speech). The
clips were selected randomly, in a manner that balances between
the amount of noises from each of the top categories in the on-
tology. We found that a small portion of the noises that were
not labelled as containing human speech did contain utterances
of human speech anyway.

To make sure that at test time we enhance audio from un-
seen environments, each noise segment is assigned to either the
training, validation or test set. In total, in our training set we use
16,784 different recordings of different environments/noises,
656 in the validation set and 740 in the test set. The clean
speech utterances we mix with environment noises were taken
from the Librispeech corpus. The corpus is freely available for
downloading, and includes a train, validation and test splits.
The Librispeech training set is comprised of 360 hours of audio
from 921 speakers, where the validation and test sets contain
5.4 hours of speech and 40 speakers each. For the enhancement
task training, validation and test sets, we mix clean utterances
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Figure 1: The enhancement model architecture. The embedding subnetwork processes an environment recording through a sequence
of residual blocks to produce a fixed length vector that is the noise embedding. In the main enhancement subnetwork, the noisy speech
recording is processed through another sequence of residual blocks, each conditioned on the noise embedding and additional positional
embeddings, to emit one enhanced speech frame.

from the corresponding set in the Librispeech corpus.
Clean speech utterances are mixed with the environment

recordings using SNRs of 0, 5, 10, 15, 20 and 25 dB. For the
training set, during training a random speech utterance is mixed
with a random noise recording with a random SNR, to obtain
the largest effective training set size. For the validation and test
sets, one environment noise recording and SNR are fixed for
every utterance.

3. Enhancement model
We design a neural network enhancement model, that can be
conditioned on environment noise samples and has a large ca-
pacity that corresponds to the large training set. We represent
all audio segments as their log magnitude spectrum, which is
obtained by taking the log absolute value of the Short-Time
Fourier Transform (STFT) over 25 ms frames shifted by 10 ms,
where 10−7 is added before computing the log function to pre-
vent the model from trying to fit unimportant differences in
magnitude. All audio recordings we use have a sample rate of
16kHz, which results in 201 coefficients for each frame.

Our enhancement model processes two inputs: n frames of
noisy speech segment (speech mixed with noise, as described in
Section 2) and r frames that are the noise segment (in our ex-
periments we found the best values are n = 200 and r = 35).
It is important to note that in all cases the noise segment and the
noise that was mixed into the noisy speech segment are from the
same recording, but from different parts of this recording. This
better simulates a real-world situation, where an enhancement
device may record the environment sound alone, just before
recording the noisy speech. The network processes the two in-

puts and then outputs the enhanced frame. The enhanced frame
is the network approximation for the central frame of the clean
speech recording (before mixing it with noise), which we refer
to as the clean frame. A diagram of our enhancement model
architecture is found in Figure 1.

3.1. Embedding subnetwork
We first process the noise segment through an embedding sub-
network to create the noise embedding. The embedding subnet-
work is comprised of a sequence of 4 residual blocks [7], each
comprised of two 2D-convolutional layers (we treat the time
and frequency as spatial axes). The convolutional layers of the
first two residual blocks use a kernel size of 8 × 4 (time steps
over frequency components) with a stride of 3 × 2, where the
convolutional layers of the last two residual blocks use a 4 × 4
kernel with a 1 × 1 and 1 × 2 stride respectively. The num-
ber of feature maps for the convolutional layers in each of the
four residual block are 64, 128, 256, 512 respectively. Inside
each residual block, batch normalisation [8] is applied on the
output of the first convolutional layer, followed by a rectified
linear activation function. Then, the second convolutional layer
is applied and its output is added to the block’s input. Batch
normalisation is then applied again, followed by another recti-
fied linear activation function to return the block’s output. After
applying the four residual blocks, we average each feature map
across all locations, to obtain a single 512-dimensional vector
that is the noise embedding.

3.2. Enhancement subnetwork

The enhancement subnetwork then processes the noisy speech
segment and the noise embedding, to output the enhanced
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frame. This subnetwork is comprised of a sequence of 8 resid-
ual blocks, processing the noisy speech segment. In those resid-
ual blocks, for each convolutional layer, the noise embedding is
linearly projected to a dimension equal to the number of feature
maps in this convolution layer. This projected noise embedding
is then added to each location in the output map of the convolu-
tion layer. By doing so, we inject the noise embedding along all
parts of the deep network, allowing each part to emit different
outputs based on the current environment noise that should be
removed from the audio.

Additionally, to allow the network to process differently the
different frequency components and time steps, we embed the
time steps and frequency components (location embeddings) in-
dices and add these embeddings to the appropriate locations in
the output map of each convolutional layer. The location em-
beddings are emitted using a small neural network. The input
of this network is a single integer that represents the location
in the appropriate axis (time / frequency), which is processed
through two 50-dimensional fully-connected layers with recti-
fied linear activation function and batch normalisation. Except
the described above, the structure of each residual block in this
subnetwork is identical to those in the embedding subnetwork.

The convolutional layers in the first 4 residual blocks of the
enhancement subnetwork use a 4×4 kernel, where a 3×3 kernel
is used in the last 4 residual blocks. A 2× 2 stride is applied in
residual blocks number 3, 5 and 7. The first two residual blocks
use 64 feature maps for each convolutional layer, followed by
128, 256 and 512 feature maps for the next groups of 2 residual
blocks.

For the final part of the enhancement subnetwork, we flatten
the output of the last residual block and feed it into a fully-
connected layer with 201 output values. The output of this layer
is treated as an enhancement mask, which is added to the central
frame of the noisy speech segment to yield the enhanced frame.
During training, network parameters are optimised to minimise
the mean squared error between the enhanced frame and the
clean frame. In our experiments we used Stochastic Gradient
Descent (SGD), where 0.1 was found to be the best learning
rate.

4. Experiments
We conduct a series of experiments to study the effect of noise
embeddings and the number of different environment noises
available in training time on speech enhancement performance.

Inverse Short-Time Fourier Transform (ISTFT) was ap-
plied to the enhanced magnitude spectrogram, together with
the phase of the noisy speech, to reconstruct a waveform from
each enhanced log magnitude spectrum. To measure the suc-
cess of each of our speech enhancement models, we used the
following evaluation metrics. The first evaluation metric is the
WER obtained by feeding the enhanced audio to a pretrained
‘Deep Speech’ speech recognition system [9], where a model
that was trained on the Librispeech dataset can be found in
https://github.com/mozilla/DeepSpeech. In ad-
dition, we computed three other well established metrics for the
assessment of speech audio quality: the Perceptual Evaluation
of Speech Quality (PESQ) [10], that is an industry standard
for objective voice quality testing, Segmental Signal-to-Noise
Ratio (SegSNR) [11] and Log-Spectral Distortion (LSD) [12],
that evaluate the clean speech features reconstruction in differ-
ent manners.

We compared the enhancement performance of several
models. First, we evaluated our hypothesis that speech en-

Table 1: Comparison of test set evaluation metrics for all en-
hancement models and the noisy speech. ‘No Emb x’ stands
for the model with no noise embedding where x is the number
of environment noises available at training time. Best results
in bold. Performance in all evaluation metrics improves with
the increase in the number of training environments recordings,
and using noise embedding further improves performance.

Method WER PESQ SegSNR LSD

Clean Speech 4.21 — — —

Noisy Speech 34.04 2.59 7.02 0.94

Log-MMSE 35.38 2.66 7.12 0.91

Noise Aware 25.30 2.96 11.01 0.54

Ours - No Emb’ 200 21.51 3.12 10.03 0.53

Ours - No Emb’ 1000 20.54 3.13 10.00 0.52

Ours - No Emb’ All 16.78 3.25 11.71 0.48

Ours - With Emb’ 15.46 3.30 12.99 0.45

hancement performance in unseen environments is closely re-
lated to the number of different environment noises appearing
during training time. To this end, we compared three identical
enhancement networks, trained with utterances that are mixed
with 200, 1000, and our full training set of 16,784 environment
noises respectively. These enhancement networks do not use
the noise embedding, which is otherwise added to the output of
the convolutional layers. Second, to study the effect of the noise
embedding, we trained another identical enhancement network
with the full training set of environment noises, that does use
the noise embedding as described in Section 3.

Finally, we compared our proposed network with two other
baselines, Log-MMSE and noise-aware training. Log-MMSE
[13] is a more traditional, non-neural network enhancement
method, while in noise-aware training [2] an estimation of the
noise is given to a fully-connected enhancement network as ad-
ditional features. In our case, we average frames of the noise
segment along the time axis to create the noise estimation used
in noise aware training, in a manner inspired from [2]. We
optimise the number of layers (3-7), hidden units (500-2000)
and regularisation (batch normalisation) in the fully-connected
network used in noise-aware training. In all cases, model pa-
rameters were chosen using the validation set, for each method
separately. The training, validation and test sets all contain dif-
ferent environment noises, to assess the model’s performance in
unseen environments.

Test set results for all enhancement methods and the noisy
speech can be found in Table 1, averaged across all SNRs. Our
test set contains noisy speech from noise environments, speak-
ers and utterances that did not appear in training time. First, we
observe that the pretrained speech recognition system obtained
a 4.21% WER on the clean speech, while obtaining 34.04%
on the noisy speech before applying any enhancement method.
The Log-MMSE baseline did not manage to considerably im-
prove over the noisy speech, and for the WER evaluation met-
ric even caused a degradation in performance. The other base-
line method, noise-aware training, did manage to considerably
improve all evaluation metrics over the noisy speech, with a
25.30% WER.

Further, we compared our proposed method to the baseline
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Table 2: Test set word error rates using the pretrained speech recognition system, the different enhancement methods and SNRs ranging
from 0 to 25 dB. For all SNRs, best performance is obtained using the largest number of training set noises and noise embeddings.

Method 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB

Noisy Speech 75.09 57.22 37.54 18.98 8.83 5.19

Log-MMSE 77.25 59.90 37.49 19.93 10.01 6.21

Noise Aware 61.41 40.15 24.84 12.38 6.72 4.93

Ours - No Embeddings 200 54.24 31.95 20.36 10.34 6.13 4.75

Ours - No Embeddings 1000 52.97 29.95 18.77 9.47 5.98 4.80

Ours - No Embeddings All 43.85 22.92 15.00 7.64 5.50 4.64

Ours - With Embeddings 41.76 21.34 12.35 6.88 5.18 4.05

methods. Using our enhancement network with only 200 train-
ing noise environments and no noise embedding managed to
further reduce WER to 21.51%, and improve all other evalu-
ation metrics in a similar manner. This finding indicates that
the structure of the enhancement network is important, and a
deep, residual network is preferable over a fully-connected net-
work. Next, we observe that further increasing the number of
training noise environments causes a substantial improvement
in all evaluation metrics, with a WER of 16.78% when using all
16,784 training noise environments. Last, using the embedding
subnetwork and feeding the noise embedding to the enhance-
ment model as described in Section 3 reduces WER to 15.46%
and improves all other evaluation metrics as well. The 15.46%
WER that is obtained by our best model corresponds to a rel-
ative reduction of 54.58% in WER, compared to the original
noisy speech.

A decomposition of WERs for the different enhancement
methods and SNRs can be found in Table 2. The results in
the table show that the same conclusions we draw from Ta-
ble 1 also hold for each SNR independently. Specifically, we
observe the advantages of our methods that use a deep resid-
ual network over the baseline methods, and the improvement in
WER due to a largest number of training noises and the usage
of noise embeddings. Moreover, when using our best model
to enhance noisy speech in the 25 dB condition, we surprisingly
found that the WER obtained on the enhanced speech (4.05%) is
better even compared to the WER obtained on the clean speech
recordings (4.21%). This finding may indicate that the enhance-
ment model captures the dynamics of speech up to a level of de-
noising seemingly negligible background noises that exist in the
clean recordings, and further enhances speech quality in those
recordings.

5. Conclusions
We investigated speech enhancement in unseen environments
using two main manipulations. First, we view speech enhance-
ment in unseen environments as the problem of generalising to
unseen points in the space of noise environments. Motivated
by this, we scale the number of training noise environments to
16,784. Second, we supply the enhancement model with ad-
ditional information about the environment, in the form of an
additional recording from the noise environment. This addi-
tional recording is processed to create a noise embedding vector
that is fed as an additional input to different layers of the main
enhancement subnetwork. In experiments, we observed that
both of our manipulations managed to considerably improve the

quality of the speech enhancement model, as measured by a va-
riety of evaluation metrics. For example, our best model man-
ages to reduce the WER of a pretrained speech recognition sys-
tem from 34.04% on noisy speech to 15.46% on the enhanced
speech.

In future work we plan on further exploring the method of
additional context embedding, e.g., embedding speaker record-
ings for source separation and embedding noises for selective
denoising, as well as improving the current enhancement model
using alternative training mechanisms [14, 15]. In addition, we
plan on exploring the resulting embedding spaces for semantic
and acoustic interpretations.
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